MathExtras.h revision 360660
1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/SwapByteOrder.h"
18#include <algorithm>
19#include <cassert>
20#include <climits>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42/// The behavior an operation has on an input of 0.
43enum ZeroBehavior {
44  /// The returned value is undefined.
45  ZB_Undefined,
46  /// The returned value is numeric_limits<T>::max()
47  ZB_Max,
48  /// The returned value is numeric_limits<T>::digits
49  ZB_Width
50};
51
52namespace detail {
53template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
54  static unsigned count(T Val, ZeroBehavior) {
55    if (!Val)
56      return std::numeric_limits<T>::digits;
57    if (Val & 0x1)
58      return 0;
59
60    // Bisection method.
61    unsigned ZeroBits = 0;
62    T Shift = std::numeric_limits<T>::digits >> 1;
63    T Mask = std::numeric_limits<T>::max() >> Shift;
64    while (Shift) {
65      if ((Val & Mask) == 0) {
66        Val >>= Shift;
67        ZeroBits |= Shift;
68      }
69      Shift >>= 1;
70      Mask >>= Shift;
71    }
72    return ZeroBits;
73  }
74};
75
76#if __GNUC__ >= 4 || defined(_MSC_VER)
77template <typename T> struct TrailingZerosCounter<T, 4> {
78  static unsigned count(T Val, ZeroBehavior ZB) {
79    if (ZB != ZB_Undefined && Val == 0)
80      return 32;
81
82#if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
83    return __builtin_ctz(Val);
84#elif defined(_MSC_VER)
85    unsigned long Index;
86    _BitScanForward(&Index, Val);
87    return Index;
88#endif
89  }
90};
91
92#if !defined(_MSC_VER) || defined(_M_X64)
93template <typename T> struct TrailingZerosCounter<T, 8> {
94  static unsigned count(T Val, ZeroBehavior ZB) {
95    if (ZB != ZB_Undefined && Val == 0)
96      return 64;
97
98#if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
99    return __builtin_ctzll(Val);
100#elif defined(_MSC_VER)
101    unsigned long Index;
102    _BitScanForward64(&Index, Val);
103    return Index;
104#endif
105  }
106};
107#endif
108#endif
109} // namespace detail
110
111/// Count number of 0's from the least significant bit to the most
112///   stopping at the first 1.
113///
114/// Only unsigned integral types are allowed.
115///
116/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
117///   valid arguments.
118template <typename T>
119unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
120  static_assert(std::numeric_limits<T>::is_integer &&
121                    !std::numeric_limits<T>::is_signed,
122                "Only unsigned integral types are allowed.");
123  return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
124}
125
126namespace detail {
127template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
128  static unsigned count(T Val, ZeroBehavior) {
129    if (!Val)
130      return std::numeric_limits<T>::digits;
131
132    // Bisection method.
133    unsigned ZeroBits = 0;
134    for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
135      T Tmp = Val >> Shift;
136      if (Tmp)
137        Val = Tmp;
138      else
139        ZeroBits |= Shift;
140    }
141    return ZeroBits;
142  }
143};
144
145#if __GNUC__ >= 4 || defined(_MSC_VER)
146template <typename T> struct LeadingZerosCounter<T, 4> {
147  static unsigned count(T Val, ZeroBehavior ZB) {
148    if (ZB != ZB_Undefined && Val == 0)
149      return 32;
150
151#if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
152    return __builtin_clz(Val);
153#elif defined(_MSC_VER)
154    unsigned long Index;
155    _BitScanReverse(&Index, Val);
156    return Index ^ 31;
157#endif
158  }
159};
160
161#if !defined(_MSC_VER) || defined(_M_X64)
162template <typename T> struct LeadingZerosCounter<T, 8> {
163  static unsigned count(T Val, ZeroBehavior ZB) {
164    if (ZB != ZB_Undefined && Val == 0)
165      return 64;
166
167#if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
168    return __builtin_clzll(Val);
169#elif defined(_MSC_VER)
170    unsigned long Index;
171    _BitScanReverse64(&Index, Val);
172    return Index ^ 63;
173#endif
174  }
175};
176#endif
177#endif
178} // namespace detail
179
180/// Count number of 0's from the most significant bit to the least
181///   stopping at the first 1.
182///
183/// Only unsigned integral types are allowed.
184///
185/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
186///   valid arguments.
187template <typename T>
188unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
189  static_assert(std::numeric_limits<T>::is_integer &&
190                    !std::numeric_limits<T>::is_signed,
191                "Only unsigned integral types are allowed.");
192  return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
193}
194
195/// Get the index of the first set bit starting from the least
196///   significant bit.
197///
198/// Only unsigned integral types are allowed.
199///
200/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
201///   valid arguments.
202template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
203  if (ZB == ZB_Max && Val == 0)
204    return std::numeric_limits<T>::max();
205
206  return countTrailingZeros(Val, ZB_Undefined);
207}
208
209/// Create a bitmask with the N right-most bits set to 1, and all other
210/// bits set to 0.  Only unsigned types are allowed.
211template <typename T> T maskTrailingOnes(unsigned N) {
212  static_assert(std::is_unsigned<T>::value, "Invalid type!");
213  const unsigned Bits = CHAR_BIT * sizeof(T);
214  assert(N <= Bits && "Invalid bit index");
215  return N == 0 ? 0 : (T(-1) >> (Bits - N));
216}
217
218/// Create a bitmask with the N left-most bits set to 1, and all other
219/// bits set to 0.  Only unsigned types are allowed.
220template <typename T> T maskLeadingOnes(unsigned N) {
221  return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
222}
223
224/// Create a bitmask with the N right-most bits set to 0, and all other
225/// bits set to 1.  Only unsigned types are allowed.
226template <typename T> T maskTrailingZeros(unsigned N) {
227  return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
228}
229
230/// Create a bitmask with the N left-most bits set to 0, and all other
231/// bits set to 1.  Only unsigned types are allowed.
232template <typename T> T maskLeadingZeros(unsigned N) {
233  return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
234}
235
236/// Get the index of the last set bit starting from the least
237///   significant bit.
238///
239/// Only unsigned integral types are allowed.
240///
241/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
242///   valid arguments.
243template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
244  if (ZB == ZB_Max && Val == 0)
245    return std::numeric_limits<T>::max();
246
247  // Use ^ instead of - because both gcc and llvm can remove the associated ^
248  // in the __builtin_clz intrinsic on x86.
249  return countLeadingZeros(Val, ZB_Undefined) ^
250         (std::numeric_limits<T>::digits - 1);
251}
252
253/// Macro compressed bit reversal table for 256 bits.
254///
255/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
256static const unsigned char BitReverseTable256[256] = {
257#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
258#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
259#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
260  R6(0), R6(2), R6(1), R6(3)
261#undef R2
262#undef R4
263#undef R6
264};
265
266/// Reverse the bits in \p Val.
267template <typename T>
268T reverseBits(T Val) {
269  unsigned char in[sizeof(Val)];
270  unsigned char out[sizeof(Val)];
271  std::memcpy(in, &Val, sizeof(Val));
272  for (unsigned i = 0; i < sizeof(Val); ++i)
273    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
274  std::memcpy(&Val, out, sizeof(Val));
275  return Val;
276}
277
278// NOTE: The following support functions use the _32/_64 extensions instead of
279// type overloading so that signed and unsigned integers can be used without
280// ambiguity.
281
282/// Return the high 32 bits of a 64 bit value.
283constexpr inline uint32_t Hi_32(uint64_t Value) {
284  return static_cast<uint32_t>(Value >> 32);
285}
286
287/// Return the low 32 bits of a 64 bit value.
288constexpr inline uint32_t Lo_32(uint64_t Value) {
289  return static_cast<uint32_t>(Value);
290}
291
292/// Make a 64-bit integer from a high / low pair of 32-bit integers.
293constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
294  return ((uint64_t)High << 32) | (uint64_t)Low;
295}
296
297/// Checks if an integer fits into the given bit width.
298template <unsigned N> constexpr inline bool isInt(int64_t x) {
299  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
300}
301// Template specializations to get better code for common cases.
302template <> constexpr inline bool isInt<8>(int64_t x) {
303  return static_cast<int8_t>(x) == x;
304}
305template <> constexpr inline bool isInt<16>(int64_t x) {
306  return static_cast<int16_t>(x) == x;
307}
308template <> constexpr inline bool isInt<32>(int64_t x) {
309  return static_cast<int32_t>(x) == x;
310}
311
312/// Checks if a signed integer is an N bit number shifted left by S.
313template <unsigned N, unsigned S>
314constexpr inline bool isShiftedInt(int64_t x) {
315  static_assert(
316      N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
317  static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
318  return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
319}
320
321/// Checks if an unsigned integer fits into the given bit width.
322///
323/// This is written as two functions rather than as simply
324///
325///   return N >= 64 || X < (UINT64_C(1) << N);
326///
327/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
328/// left too many places.
329template <unsigned N>
330constexpr inline typename std::enable_if<(N < 64), bool>::type
331isUInt(uint64_t X) {
332  static_assert(N > 0, "isUInt<0> doesn't make sense");
333  return X < (UINT64_C(1) << (N));
334}
335template <unsigned N>
336constexpr inline typename std::enable_if<N >= 64, bool>::type
337isUInt(uint64_t X) {
338  return true;
339}
340
341// Template specializations to get better code for common cases.
342template <> constexpr inline bool isUInt<8>(uint64_t x) {
343  return static_cast<uint8_t>(x) == x;
344}
345template <> constexpr inline bool isUInt<16>(uint64_t x) {
346  return static_cast<uint16_t>(x) == x;
347}
348template <> constexpr inline bool isUInt<32>(uint64_t x) {
349  return static_cast<uint32_t>(x) == x;
350}
351
352/// Checks if a unsigned integer is an N bit number shifted left by S.
353template <unsigned N, unsigned S>
354constexpr inline bool isShiftedUInt(uint64_t x) {
355  static_assert(
356      N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
357  static_assert(N + S <= 64,
358                "isShiftedUInt<N, S> with N + S > 64 is too wide.");
359  // Per the two static_asserts above, S must be strictly less than 64.  So
360  // 1 << S is not undefined behavior.
361  return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
362}
363
364/// Gets the maximum value for a N-bit unsigned integer.
365inline uint64_t maxUIntN(uint64_t N) {
366  assert(N > 0 && N <= 64 && "integer width out of range");
367
368  // uint64_t(1) << 64 is undefined behavior, so we can't do
369  //   (uint64_t(1) << N) - 1
370  // without checking first that N != 64.  But this works and doesn't have a
371  // branch.
372  return UINT64_MAX >> (64 - N);
373}
374
375/// Gets the minimum value for a N-bit signed integer.
376inline int64_t minIntN(int64_t N) {
377  assert(N > 0 && N <= 64 && "integer width out of range");
378
379  return -(UINT64_C(1)<<(N-1));
380}
381
382/// Gets the maximum value for a N-bit signed integer.
383inline int64_t maxIntN(int64_t N) {
384  assert(N > 0 && N <= 64 && "integer width out of range");
385
386  // This relies on two's complement wraparound when N == 64, so we convert to
387  // int64_t only at the very end to avoid UB.
388  return (UINT64_C(1) << (N - 1)) - 1;
389}
390
391/// Checks if an unsigned integer fits into the given (dynamic) bit width.
392inline bool isUIntN(unsigned N, uint64_t x) {
393  return N >= 64 || x <= maxUIntN(N);
394}
395
396/// Checks if an signed integer fits into the given (dynamic) bit width.
397inline bool isIntN(unsigned N, int64_t x) {
398  return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
399}
400
401/// Return true if the argument is a non-empty sequence of ones starting at the
402/// least significant bit with the remainder zero (32 bit version).
403/// Ex. isMask_32(0x0000FFFFU) == true.
404constexpr inline bool isMask_32(uint32_t Value) {
405  return Value && ((Value + 1) & Value) == 0;
406}
407
408/// Return true if the argument is a non-empty sequence of ones starting at the
409/// least significant bit with the remainder zero (64 bit version).
410constexpr inline bool isMask_64(uint64_t Value) {
411  return Value && ((Value + 1) & Value) == 0;
412}
413
414/// Return true if the argument contains a non-empty sequence of ones with the
415/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
416constexpr inline bool isShiftedMask_32(uint32_t Value) {
417  return Value && isMask_32((Value - 1) | Value);
418}
419
420/// Return true if the argument contains a non-empty sequence of ones with the
421/// remainder zero (64 bit version.)
422constexpr inline bool isShiftedMask_64(uint64_t Value) {
423  return Value && isMask_64((Value - 1) | Value);
424}
425
426/// Return true if the argument is a power of two > 0.
427/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
428constexpr inline bool isPowerOf2_32(uint32_t Value) {
429  return Value && !(Value & (Value - 1));
430}
431
432/// Return true if the argument is a power of two > 0 (64 bit edition.)
433constexpr inline bool isPowerOf2_64(uint64_t Value) {
434  return Value && !(Value & (Value - 1));
435}
436
437/// Return a byte-swapped representation of the 16-bit argument.
438inline uint16_t ByteSwap_16(uint16_t Value) {
439  return sys::SwapByteOrder_16(Value);
440}
441
442/// Return a byte-swapped representation of the 32-bit argument.
443inline uint32_t ByteSwap_32(uint32_t Value) {
444  return sys::SwapByteOrder_32(Value);
445}
446
447/// Return a byte-swapped representation of the 64-bit argument.
448inline uint64_t ByteSwap_64(uint64_t Value) {
449  return sys::SwapByteOrder_64(Value);
450}
451
452/// Count the number of ones from the most significant bit to the first
453/// zero bit.
454///
455/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
456/// Only unsigned integral types are allowed.
457///
458/// \param ZB the behavior on an input of all ones. Only ZB_Width and
459/// ZB_Undefined are valid arguments.
460template <typename T>
461unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
462  static_assert(std::numeric_limits<T>::is_integer &&
463                    !std::numeric_limits<T>::is_signed,
464                "Only unsigned integral types are allowed.");
465  return countLeadingZeros<T>(~Value, ZB);
466}
467
468/// Count the number of ones from the least significant bit to the first
469/// zero bit.
470///
471/// Ex. countTrailingOnes(0x00FF00FF) == 8.
472/// Only unsigned integral types are allowed.
473///
474/// \param ZB the behavior on an input of all ones. Only ZB_Width and
475/// ZB_Undefined are valid arguments.
476template <typename T>
477unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
478  static_assert(std::numeric_limits<T>::is_integer &&
479                    !std::numeric_limits<T>::is_signed,
480                "Only unsigned integral types are allowed.");
481  return countTrailingZeros<T>(~Value, ZB);
482}
483
484namespace detail {
485template <typename T, std::size_t SizeOfT> struct PopulationCounter {
486  static unsigned count(T Value) {
487    // Generic version, forward to 32 bits.
488    static_assert(SizeOfT <= 4, "Not implemented!");
489#if __GNUC__ >= 4
490    return __builtin_popcount(Value);
491#else
492    uint32_t v = Value;
493    v = v - ((v >> 1) & 0x55555555);
494    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
495    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
496#endif
497  }
498};
499
500template <typename T> struct PopulationCounter<T, 8> {
501  static unsigned count(T Value) {
502#if __GNUC__ >= 4
503    return __builtin_popcountll(Value);
504#else
505    uint64_t v = Value;
506    v = v - ((v >> 1) & 0x5555555555555555ULL);
507    v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
508    v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
509    return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
510#endif
511  }
512};
513} // namespace detail
514
515/// Count the number of set bits in a value.
516/// Ex. countPopulation(0xF000F000) = 8
517/// Returns 0 if the word is zero.
518template <typename T>
519inline unsigned countPopulation(T Value) {
520  static_assert(std::numeric_limits<T>::is_integer &&
521                    !std::numeric_limits<T>::is_signed,
522                "Only unsigned integral types are allowed.");
523  return detail::PopulationCounter<T, sizeof(T)>::count(Value);
524}
525
526/// Return the log base 2 of the specified value.
527inline double Log2(double Value) {
528#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
529  return __builtin_log(Value) / __builtin_log(2.0);
530#else
531  return log2(Value);
532#endif
533}
534
535/// Return the floor log base 2 of the specified value, -1 if the value is zero.
536/// (32 bit edition.)
537/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
538inline unsigned Log2_32(uint32_t Value) {
539  return 31 - countLeadingZeros(Value);
540}
541
542/// Return the floor log base 2 of the specified value, -1 if the value is zero.
543/// (64 bit edition.)
544inline unsigned Log2_64(uint64_t Value) {
545  return 63 - countLeadingZeros(Value);
546}
547
548/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
549/// (32 bit edition).
550/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
551inline unsigned Log2_32_Ceil(uint32_t Value) {
552  return 32 - countLeadingZeros(Value - 1);
553}
554
555/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
556/// (64 bit edition.)
557inline unsigned Log2_64_Ceil(uint64_t Value) {
558  return 64 - countLeadingZeros(Value - 1);
559}
560
561/// Return the greatest common divisor of the values using Euclid's algorithm.
562template <typename T>
563inline T greatestCommonDivisor(T A, T B) {
564  while (B) {
565    T Tmp = B;
566    B = A % B;
567    A = Tmp;
568  }
569  return A;
570}
571
572inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
573  return greatestCommonDivisor<uint64_t>(A, B);
574}
575
576/// This function takes a 64-bit integer and returns the bit equivalent double.
577inline double BitsToDouble(uint64_t Bits) {
578  double D;
579  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
580  memcpy(&D, &Bits, sizeof(Bits));
581  return D;
582}
583
584/// This function takes a 32-bit integer and returns the bit equivalent float.
585inline float BitsToFloat(uint32_t Bits) {
586  float F;
587  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
588  memcpy(&F, &Bits, sizeof(Bits));
589  return F;
590}
591
592/// This function takes a double and returns the bit equivalent 64-bit integer.
593/// Note that copying doubles around changes the bits of NaNs on some hosts,
594/// notably x86, so this routine cannot be used if these bits are needed.
595inline uint64_t DoubleToBits(double Double) {
596  uint64_t Bits;
597  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
598  memcpy(&Bits, &Double, sizeof(Double));
599  return Bits;
600}
601
602/// This function takes a float and returns the bit equivalent 32-bit integer.
603/// Note that copying floats around changes the bits of NaNs on some hosts,
604/// notably x86, so this routine cannot be used if these bits are needed.
605inline uint32_t FloatToBits(float Float) {
606  uint32_t Bits;
607  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
608  memcpy(&Bits, &Float, sizeof(Float));
609  return Bits;
610}
611
612/// A and B are either alignments or offsets. Return the minimum alignment that
613/// may be assumed after adding the two together.
614constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
615  // The largest power of 2 that divides both A and B.
616  //
617  // Replace "-Value" by "1+~Value" in the following commented code to avoid
618  // MSVC warning C4146
619  //    return (A | B) & -(A | B);
620  return (A | B) & (1 + ~(A | B));
621}
622
623/// Aligns \c Addr to \c Alignment bytes, rounding up.
624///
625/// Alignment should be a power of two.  This method rounds up, so
626/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
627inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
628  assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
629         "Alignment is not a power of two!");
630
631  assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
632
633  return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
634}
635
636/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
637/// bytes, rounding up.
638inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
639  return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
640}
641
642/// Returns the next power of two (in 64-bits) that is strictly greater than A.
643/// Returns zero on overflow.
644inline uint64_t NextPowerOf2(uint64_t A) {
645  A |= (A >> 1);
646  A |= (A >> 2);
647  A |= (A >> 4);
648  A |= (A >> 8);
649  A |= (A >> 16);
650  A |= (A >> 32);
651  return A + 1;
652}
653
654/// Returns the power of two which is less than or equal to the given value.
655/// Essentially, it is a floor operation across the domain of powers of two.
656inline uint64_t PowerOf2Floor(uint64_t A) {
657  if (!A) return 0;
658  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
659}
660
661/// Returns the power of two which is greater than or equal to the given value.
662/// Essentially, it is a ceil operation across the domain of powers of two.
663inline uint64_t PowerOf2Ceil(uint64_t A) {
664  if (!A)
665    return 0;
666  return NextPowerOf2(A - 1);
667}
668
669/// Returns the next integer (mod 2**64) that is greater than or equal to
670/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
671///
672/// If non-zero \p Skew is specified, the return value will be a minimal
673/// integer that is greater than or equal to \p Value and equal to
674/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
675/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
676///
677/// Examples:
678/// \code
679///   alignTo(5, 8) = 8
680///   alignTo(17, 8) = 24
681///   alignTo(~0LL, 8) = 0
682///   alignTo(321, 255) = 510
683///
684///   alignTo(5, 8, 7) = 7
685///   alignTo(17, 8, 1) = 17
686///   alignTo(~0LL, 8, 3) = 3
687///   alignTo(321, 255, 42) = 552
688/// \endcode
689inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
690  assert(Align != 0u && "Align can't be 0.");
691  Skew %= Align;
692  return (Value + Align - 1 - Skew) / Align * Align + Skew;
693}
694
695/// Returns the next integer (mod 2**64) that is greater than or equal to
696/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
697template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
698  static_assert(Align != 0u, "Align must be non-zero");
699  return (Value + Align - 1) / Align * Align;
700}
701
702/// Returns the integer ceil(Numerator / Denominator).
703inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
704  return alignTo(Numerator, Denominator) / Denominator;
705}
706
707/// \c alignTo for contexts where a constant expression is required.
708/// \sa alignTo
709///
710/// \todo FIXME: remove when \c constexpr becomes really \c constexpr
711template <uint64_t Align>
712struct AlignTo {
713  static_assert(Align != 0u, "Align must be non-zero");
714  template <uint64_t Value>
715  struct from_value {
716    static const uint64_t value = (Value + Align - 1) / Align * Align;
717  };
718};
719
720/// Returns the largest uint64_t less than or equal to \p Value and is
721/// \p Skew mod \p Align. \p Align must be non-zero
722inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
723  assert(Align != 0u && "Align can't be 0.");
724  Skew %= Align;
725  return (Value - Skew) / Align * Align + Skew;
726}
727
728/// Returns the offset to the next integer (mod 2**64) that is greater than
729/// or equal to \p Value and is a multiple of \p Align. \p Align must be
730/// non-zero.
731inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
732  return alignTo(Value, Align) - Value;
733}
734
735/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
736/// Requires 0 < B <= 32.
737template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
738  static_assert(B > 0, "Bit width can't be 0.");
739  static_assert(B <= 32, "Bit width out of range.");
740  return int32_t(X << (32 - B)) >> (32 - B);
741}
742
743/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
744/// Requires 0 < B < 32.
745inline int32_t SignExtend32(uint32_t X, unsigned B) {
746  assert(B > 0 && "Bit width can't be 0.");
747  assert(B <= 32 && "Bit width out of range.");
748  return int32_t(X << (32 - B)) >> (32 - B);
749}
750
751/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
752/// Requires 0 < B < 64.
753template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
754  static_assert(B > 0, "Bit width can't be 0.");
755  static_assert(B <= 64, "Bit width out of range.");
756  return int64_t(x << (64 - B)) >> (64 - B);
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
760/// Requires 0 < B < 64.
761inline int64_t SignExtend64(uint64_t X, unsigned B) {
762  assert(B > 0 && "Bit width can't be 0.");
763  assert(B <= 64 && "Bit width out of range.");
764  return int64_t(X << (64 - B)) >> (64 - B);
765}
766
767/// Subtract two unsigned integers, X and Y, of type T and return the absolute
768/// value of the result.
769template <typename T>
770typename std::enable_if<std::is_unsigned<T>::value, T>::type
771AbsoluteDifference(T X, T Y) {
772  return std::max(X, Y) - std::min(X, Y);
773}
774
775/// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
776/// maximum representable value of T on overflow.  ResultOverflowed indicates if
777/// the result is larger than the maximum representable value of type T.
778template <typename T>
779typename std::enable_if<std::is_unsigned<T>::value, T>::type
780SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
781  bool Dummy;
782  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
783  // Hacker's Delight, p. 29
784  T Z = X + Y;
785  Overflowed = (Z < X || Z < Y);
786  if (Overflowed)
787    return std::numeric_limits<T>::max();
788  else
789    return Z;
790}
791
792/// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
793/// maximum representable value of T on overflow.  ResultOverflowed indicates if
794/// the result is larger than the maximum representable value of type T.
795template <typename T>
796typename std::enable_if<std::is_unsigned<T>::value, T>::type
797SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
798  bool Dummy;
799  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
800
801  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
802  // because it fails for uint16_t (where multiplication can have undefined
803  // behavior due to promotion to int), and requires a division in addition
804  // to the multiplication.
805
806  Overflowed = false;
807
808  // Log2(Z) would be either Log2Z or Log2Z + 1.
809  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
810  // will necessarily be less than Log2Max as desired.
811  int Log2Z = Log2_64(X) + Log2_64(Y);
812  const T Max = std::numeric_limits<T>::max();
813  int Log2Max = Log2_64(Max);
814  if (Log2Z < Log2Max) {
815    return X * Y;
816  }
817  if (Log2Z > Log2Max) {
818    Overflowed = true;
819    return Max;
820  }
821
822  // We're going to use the top bit, and maybe overflow one
823  // bit past it. Multiply all but the bottom bit then add
824  // that on at the end.
825  T Z = (X >> 1) * Y;
826  if (Z & ~(Max >> 1)) {
827    Overflowed = true;
828    return Max;
829  }
830  Z <<= 1;
831  if (X & 1)
832    return SaturatingAdd(Z, Y, ResultOverflowed);
833
834  return Z;
835}
836
837/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
838/// the product. Clamp the result to the maximum representable value of T on
839/// overflow. ResultOverflowed indicates if the result is larger than the
840/// maximum representable value of type T.
841template <typename T>
842typename std::enable_if<std::is_unsigned<T>::value, T>::type
843SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
844  bool Dummy;
845  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
846
847  T Product = SaturatingMultiply(X, Y, &Overflowed);
848  if (Overflowed)
849    return Product;
850
851  return SaturatingAdd(A, Product, &Overflowed);
852}
853
854/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
855extern const float huge_valf;
856} // End llvm namespace
857
858#endif
859