LowerTypeTests.h revision 341825
1//===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines parts of the type test lowering pass implementation that
11// may be usefully unit tested.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
16#define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
17
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/IR/PassManager.h"
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <set>
24#include <vector>
25
26namespace llvm {
27
28class Module;
29class ModuleSummaryIndex;
30class raw_ostream;
31
32namespace lowertypetests {
33
34struct BitSetInfo {
35  // The indices of the set bits in the bitset.
36  std::set<uint64_t> Bits;
37
38  // The byte offset into the combined global represented by the bitset.
39  uint64_t ByteOffset;
40
41  // The size of the bitset in bits.
42  uint64_t BitSize;
43
44  // Log2 alignment of the bit set relative to the combined global.
45  // For example, a log2 alignment of 3 means that bits in the bitset
46  // represent addresses 8 bytes apart.
47  unsigned AlignLog2;
48
49  bool isSingleOffset() const {
50    return Bits.size() == 1;
51  }
52
53  bool isAllOnes() const {
54    return Bits.size() == BitSize;
55  }
56
57  bool containsGlobalOffset(uint64_t Offset) const;
58
59  void print(raw_ostream &OS) const;
60};
61
62struct BitSetBuilder {
63  SmallVector<uint64_t, 16> Offsets;
64  uint64_t Min = std::numeric_limits<uint64_t>::max();
65  uint64_t Max = 0;
66
67  BitSetBuilder() = default;
68
69  void addOffset(uint64_t Offset) {
70    if (Min > Offset)
71      Min = Offset;
72    if (Max < Offset)
73      Max = Offset;
74
75    Offsets.push_back(Offset);
76  }
77
78  BitSetInfo build();
79};
80
81/// This class implements a layout algorithm for globals referenced by bit sets
82/// that tries to keep members of small bit sets together. This can
83/// significantly reduce bit set sizes in many cases.
84///
85/// It works by assembling fragments of layout from sets of referenced globals.
86/// Each set of referenced globals causes the algorithm to create a new
87/// fragment, which is assembled by appending each referenced global in the set
88/// into the fragment. If a referenced global has already been referenced by an
89/// fragment created earlier, we instead delete that fragment and append its
90/// contents into the fragment we are assembling.
91///
92/// By starting with the smallest fragments, we minimize the size of the
93/// fragments that are copied into larger fragments. This is most intuitively
94/// thought about when considering the case where the globals are virtual tables
95/// and the bit sets represent their derived classes: in a single inheritance
96/// hierarchy, the optimum layout would involve a depth-first search of the
97/// class hierarchy (and in fact the computed layout ends up looking a lot like
98/// a DFS), but a naive DFS would not work well in the presence of multiple
99/// inheritance. This aspect of the algorithm ends up fitting smaller
100/// hierarchies inside larger ones where that would be beneficial.
101///
102/// For example, consider this class hierarchy:
103///
104/// A       B
105///   \   / | \
106///     C   D   E
107///
108/// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
109/// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
110/// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
111/// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
112/// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
113///
114/// Add bsC, fragments {{C}}
115/// Add bsD, fragments {{C}, {D}}
116/// Add bsE, fragments {{C}, {D}, {E}}
117/// Add bsA, fragments {{A, C}, {D}, {E}}
118/// Add bsB, fragments {{B, A, C, D, E}}
119///
120/// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
121/// fewer) objects, at the cost of bsB needing to cover 1 more object.
122///
123/// The bit set lowering pass assigns an object index to each object that needs
124/// to be laid out, and calls addFragment for each bit set passing the object
125/// indices of its referenced globals. It then assembles a layout from the
126/// computed layout in the Fragments field.
127struct GlobalLayoutBuilder {
128  /// The computed layout. Each element of this vector contains a fragment of
129  /// layout (which may be empty) consisting of object indices.
130  std::vector<std::vector<uint64_t>> Fragments;
131
132  /// Mapping from object index to fragment index.
133  std::vector<uint64_t> FragmentMap;
134
135  GlobalLayoutBuilder(uint64_t NumObjects)
136      : Fragments(1), FragmentMap(NumObjects) {}
137
138  /// Add F to the layout while trying to keep its indices contiguous.
139  /// If a previously seen fragment uses any of F's indices, that
140  /// fragment will be laid out inside F.
141  void addFragment(const std::set<uint64_t> &F);
142};
143
144/// This class is used to build a byte array containing overlapping bit sets. By
145/// loading from indexed offsets into the byte array and applying a mask, a
146/// program can test bits from the bit set with a relatively short instruction
147/// sequence. For example, suppose we have 15 bit sets to lay out:
148///
149/// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
150/// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
151/// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
152///
153/// These bits can be laid out in a 16-byte array like this:
154///
155///       Byte Offset
156///     0123456789ABCDEF
157/// Bit
158///   7 HHHHHHHHHIIIIIII
159///   6 GGGGGGGGGGJJJJJJ
160///   5 FFFFFFFFFFFKKKKK
161///   4 EEEEEEEEEEEELLLL
162///   3 DDDDDDDDDDDDDMMM
163///   2 CCCCCCCCCCCCCCNN
164///   1 BBBBBBBBBBBBBBBO
165///   0 AAAAAAAAAAAAAAAA
166///
167/// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
168/// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
169/// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
170///
171/// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
172/// because for one thing it gives us better packing (the more bins there are,
173/// the less evenly they will be filled), and for another, the instruction
174/// sequences can be slightly shorter, both on x86 and ARM.
175struct ByteArrayBuilder {
176  /// The byte array built so far.
177  std::vector<uint8_t> Bytes;
178
179  enum { BitsPerByte = 8 };
180
181  /// The number of bytes allocated so far for each of the bits.
182  uint64_t BitAllocs[BitsPerByte];
183
184  ByteArrayBuilder() {
185    memset(BitAllocs, 0, sizeof(BitAllocs));
186  }
187
188  /// Allocate BitSize bits in the byte array where Bits contains the bits to
189  /// set. AllocByteOffset is set to the offset within the byte array and
190  /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
191  /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
192  /// efficiently; the pass allocates bit sets in decreasing size order.
193  void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
194                uint64_t &AllocByteOffset, uint8_t &AllocMask);
195};
196
197} // end namespace lowertypetests
198
199class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
200public:
201  ModuleSummaryIndex *ExportSummary;
202  const ModuleSummaryIndex *ImportSummary;
203  LowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
204                     const ModuleSummaryIndex *ImportSummary)
205      : ExportSummary(ExportSummary), ImportSummary(ImportSummary) {}
206  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
207};
208
209} // end namespace llvm
210
211#endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
212