DataLayout.h revision 355940
1//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines layout properties related to datatype size/offset/alignment
10// information.  It uses lazy annotations to cache information about how
11// structure types are laid out and used.
12//
13// This structure should be created once, filled in if the defaults are not
14// correct and then passed around by const&.  None of the members functions
15// require modification to the object.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_IR_DATALAYOUT_H
20#define LLVM_IR_DATALAYOUT_H
21
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Type.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/Casting.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cassert>
33#include <cstdint>
34#include <string>
35
36// This needs to be outside of the namespace, to avoid conflict with llvm-c
37// decl.
38using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
39
40namespace llvm {
41
42class GlobalVariable;
43class LLVMContext;
44class Module;
45class StructLayout;
46class Triple;
47class Value;
48
49/// Enum used to categorize the alignment types stored by LayoutAlignElem
50enum AlignTypeEnum {
51  INVALID_ALIGN = 0,
52  INTEGER_ALIGN = 'i',
53  VECTOR_ALIGN = 'v',
54  FLOAT_ALIGN = 'f',
55  AGGREGATE_ALIGN = 'a'
56};
57
58// FIXME: Currently the DataLayout string carries a "preferred alignment"
59// for types. As the DataLayout is module/global, this should likely be
60// sunk down to an FTTI element that is queried rather than a global
61// preference.
62
63/// Layout alignment element.
64///
65/// Stores the alignment data associated with a given alignment type (integer,
66/// vector, float) and type bit width.
67///
68/// \note The unusual order of elements in the structure attempts to reduce
69/// padding and make the structure slightly more cache friendly.
70struct LayoutAlignElem {
71  /// Alignment type from \c AlignTypeEnum
72  unsigned AlignType : 8;
73  unsigned TypeBitWidth : 24;
74  unsigned ABIAlign : 16;
75  unsigned PrefAlign : 16;
76
77  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
78                             unsigned pref_align, uint32_t bit_width);
79
80  bool operator==(const LayoutAlignElem &rhs) const;
81};
82
83/// Layout pointer alignment element.
84///
85/// Stores the alignment data associated with a given pointer and address space.
86///
87/// \note The unusual order of elements in the structure attempts to reduce
88/// padding and make the structure slightly more cache friendly.
89struct PointerAlignElem {
90  unsigned ABIAlign;
91  unsigned PrefAlign;
92  uint32_t TypeByteWidth;
93  uint32_t AddressSpace;
94  uint32_t IndexWidth;
95
96  /// Initializer
97  static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
98                              unsigned PrefAlign, uint32_t TypeByteWidth,
99                              uint32_t IndexWidth);
100
101  bool operator==(const PointerAlignElem &rhs) const;
102};
103
104/// A parsed version of the target data layout string in and methods for
105/// querying it.
106///
107/// The target data layout string is specified *by the target* - a frontend
108/// generating LLVM IR is required to generate the right target data for the
109/// target being codegen'd to.
110class DataLayout {
111public:
112  enum class FunctionPtrAlignType {
113    /// The function pointer alignment is independent of the function alignment.
114    Independent,
115    /// The function pointer alignment is a multiple of the function alignment.
116    MultipleOfFunctionAlign,
117  };
118private:
119  /// Defaults to false.
120  bool BigEndian;
121
122  unsigned AllocaAddrSpace;
123  unsigned StackNaturalAlign;
124  unsigned ProgramAddrSpace;
125
126  unsigned FunctionPtrAlign;
127  FunctionPtrAlignType TheFunctionPtrAlignType;
128
129  enum ManglingModeT {
130    MM_None,
131    MM_ELF,
132    MM_MachO,
133    MM_WinCOFF,
134    MM_WinCOFFX86,
135    MM_Mips
136  };
137  ManglingModeT ManglingMode;
138
139  SmallVector<unsigned char, 8> LegalIntWidths;
140
141  /// Primitive type alignment data. This is sorted by type and bit
142  /// width during construction.
143  using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
144  AlignmentsTy Alignments;
145
146  AlignmentsTy::const_iterator
147  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
148    return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
149                                                                   BitWidth);
150  }
151
152  AlignmentsTy::iterator
153  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
154
155  /// The string representation used to create this DataLayout
156  std::string StringRepresentation;
157
158  using PointersTy = SmallVector<PointerAlignElem, 8>;
159  PointersTy Pointers;
160
161  PointersTy::const_iterator
162  findPointerLowerBound(uint32_t AddressSpace) const {
163    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
164  }
165
166  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
167
168  // The StructType -> StructLayout map.
169  mutable void *LayoutMap = nullptr;
170
171  /// Pointers in these address spaces are non-integral, and don't have a
172  /// well-defined bitwise representation.
173  SmallVector<unsigned, 8> NonIntegralAddressSpaces;
174
175  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
176                    unsigned pref_align, uint32_t bit_width);
177  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
178                            bool ABIAlign, Type *Ty) const;
179  void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
180                           unsigned PrefAlign, uint32_t TypeByteWidth,
181                           uint32_t IndexWidth);
182
183  /// Internal helper method that returns requested alignment for type.
184  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
185
186  /// Parses a target data specification string. Assert if the string is
187  /// malformed.
188  void parseSpecifier(StringRef LayoutDescription);
189
190  // Free all internal data structures.
191  void clear();
192
193public:
194  /// Constructs a DataLayout from a specification string. See reset().
195  explicit DataLayout(StringRef LayoutDescription) {
196    reset(LayoutDescription);
197  }
198
199  /// Initialize target data from properties stored in the module.
200  explicit DataLayout(const Module *M);
201
202  DataLayout(const DataLayout &DL) { *this = DL; }
203
204  ~DataLayout(); // Not virtual, do not subclass this class
205
206  DataLayout &operator=(const DataLayout &DL) {
207    clear();
208    StringRepresentation = DL.StringRepresentation;
209    BigEndian = DL.isBigEndian();
210    AllocaAddrSpace = DL.AllocaAddrSpace;
211    StackNaturalAlign = DL.StackNaturalAlign;
212    FunctionPtrAlign = DL.FunctionPtrAlign;
213    TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
214    ProgramAddrSpace = DL.ProgramAddrSpace;
215    ManglingMode = DL.ManglingMode;
216    LegalIntWidths = DL.LegalIntWidths;
217    Alignments = DL.Alignments;
218    Pointers = DL.Pointers;
219    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
220    return *this;
221  }
222
223  bool operator==(const DataLayout &Other) const;
224  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
225
226  void init(const Module *M);
227
228  /// Parse a data layout string (with fallback to default values).
229  void reset(StringRef LayoutDescription);
230
231  /// Layout endianness...
232  bool isLittleEndian() const { return !BigEndian; }
233  bool isBigEndian() const { return BigEndian; }
234
235  /// Returns the string representation of the DataLayout.
236  ///
237  /// This representation is in the same format accepted by the string
238  /// constructor above. This should not be used to compare two DataLayout as
239  /// different string can represent the same layout.
240  const std::string &getStringRepresentation() const {
241    return StringRepresentation;
242  }
243
244  /// Test if the DataLayout was constructed from an empty string.
245  bool isDefault() const { return StringRepresentation.empty(); }
246
247  /// Returns true if the specified type is known to be a native integer
248  /// type supported by the CPU.
249  ///
250  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
251  /// on any known one. This returns false if the integer width is not legal.
252  ///
253  /// The width is specified in bits.
254  bool isLegalInteger(uint64_t Width) const {
255    for (unsigned LegalIntWidth : LegalIntWidths)
256      if (LegalIntWidth == Width)
257        return true;
258    return false;
259  }
260
261  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
262
263  /// Returns true if the given alignment exceeds the natural stack alignment.
264  bool exceedsNaturalStackAlignment(unsigned Align) const {
265    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
266  }
267
268  unsigned getStackAlignment() const { return StackNaturalAlign; }
269  unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
270
271  /// Returns the alignment of function pointers, which may or may not be
272  /// related to the alignment of functions.
273  /// \see getFunctionPtrAlignType
274  unsigned getFunctionPtrAlign() const { return FunctionPtrAlign; }
275
276  /// Return the type of function pointer alignment.
277  /// \see getFunctionPtrAlign
278  FunctionPtrAlignType getFunctionPtrAlignType() const {
279    return TheFunctionPtrAlignType;
280  }
281
282  unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
283
284  bool hasMicrosoftFastStdCallMangling() const {
285    return ManglingMode == MM_WinCOFFX86;
286  }
287
288  /// Returns true if symbols with leading question marks should not receive IR
289  /// mangling. True for Windows mangling modes.
290  bool doNotMangleLeadingQuestionMark() const {
291    return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
292  }
293
294  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
295
296  StringRef getLinkerPrivateGlobalPrefix() const {
297    if (ManglingMode == MM_MachO)
298      return "l";
299    return "";
300  }
301
302  char getGlobalPrefix() const {
303    switch (ManglingMode) {
304    case MM_None:
305    case MM_ELF:
306    case MM_Mips:
307    case MM_WinCOFF:
308      return '\0';
309    case MM_MachO:
310    case MM_WinCOFFX86:
311      return '_';
312    }
313    llvm_unreachable("invalid mangling mode");
314  }
315
316  StringRef getPrivateGlobalPrefix() const {
317    switch (ManglingMode) {
318    case MM_None:
319      return "";
320    case MM_ELF:
321    case MM_WinCOFF:
322      return ".L";
323    case MM_Mips:
324      return "$";
325    case MM_MachO:
326    case MM_WinCOFFX86:
327      return "L";
328    }
329    llvm_unreachable("invalid mangling mode");
330  }
331
332  static const char *getManglingComponent(const Triple &T);
333
334  /// Returns true if the specified type fits in a native integer type
335  /// supported by the CPU.
336  ///
337  /// For example, if the CPU only supports i32 as a native integer type, then
338  /// i27 fits in a legal integer type but i45 does not.
339  bool fitsInLegalInteger(unsigned Width) const {
340    for (unsigned LegalIntWidth : LegalIntWidths)
341      if (Width <= LegalIntWidth)
342        return true;
343    return false;
344  }
345
346  /// Layout pointer alignment
347  unsigned getPointerABIAlignment(unsigned AS) const;
348
349  /// Return target's alignment for stack-based pointers
350  /// FIXME: The defaults need to be removed once all of
351  /// the backends/clients are updated.
352  unsigned getPointerPrefAlignment(unsigned AS = 0) const;
353
354  /// Layout pointer size
355  /// FIXME: The defaults need to be removed once all of
356  /// the backends/clients are updated.
357  unsigned getPointerSize(unsigned AS = 0) const;
358
359  /// Returns the maximum pointer size over all address spaces.
360  unsigned getMaxPointerSize() const;
361
362  // Index size used for address calculation.
363  unsigned getIndexSize(unsigned AS) const;
364
365  /// Return the address spaces containing non-integral pointers.  Pointers in
366  /// this address space don't have a well-defined bitwise representation.
367  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
368    return NonIntegralAddressSpaces;
369  }
370
371  bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
372    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
373    return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
374  }
375
376  bool isNonIntegralPointerType(PointerType *PT) const {
377    return isNonIntegralAddressSpace(PT->getAddressSpace());
378  }
379
380  bool isNonIntegralPointerType(Type *Ty) const {
381    auto *PTy = dyn_cast<PointerType>(Ty);
382    return PTy && isNonIntegralPointerType(PTy);
383  }
384
385  /// Layout pointer size, in bits
386  /// FIXME: The defaults need to be removed once all of
387  /// the backends/clients are updated.
388  unsigned getPointerSizeInBits(unsigned AS = 0) const {
389    return getPointerSize(AS) * 8;
390  }
391
392  /// Returns the maximum pointer size over all address spaces.
393  unsigned getMaxPointerSizeInBits() const {
394    return getMaxPointerSize() * 8;
395  }
396
397  /// Size in bits of index used for address calculation in getelementptr.
398  unsigned getIndexSizeInBits(unsigned AS) const {
399    return getIndexSize(AS) * 8;
400  }
401
402  /// Layout pointer size, in bits, based on the type.  If this function is
403  /// called with a pointer type, then the type size of the pointer is returned.
404  /// If this function is called with a vector of pointers, then the type size
405  /// of the pointer is returned.  This should only be called with a pointer or
406  /// vector of pointers.
407  unsigned getPointerTypeSizeInBits(Type *) const;
408
409  /// Layout size of the index used in GEP calculation.
410  /// The function should be called with pointer or vector of pointers type.
411  unsigned getIndexTypeSizeInBits(Type *Ty) const;
412
413  unsigned getPointerTypeSize(Type *Ty) const {
414    return getPointerTypeSizeInBits(Ty) / 8;
415  }
416
417  /// Size examples:
418  ///
419  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
420  /// ----        ----------  ---------------  ---------------
421  ///  i1            1           8                8
422  ///  i8            8           8                8
423  ///  i19          19          24               32
424  ///  i32          32          32               32
425  ///  i100        100         104              128
426  ///  i128        128         128              128
427  ///  Float        32          32               32
428  ///  Double       64          64               64
429  ///  X86_FP80     80          80               96
430  ///
431  /// [*] The alloc size depends on the alignment, and thus on the target.
432  ///     These values are for x86-32 linux.
433
434  /// Returns the number of bits necessary to hold the specified type.
435  ///
436  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
437  /// have a size (Type::isSized() must return true).
438  uint64_t getTypeSizeInBits(Type *Ty) const;
439
440  /// Returns the maximum number of bytes that may be overwritten by
441  /// storing the specified type.
442  ///
443  /// For example, returns 5 for i36 and 10 for x86_fp80.
444  uint64_t getTypeStoreSize(Type *Ty) const {
445    return (getTypeSizeInBits(Ty) + 7) / 8;
446  }
447
448  /// Returns the maximum number of bits that may be overwritten by
449  /// storing the specified type; always a multiple of 8.
450  ///
451  /// For example, returns 40 for i36 and 80 for x86_fp80.
452  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
453    return 8 * getTypeStoreSize(Ty);
454  }
455
456  /// Returns true if no extra padding bits are needed when storing the
457  /// specified type.
458  ///
459  /// For example, returns false for i19 that has a 24-bit store size.
460  bool typeSizeEqualsStoreSize(Type *Ty) const {
461    return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
462  }
463
464  /// Returns the offset in bytes between successive objects of the
465  /// specified type, including alignment padding.
466  ///
467  /// This is the amount that alloca reserves for this type. For example,
468  /// returns 12 or 16 for x86_fp80, depending on alignment.
469  uint64_t getTypeAllocSize(Type *Ty) const {
470    // Round up to the next alignment boundary.
471    return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
472  }
473
474  /// Returns the offset in bits between successive objects of the
475  /// specified type, including alignment padding; always a multiple of 8.
476  ///
477  /// This is the amount that alloca reserves for this type. For example,
478  /// returns 96 or 128 for x86_fp80, depending on alignment.
479  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
480    return 8 * getTypeAllocSize(Ty);
481  }
482
483  /// Returns the minimum ABI-required alignment for the specified type.
484  unsigned getABITypeAlignment(Type *Ty) const;
485
486  /// Returns the minimum ABI-required alignment for an integer type of
487  /// the specified bitwidth.
488  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
489
490  /// Returns the preferred stack/global alignment for the specified
491  /// type.
492  ///
493  /// This is always at least as good as the ABI alignment.
494  unsigned getPrefTypeAlignment(Type *Ty) const;
495
496  /// Returns the preferred alignment for the specified type, returned as
497  /// log2 of the value (a shift amount).
498  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
499
500  /// Returns an integer type with size at least as big as that of a
501  /// pointer in the given address space.
502  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
503
504  /// Returns an integer (vector of integer) type with size at least as
505  /// big as that of a pointer of the given pointer (vector of pointer) type.
506  Type *getIntPtrType(Type *) const;
507
508  /// Returns the smallest integer type with size at least as big as
509  /// Width bits.
510  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
511
512  /// Returns the largest legal integer type, or null if none are set.
513  Type *getLargestLegalIntType(LLVMContext &C) const {
514    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
515    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
516  }
517
518  /// Returns the size of largest legal integer type size, or 0 if none
519  /// are set.
520  unsigned getLargestLegalIntTypeSizeInBits() const;
521
522  /// Returns the type of a GEP index.
523  /// If it was not specified explicitly, it will be the integer type of the
524  /// pointer width - IntPtrType.
525  Type *getIndexType(Type *PtrTy) const;
526
527  /// Returns the offset from the beginning of the type for the specified
528  /// indices.
529  ///
530  /// Note that this takes the element type, not the pointer type.
531  /// This is used to implement getelementptr.
532  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
533
534  /// Returns a StructLayout object, indicating the alignment of the
535  /// struct, its size, and the offsets of its fields.
536  ///
537  /// Note that this information is lazily cached.
538  const StructLayout *getStructLayout(StructType *Ty) const;
539
540  /// Returns the preferred alignment of the specified global.
541  ///
542  /// This includes an explicitly requested alignment (if the global has one).
543  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
544
545  /// Returns the preferred alignment of the specified global, returned
546  /// in log form.
547  ///
548  /// This includes an explicitly requested alignment (if the global has one).
549  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
550};
551
552inline DataLayout *unwrap(LLVMTargetDataRef P) {
553  return reinterpret_cast<DataLayout *>(P);
554}
555
556inline LLVMTargetDataRef wrap(const DataLayout *P) {
557  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
558}
559
560/// Used to lazily calculate structure layout information for a target machine,
561/// based on the DataLayout structure.
562class StructLayout {
563  uint64_t StructSize;
564  unsigned StructAlignment;
565  unsigned IsPadded : 1;
566  unsigned NumElements : 31;
567  uint64_t MemberOffsets[1]; // variable sized array!
568
569public:
570  uint64_t getSizeInBytes() const { return StructSize; }
571
572  uint64_t getSizeInBits() const { return 8 * StructSize; }
573
574  unsigned getAlignment() const { return StructAlignment; }
575
576  /// Returns whether the struct has padding or not between its fields.
577  /// NB: Padding in nested element is not taken into account.
578  bool hasPadding() const { return IsPadded; }
579
580  /// Given a valid byte offset into the structure, returns the structure
581  /// index that contains it.
582  unsigned getElementContainingOffset(uint64_t Offset) const;
583
584  uint64_t getElementOffset(unsigned Idx) const {
585    assert(Idx < NumElements && "Invalid element idx!");
586    return MemberOffsets[Idx];
587  }
588
589  uint64_t getElementOffsetInBits(unsigned Idx) const {
590    return getElementOffset(Idx) * 8;
591  }
592
593private:
594  friend class DataLayout; // Only DataLayout can create this class
595
596  StructLayout(StructType *ST, const DataLayout &DL);
597};
598
599// The implementation of this method is provided inline as it is particularly
600// well suited to constant folding when called on a specific Type subclass.
601inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
602  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
603  switch (Ty->getTypeID()) {
604  case Type::LabelTyID:
605    return getPointerSizeInBits(0);
606  case Type::PointerTyID:
607    return getPointerSizeInBits(Ty->getPointerAddressSpace());
608  case Type::ArrayTyID: {
609    ArrayType *ATy = cast<ArrayType>(Ty);
610    return ATy->getNumElements() *
611           getTypeAllocSizeInBits(ATy->getElementType());
612  }
613  case Type::StructTyID:
614    // Get the layout annotation... which is lazily created on demand.
615    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
616  case Type::IntegerTyID:
617    return Ty->getIntegerBitWidth();
618  case Type::HalfTyID:
619    return 16;
620  case Type::FloatTyID:
621    return 32;
622  case Type::DoubleTyID:
623  case Type::X86_MMXTyID:
624    return 64;
625  case Type::PPC_FP128TyID:
626  case Type::FP128TyID:
627    return 128;
628  // In memory objects this is always aligned to a higher boundary, but
629  // only 80 bits contain information.
630  case Type::X86_FP80TyID:
631    return 80;
632  case Type::VectorTyID: {
633    VectorType *VTy = cast<VectorType>(Ty);
634    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
635  }
636  default:
637    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
638  }
639}
640
641} // end namespace llvm
642
643#endif // LLVM_IR_DATALAYOUT_H
644