DataLayout.h revision 360784
1//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines layout properties related to datatype size/offset/alignment
10// information.  It uses lazy annotations to cache information about how
11// structure types are laid out and used.
12//
13// This structure should be created once, filled in if the defaults are not
14// correct and then passed around by const&.  None of the members functions
15// require modification to the object.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_IR_DATALAYOUT_H
20#define LLVM_IR_DATALAYOUT_H
21
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Type.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/Alignment.h"
32#include "llvm/Support/TypeSize.h"
33#include <cassert>
34#include <cstdint>
35#include <string>
36
37// This needs to be outside of the namespace, to avoid conflict with llvm-c
38// decl.
39using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
40
41namespace llvm {
42
43class GlobalVariable;
44class LLVMContext;
45class Module;
46class StructLayout;
47class Triple;
48class Value;
49
50/// Enum used to categorize the alignment types stored by LayoutAlignElem
51enum AlignTypeEnum {
52  INVALID_ALIGN = 0,
53  INTEGER_ALIGN = 'i',
54  VECTOR_ALIGN = 'v',
55  FLOAT_ALIGN = 'f',
56  AGGREGATE_ALIGN = 'a'
57};
58
59// FIXME: Currently the DataLayout string carries a "preferred alignment"
60// for types. As the DataLayout is module/global, this should likely be
61// sunk down to an FTTI element that is queried rather than a global
62// preference.
63
64/// Layout alignment element.
65///
66/// Stores the alignment data associated with a given alignment type (integer,
67/// vector, float) and type bit width.
68///
69/// \note The unusual order of elements in the structure attempts to reduce
70/// padding and make the structure slightly more cache friendly.
71struct LayoutAlignElem {
72  /// Alignment type from \c AlignTypeEnum
73  unsigned AlignType : 8;
74  unsigned TypeBitWidth : 24;
75  Align ABIAlign;
76  Align PrefAlign;
77
78  static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
79                             Align pref_align, uint32_t bit_width);
80
81  bool operator==(const LayoutAlignElem &rhs) const;
82};
83
84/// Layout pointer alignment element.
85///
86/// Stores the alignment data associated with a given pointer and address space.
87///
88/// \note The unusual order of elements in the structure attempts to reduce
89/// padding and make the structure slightly more cache friendly.
90struct PointerAlignElem {
91  Align ABIAlign;
92  Align PrefAlign;
93  uint32_t TypeByteWidth;
94  uint32_t AddressSpace;
95  uint32_t IndexWidth;
96
97  /// Initializer
98  static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
99                              Align PrefAlign, uint32_t TypeByteWidth,
100                              uint32_t IndexWidth);
101
102  bool operator==(const PointerAlignElem &rhs) const;
103};
104
105/// A parsed version of the target data layout string in and methods for
106/// querying it.
107///
108/// The target data layout string is specified *by the target* - a frontend
109/// generating LLVM IR is required to generate the right target data for the
110/// target being codegen'd to.
111class DataLayout {
112public:
113  enum class FunctionPtrAlignType {
114    /// The function pointer alignment is independent of the function alignment.
115    Independent,
116    /// The function pointer alignment is a multiple of the function alignment.
117    MultipleOfFunctionAlign,
118  };
119private:
120  /// Defaults to false.
121  bool BigEndian;
122
123  unsigned AllocaAddrSpace;
124  MaybeAlign StackNaturalAlign;
125  unsigned ProgramAddrSpace;
126
127  MaybeAlign FunctionPtrAlign;
128  FunctionPtrAlignType TheFunctionPtrAlignType;
129
130  enum ManglingModeT {
131    MM_None,
132    MM_ELF,
133    MM_MachO,
134    MM_WinCOFF,
135    MM_WinCOFFX86,
136    MM_Mips
137  };
138  ManglingModeT ManglingMode;
139
140  SmallVector<unsigned char, 8> LegalIntWidths;
141
142  /// Primitive type alignment data. This is sorted by type and bit
143  /// width during construction.
144  using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
145  AlignmentsTy Alignments;
146
147  AlignmentsTy::const_iterator
148  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
149    return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
150                                                                   BitWidth);
151  }
152
153  AlignmentsTy::iterator
154  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
155
156  /// The string representation used to create this DataLayout
157  std::string StringRepresentation;
158
159  using PointersTy = SmallVector<PointerAlignElem, 8>;
160  PointersTy Pointers;
161
162  PointersTy::const_iterator
163  findPointerLowerBound(uint32_t AddressSpace) const {
164    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
165  }
166
167  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
168
169  // The StructType -> StructLayout map.
170  mutable void *LayoutMap = nullptr;
171
172  /// Pointers in these address spaces are non-integral, and don't have a
173  /// well-defined bitwise representation.
174  SmallVector<unsigned, 8> NonIntegralAddressSpaces;
175
176  void setAlignment(AlignTypeEnum align_type, Align abi_align, Align pref_align,
177                    uint32_t bit_width);
178  Align getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
179                         bool ABIAlign, Type *Ty) const;
180  void setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
181                           uint32_t TypeByteWidth, uint32_t IndexWidth);
182
183  /// Internal helper method that returns requested alignment for type.
184  Align getAlignment(Type *Ty, bool abi_or_pref) const;
185
186  /// Parses a target data specification string. Assert if the string is
187  /// malformed.
188  void parseSpecifier(StringRef LayoutDescription);
189
190  // Free all internal data structures.
191  void clear();
192
193public:
194  /// Constructs a DataLayout from a specification string. See reset().
195  explicit DataLayout(StringRef LayoutDescription) {
196    reset(LayoutDescription);
197  }
198
199  /// Initialize target data from properties stored in the module.
200  explicit DataLayout(const Module *M);
201
202  DataLayout(const DataLayout &DL) { *this = DL; }
203
204  ~DataLayout(); // Not virtual, do not subclass this class
205
206  DataLayout &operator=(const DataLayout &DL) {
207    clear();
208    StringRepresentation = DL.StringRepresentation;
209    BigEndian = DL.isBigEndian();
210    AllocaAddrSpace = DL.AllocaAddrSpace;
211    StackNaturalAlign = DL.StackNaturalAlign;
212    FunctionPtrAlign = DL.FunctionPtrAlign;
213    TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
214    ProgramAddrSpace = DL.ProgramAddrSpace;
215    ManglingMode = DL.ManglingMode;
216    LegalIntWidths = DL.LegalIntWidths;
217    Alignments = DL.Alignments;
218    Pointers = DL.Pointers;
219    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
220    return *this;
221  }
222
223  bool operator==(const DataLayout &Other) const;
224  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
225
226  void init(const Module *M);
227
228  /// Parse a data layout string (with fallback to default values).
229  void reset(StringRef LayoutDescription);
230
231  /// Layout endianness...
232  bool isLittleEndian() const { return !BigEndian; }
233  bool isBigEndian() const { return BigEndian; }
234
235  /// Returns the string representation of the DataLayout.
236  ///
237  /// This representation is in the same format accepted by the string
238  /// constructor above. This should not be used to compare two DataLayout as
239  /// different string can represent the same layout.
240  const std::string &getStringRepresentation() const {
241    return StringRepresentation;
242  }
243
244  /// Test if the DataLayout was constructed from an empty string.
245  bool isDefault() const { return StringRepresentation.empty(); }
246
247  /// Returns true if the specified type is known to be a native integer
248  /// type supported by the CPU.
249  ///
250  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
251  /// on any known one. This returns false if the integer width is not legal.
252  ///
253  /// The width is specified in bits.
254  bool isLegalInteger(uint64_t Width) const {
255    for (unsigned LegalIntWidth : LegalIntWidths)
256      if (LegalIntWidth == Width)
257        return true;
258    return false;
259  }
260
261  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
262
263  /// Returns true if the given alignment exceeds the natural stack alignment.
264  bool exceedsNaturalStackAlignment(Align Alignment) const {
265    return StackNaturalAlign && (Alignment > StackNaturalAlign);
266  }
267
268  Align getStackAlignment() const {
269    assert(StackNaturalAlign && "StackNaturalAlign must be defined");
270    return *StackNaturalAlign;
271  }
272
273  unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
274
275  /// Returns the alignment of function pointers, which may or may not be
276  /// related to the alignment of functions.
277  /// \see getFunctionPtrAlignType
278  MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
279
280  /// Return the type of function pointer alignment.
281  /// \see getFunctionPtrAlign
282  FunctionPtrAlignType getFunctionPtrAlignType() const {
283    return TheFunctionPtrAlignType;
284  }
285
286  unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
287
288  bool hasMicrosoftFastStdCallMangling() const {
289    return ManglingMode == MM_WinCOFFX86;
290  }
291
292  /// Returns true if symbols with leading question marks should not receive IR
293  /// mangling. True for Windows mangling modes.
294  bool doNotMangleLeadingQuestionMark() const {
295    return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
296  }
297
298  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
299
300  StringRef getLinkerPrivateGlobalPrefix() const {
301    if (ManglingMode == MM_MachO)
302      return "l";
303    return "";
304  }
305
306  char getGlobalPrefix() const {
307    switch (ManglingMode) {
308    case MM_None:
309    case MM_ELF:
310    case MM_Mips:
311    case MM_WinCOFF:
312      return '\0';
313    case MM_MachO:
314    case MM_WinCOFFX86:
315      return '_';
316    }
317    llvm_unreachable("invalid mangling mode");
318  }
319
320  StringRef getPrivateGlobalPrefix() const {
321    switch (ManglingMode) {
322    case MM_None:
323      return "";
324    case MM_ELF:
325    case MM_WinCOFF:
326      return ".L";
327    case MM_Mips:
328      return "$";
329    case MM_MachO:
330    case MM_WinCOFFX86:
331      return "L";
332    }
333    llvm_unreachable("invalid mangling mode");
334  }
335
336  static const char *getManglingComponent(const Triple &T);
337
338  /// Returns true if the specified type fits in a native integer type
339  /// supported by the CPU.
340  ///
341  /// For example, if the CPU only supports i32 as a native integer type, then
342  /// i27 fits in a legal integer type but i45 does not.
343  bool fitsInLegalInteger(unsigned Width) const {
344    for (unsigned LegalIntWidth : LegalIntWidths)
345      if (Width <= LegalIntWidth)
346        return true;
347    return false;
348  }
349
350  /// Layout pointer alignment
351  Align getPointerABIAlignment(unsigned AS) const;
352
353  /// Return target's alignment for stack-based pointers
354  /// FIXME: The defaults need to be removed once all of
355  /// the backends/clients are updated.
356  Align getPointerPrefAlignment(unsigned AS = 0) const;
357
358  /// Layout pointer size
359  /// FIXME: The defaults need to be removed once all of
360  /// the backends/clients are updated.
361  unsigned getPointerSize(unsigned AS = 0) const;
362
363  /// Returns the maximum pointer size over all address spaces.
364  unsigned getMaxPointerSize() const;
365
366  // Index size used for address calculation.
367  unsigned getIndexSize(unsigned AS) const;
368
369  /// Return the address spaces containing non-integral pointers.  Pointers in
370  /// this address space don't have a well-defined bitwise representation.
371  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
372    return NonIntegralAddressSpaces;
373  }
374
375  bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
376    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
377    return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
378  }
379
380  bool isNonIntegralPointerType(PointerType *PT) const {
381    return isNonIntegralAddressSpace(PT->getAddressSpace());
382  }
383
384  bool isNonIntegralPointerType(Type *Ty) const {
385    auto *PTy = dyn_cast<PointerType>(Ty);
386    return PTy && isNonIntegralPointerType(PTy);
387  }
388
389  /// Layout pointer size, in bits
390  /// FIXME: The defaults need to be removed once all of
391  /// the backends/clients are updated.
392  unsigned getPointerSizeInBits(unsigned AS = 0) const {
393    return getPointerSize(AS) * 8;
394  }
395
396  /// Returns the maximum pointer size over all address spaces.
397  unsigned getMaxPointerSizeInBits() const {
398    return getMaxPointerSize() * 8;
399  }
400
401  /// Size in bits of index used for address calculation in getelementptr.
402  unsigned getIndexSizeInBits(unsigned AS) const {
403    return getIndexSize(AS) * 8;
404  }
405
406  /// Layout pointer size, in bits, based on the type.  If this function is
407  /// called with a pointer type, then the type size of the pointer is returned.
408  /// If this function is called with a vector of pointers, then the type size
409  /// of the pointer is returned.  This should only be called with a pointer or
410  /// vector of pointers.
411  unsigned getPointerTypeSizeInBits(Type *) const;
412
413  /// Layout size of the index used in GEP calculation.
414  /// The function should be called with pointer or vector of pointers type.
415  unsigned getIndexTypeSizeInBits(Type *Ty) const;
416
417  unsigned getPointerTypeSize(Type *Ty) const {
418    return getPointerTypeSizeInBits(Ty) / 8;
419  }
420
421  /// Size examples:
422  ///
423  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
424  /// ----        ----------  ---------------  ---------------
425  ///  i1            1           8                8
426  ///  i8            8           8                8
427  ///  i19          19          24               32
428  ///  i32          32          32               32
429  ///  i100        100         104              128
430  ///  i128        128         128              128
431  ///  Float        32          32               32
432  ///  Double       64          64               64
433  ///  X86_FP80     80          80               96
434  ///
435  /// [*] The alloc size depends on the alignment, and thus on the target.
436  ///     These values are for x86-32 linux.
437
438  /// Returns the number of bits necessary to hold the specified type.
439  ///
440  /// If Ty is a scalable vector type, the scalable property will be set and
441  /// the runtime size will be a positive integer multiple of the base size.
442  ///
443  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
444  /// have a size (Type::isSized() must return true).
445  TypeSize getTypeSizeInBits(Type *Ty) const;
446
447  /// Returns the maximum number of bytes that may be overwritten by
448  /// storing the specified type.
449  ///
450  /// If Ty is a scalable vector type, the scalable property will be set and
451  /// the runtime size will be a positive integer multiple of the base size.
452  ///
453  /// For example, returns 5 for i36 and 10 for x86_fp80.
454  TypeSize getTypeStoreSize(Type *Ty) const {
455    TypeSize BaseSize = getTypeSizeInBits(Ty);
456    return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
457  }
458
459  /// Returns the maximum number of bits that may be overwritten by
460  /// storing the specified type; always a multiple of 8.
461  ///
462  /// If Ty is a scalable vector type, the scalable property will be set and
463  /// the runtime size will be a positive integer multiple of the base size.
464  ///
465  /// For example, returns 40 for i36 and 80 for x86_fp80.
466  TypeSize getTypeStoreSizeInBits(Type *Ty) const {
467    return 8 * getTypeStoreSize(Ty);
468  }
469
470  /// Returns true if no extra padding bits are needed when storing the
471  /// specified type.
472  ///
473  /// For example, returns false for i19 that has a 24-bit store size.
474  bool typeSizeEqualsStoreSize(Type *Ty) const {
475    return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
476  }
477
478  /// Returns the offset in bytes between successive objects of the
479  /// specified type, including alignment padding.
480  ///
481  /// If Ty is a scalable vector type, the scalable property will be set and
482  /// the runtime size will be a positive integer multiple of the base size.
483  ///
484  /// This is the amount that alloca reserves for this type. For example,
485  /// returns 12 or 16 for x86_fp80, depending on alignment.
486  TypeSize getTypeAllocSize(Type *Ty) const {
487    // Round up to the next alignment boundary.
488    return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
489  }
490
491  /// Returns the offset in bits between successive objects of the
492  /// specified type, including alignment padding; always a multiple of 8.
493  ///
494  /// If Ty is a scalable vector type, the scalable property will be set and
495  /// the runtime size will be a positive integer multiple of the base size.
496  ///
497  /// This is the amount that alloca reserves for this type. For example,
498  /// returns 96 or 128 for x86_fp80, depending on alignment.
499  TypeSize getTypeAllocSizeInBits(Type *Ty) const {
500    return 8 * getTypeAllocSize(Ty);
501  }
502
503  /// Returns the minimum ABI-required alignment for the specified type.
504  unsigned getABITypeAlignment(Type *Ty) const;
505
506  /// Helper function to return `Alignment` if it's set or the result of
507  /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
508  inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
509                                          Type *Ty) const {
510    return Alignment ? *Alignment : Align(getABITypeAlignment(Ty));
511  }
512
513  /// Returns the minimum ABI-required alignment for an integer type of
514  /// the specified bitwidth.
515  Align getABIIntegerTypeAlignment(unsigned BitWidth) const;
516
517  /// Returns the preferred stack/global alignment for the specified
518  /// type.
519  ///
520  /// This is always at least as good as the ABI alignment.
521  unsigned getPrefTypeAlignment(Type *Ty) const;
522
523  /// Returns an integer type with size at least as big as that of a
524  /// pointer in the given address space.
525  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
526
527  /// Returns an integer (vector of integer) type with size at least as
528  /// big as that of a pointer of the given pointer (vector of pointer) type.
529  Type *getIntPtrType(Type *) const;
530
531  /// Returns the smallest integer type with size at least as big as
532  /// Width bits.
533  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
534
535  /// Returns the largest legal integer type, or null if none are set.
536  Type *getLargestLegalIntType(LLVMContext &C) const {
537    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
538    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
539  }
540
541  /// Returns the size of largest legal integer type size, or 0 if none
542  /// are set.
543  unsigned getLargestLegalIntTypeSizeInBits() const;
544
545  /// Returns the type of a GEP index.
546  /// If it was not specified explicitly, it will be the integer type of the
547  /// pointer width - IntPtrType.
548  Type *getIndexType(Type *PtrTy) const;
549
550  /// Returns the offset from the beginning of the type for the specified
551  /// indices.
552  ///
553  /// Note that this takes the element type, not the pointer type.
554  /// This is used to implement getelementptr.
555  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
556
557  /// Returns a StructLayout object, indicating the alignment of the
558  /// struct, its size, and the offsets of its fields.
559  ///
560  /// Note that this information is lazily cached.
561  const StructLayout *getStructLayout(StructType *Ty) const;
562
563  /// Returns the preferred alignment of the specified global.
564  ///
565  /// This includes an explicitly requested alignment (if the global has one).
566  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
567
568  /// Returns the preferred alignment of the specified global, returned
569  /// in log form.
570  ///
571  /// This includes an explicitly requested alignment (if the global has one).
572  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
573};
574
575inline DataLayout *unwrap(LLVMTargetDataRef P) {
576  return reinterpret_cast<DataLayout *>(P);
577}
578
579inline LLVMTargetDataRef wrap(const DataLayout *P) {
580  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
581}
582
583/// Used to lazily calculate structure layout information for a target machine,
584/// based on the DataLayout structure.
585class StructLayout {
586  uint64_t StructSize;
587  Align StructAlignment;
588  unsigned IsPadded : 1;
589  unsigned NumElements : 31;
590  uint64_t MemberOffsets[1]; // variable sized array!
591
592public:
593  uint64_t getSizeInBytes() const { return StructSize; }
594
595  uint64_t getSizeInBits() const { return 8 * StructSize; }
596
597  Align getAlignment() const { return StructAlignment; }
598
599  /// Returns whether the struct has padding or not between its fields.
600  /// NB: Padding in nested element is not taken into account.
601  bool hasPadding() const { return IsPadded; }
602
603  /// Given a valid byte offset into the structure, returns the structure
604  /// index that contains it.
605  unsigned getElementContainingOffset(uint64_t Offset) const;
606
607  uint64_t getElementOffset(unsigned Idx) const {
608    assert(Idx < NumElements && "Invalid element idx!");
609    return MemberOffsets[Idx];
610  }
611
612  uint64_t getElementOffsetInBits(unsigned Idx) const {
613    return getElementOffset(Idx) * 8;
614  }
615
616private:
617  friend class DataLayout; // Only DataLayout can create this class
618
619  StructLayout(StructType *ST, const DataLayout &DL);
620};
621
622// The implementation of this method is provided inline as it is particularly
623// well suited to constant folding when called on a specific Type subclass.
624inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
625  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
626  switch (Ty->getTypeID()) {
627  case Type::LabelTyID:
628    return TypeSize::Fixed(getPointerSizeInBits(0));
629  case Type::PointerTyID:
630    return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
631  case Type::ArrayTyID: {
632    ArrayType *ATy = cast<ArrayType>(Ty);
633    return ATy->getNumElements() *
634           getTypeAllocSizeInBits(ATy->getElementType());
635  }
636  case Type::StructTyID:
637    // Get the layout annotation... which is lazily created on demand.
638    return TypeSize::Fixed(
639                        getStructLayout(cast<StructType>(Ty))->getSizeInBits());
640  case Type::IntegerTyID:
641    return TypeSize::Fixed(Ty->getIntegerBitWidth());
642  case Type::HalfTyID:
643    return TypeSize::Fixed(16);
644  case Type::FloatTyID:
645    return TypeSize::Fixed(32);
646  case Type::DoubleTyID:
647  case Type::X86_MMXTyID:
648    return TypeSize::Fixed(64);
649  case Type::PPC_FP128TyID:
650  case Type::FP128TyID:
651    return TypeSize::Fixed(128);
652  // In memory objects this is always aligned to a higher boundary, but
653  // only 80 bits contain information.
654  case Type::X86_FP80TyID:
655    return TypeSize::Fixed(80);
656  case Type::VectorTyID: {
657    VectorType *VTy = cast<VectorType>(Ty);
658    auto EltCnt = VTy->getElementCount();
659    uint64_t MinBits = EltCnt.Min *
660                        getTypeSizeInBits(VTy->getElementType()).getFixedSize();
661    return TypeSize(MinBits, EltCnt.Scalable);
662  }
663  default:
664    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
665  }
666}
667
668} // end namespace llvm
669
670#endif // LLVM_IR_DATALAYOUT_H
671