DataLayout.h revision 314564
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30// This needs to be outside of the namespace, to avoid conflict with llvm-c
31// decl.
32typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
33
34namespace llvm {
35
36class Value;
37class StructType;
38class StructLayout;
39class Triple;
40class GlobalVariable;
41class LLVMContext;
42template<typename T>
43class ArrayRef;
44
45/// Enum used to categorize the alignment types stored by LayoutAlignElem
46enum AlignTypeEnum {
47  INVALID_ALIGN = 0,
48  INTEGER_ALIGN = 'i',
49  VECTOR_ALIGN = 'v',
50  FLOAT_ALIGN = 'f',
51  AGGREGATE_ALIGN = 'a'
52};
53
54// FIXME: Currently the DataLayout string carries a "preferred alignment"
55// for types. As the DataLayout is module/global, this should likely be
56// sunk down to an FTTI element that is queried rather than a global
57// preference.
58
59/// \brief Layout alignment element.
60///
61/// Stores the alignment data associated with a given alignment type (integer,
62/// vector, float) and type bit width.
63///
64/// \note The unusual order of elements in the structure attempts to reduce
65/// padding and make the structure slightly more cache friendly.
66struct LayoutAlignElem {
67  /// \brief Alignment type from \c AlignTypeEnum
68  unsigned AlignType : 8;
69  unsigned TypeBitWidth : 24;
70  unsigned ABIAlign : 16;
71  unsigned PrefAlign : 16;
72
73  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
74                             unsigned pref_align, uint32_t bit_width);
75  bool operator==(const LayoutAlignElem &rhs) const;
76};
77
78/// \brief Layout pointer alignment element.
79///
80/// Stores the alignment data associated with a given pointer and address space.
81///
82/// \note The unusual order of elements in the structure attempts to reduce
83/// padding and make the structure slightly more cache friendly.
84struct PointerAlignElem {
85  unsigned ABIAlign;
86  unsigned PrefAlign;
87  uint32_t TypeByteWidth;
88  uint32_t AddressSpace;
89
90  /// Initializer
91  static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
92                              unsigned PrefAlign, uint32_t TypeByteWidth);
93  bool operator==(const PointerAlignElem &rhs) const;
94};
95
96/// \brief A parsed version of the target data layout string in and methods for
97/// querying it.
98///
99/// The target data layout string is specified *by the target* - a frontend
100/// generating LLVM IR is required to generate the right target data for the
101/// target being codegen'd to.
102class DataLayout {
103private:
104  /// Defaults to false.
105  bool BigEndian;
106
107  unsigned StackNaturalAlign;
108
109  enum ManglingModeT {
110    MM_None,
111    MM_ELF,
112    MM_MachO,
113    MM_WinCOFF,
114    MM_WinCOFFX86,
115    MM_Mips
116  };
117  ManglingModeT ManglingMode;
118
119  SmallVector<unsigned char, 8> LegalIntWidths;
120
121  /// \brief Primitive type alignment data.
122  SmallVector<LayoutAlignElem, 16> Alignments;
123
124  /// \brief The string representation used to create this DataLayout
125  std::string StringRepresentation;
126
127  typedef SmallVector<PointerAlignElem, 8> PointersTy;
128  PointersTy Pointers;
129
130  PointersTy::const_iterator
131  findPointerLowerBound(uint32_t AddressSpace) const {
132    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
133  }
134
135  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
136
137  /// This member is a signal that a requested alignment type and bit width were
138  /// not found in the SmallVector.
139  static const LayoutAlignElem InvalidAlignmentElem;
140
141  /// This member is a signal that a requested pointer type and bit width were
142  /// not found in the DenseSet.
143  static const PointerAlignElem InvalidPointerElem;
144
145  // The StructType -> StructLayout map.
146  mutable void *LayoutMap;
147
148  /// Pointers in these address spaces are non-integral, and don't have a
149  /// well-defined bitwise representation.
150  SmallVector<unsigned, 8> NonIntegralAddressSpaces;
151
152  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
153                    unsigned pref_align, uint32_t bit_width);
154  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
155                            bool ABIAlign, Type *Ty) const;
156  void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
157                           unsigned PrefAlign, uint32_t TypeByteWidth);
158
159  /// Internal helper method that returns requested alignment for type.
160  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
161
162  /// \brief Valid alignment predicate.
163  ///
164  /// Predicate that tests a LayoutAlignElem reference returned by get() against
165  /// InvalidAlignmentElem.
166  bool validAlignment(const LayoutAlignElem &align) const {
167    return &align != &InvalidAlignmentElem;
168  }
169
170  /// \brief Valid pointer predicate.
171  ///
172  /// Predicate that tests a PointerAlignElem reference returned by get()
173  /// against \c InvalidPointerElem.
174  bool validPointer(const PointerAlignElem &align) const {
175    return &align != &InvalidPointerElem;
176  }
177
178  /// Parses a target data specification string. Assert if the string is
179  /// malformed.
180  void parseSpecifier(StringRef LayoutDescription);
181
182  // Free all internal data structures.
183  void clear();
184
185public:
186  /// Constructs a DataLayout from a specification string. See reset().
187  explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
188    reset(LayoutDescription);
189  }
190
191  /// Initialize target data from properties stored in the module.
192  explicit DataLayout(const Module *M);
193
194  void init(const Module *M);
195
196  DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
197
198  DataLayout &operator=(const DataLayout &DL) {
199    clear();
200    StringRepresentation = DL.StringRepresentation;
201    BigEndian = DL.isBigEndian();
202    StackNaturalAlign = DL.StackNaturalAlign;
203    ManglingMode = DL.ManglingMode;
204    LegalIntWidths = DL.LegalIntWidths;
205    Alignments = DL.Alignments;
206    Pointers = DL.Pointers;
207    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
208    return *this;
209  }
210
211  bool operator==(const DataLayout &Other) const;
212  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
213
214  ~DataLayout(); // Not virtual, do not subclass this class
215
216  /// Parse a data layout string (with fallback to default values).
217  void reset(StringRef LayoutDescription);
218
219  /// Layout endianness...
220  bool isLittleEndian() const { return !BigEndian; }
221  bool isBigEndian() const { return BigEndian; }
222
223  /// \brief Returns the string representation of the DataLayout.
224  ///
225  /// This representation is in the same format accepted by the string
226  /// constructor above. This should not be used to compare two DataLayout as
227  /// different string can represent the same layout.
228  const std::string &getStringRepresentation() const {
229    return StringRepresentation;
230  }
231
232  /// \brief Test if the DataLayout was constructed from an empty string.
233  bool isDefault() const { return StringRepresentation.empty(); }
234
235  /// \brief Returns true if the specified type is known to be a native integer
236  /// type supported by the CPU.
237  ///
238  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
239  /// on any known one. This returns false if the integer width is not legal.
240  ///
241  /// The width is specified in bits.
242  bool isLegalInteger(uint64_t Width) const {
243    for (unsigned LegalIntWidth : LegalIntWidths)
244      if (LegalIntWidth == Width)
245        return true;
246    return false;
247  }
248
249  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
250
251  /// Returns true if the given alignment exceeds the natural stack alignment.
252  bool exceedsNaturalStackAlignment(unsigned Align) const {
253    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
254  }
255
256  unsigned getStackAlignment() const { return StackNaturalAlign; }
257
258  bool hasMicrosoftFastStdCallMangling() const {
259    return ManglingMode == MM_WinCOFFX86;
260  }
261
262  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
263
264  StringRef getLinkerPrivateGlobalPrefix() const {
265    if (ManglingMode == MM_MachO)
266      return "l";
267    return "";
268  }
269
270  char getGlobalPrefix() const {
271    switch (ManglingMode) {
272    case MM_None:
273    case MM_ELF:
274    case MM_Mips:
275    case MM_WinCOFF:
276      return '\0';
277    case MM_MachO:
278    case MM_WinCOFFX86:
279      return '_';
280    }
281    llvm_unreachable("invalid mangling mode");
282  }
283
284  StringRef getPrivateGlobalPrefix() const {
285    switch (ManglingMode) {
286    case MM_None:
287      return "";
288    case MM_ELF:
289    case MM_WinCOFF:
290      return ".L";
291    case MM_Mips:
292      return "$";
293    case MM_MachO:
294    case MM_WinCOFFX86:
295      return "L";
296    }
297    llvm_unreachable("invalid mangling mode");
298  }
299
300  static const char *getManglingComponent(const Triple &T);
301
302  /// \brief Returns true if the specified type fits in a native integer type
303  /// supported by the CPU.
304  ///
305  /// For example, if the CPU only supports i32 as a native integer type, then
306  /// i27 fits in a legal integer type but i45 does not.
307  bool fitsInLegalInteger(unsigned Width) const {
308    for (unsigned LegalIntWidth : LegalIntWidths)
309      if (Width <= LegalIntWidth)
310        return true;
311    return false;
312  }
313
314  /// Layout pointer alignment
315  /// FIXME: The defaults need to be removed once all of
316  /// the backends/clients are updated.
317  unsigned getPointerABIAlignment(unsigned AS = 0) const;
318
319  /// Return target's alignment for stack-based pointers
320  /// FIXME: The defaults need to be removed once all of
321  /// the backends/clients are updated.
322  unsigned getPointerPrefAlignment(unsigned AS = 0) const;
323
324  /// Layout pointer size
325  /// FIXME: The defaults need to be removed once all of
326  /// the backends/clients are updated.
327  unsigned getPointerSize(unsigned AS = 0) const;
328
329  /// Return the address spaces containing non-integral pointers.  Pointers in
330  /// this address space don't have a well-defined bitwise representation.
331  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
332    return NonIntegralAddressSpaces;
333  }
334
335  bool isNonIntegralPointerType(PointerType *PT) const {
336    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
337    return find(NonIntegralSpaces, PT->getAddressSpace()) !=
338           NonIntegralSpaces.end();
339  }
340
341  bool isNonIntegralPointerType(Type *Ty) const {
342    auto *PTy = dyn_cast<PointerType>(Ty);
343    return PTy && isNonIntegralPointerType(PTy);
344  }
345
346  /// Layout pointer size, in bits
347  /// FIXME: The defaults need to be removed once all of
348  /// the backends/clients are updated.
349  unsigned getPointerSizeInBits(unsigned AS = 0) const {
350    return getPointerSize(AS) * 8;
351  }
352
353  /// Layout pointer size, in bits, based on the type.  If this function is
354  /// called with a pointer type, then the type size of the pointer is returned.
355  /// If this function is called with a vector of pointers, then the type size
356  /// of the pointer is returned.  This should only be called with a pointer or
357  /// vector of pointers.
358  unsigned getPointerTypeSizeInBits(Type *) const;
359
360  unsigned getPointerTypeSize(Type *Ty) const {
361    return getPointerTypeSizeInBits(Ty) / 8;
362  }
363
364  /// Size examples:
365  ///
366  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
367  /// ----        ----------  ---------------  ---------------
368  ///  i1            1           8                8
369  ///  i8            8           8                8
370  ///  i19          19          24               32
371  ///  i32          32          32               32
372  ///  i100        100         104              128
373  ///  i128        128         128              128
374  ///  Float        32          32               32
375  ///  Double       64          64               64
376  ///  X86_FP80     80          80               96
377  ///
378  /// [*] The alloc size depends on the alignment, and thus on the target.
379  ///     These values are for x86-32 linux.
380
381  /// \brief Returns the number of bits necessary to hold the specified type.
382  ///
383  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
384  /// have a size (Type::isSized() must return true).
385  uint64_t getTypeSizeInBits(Type *Ty) const;
386
387  /// \brief Returns the maximum number of bytes that may be overwritten by
388  /// storing the specified type.
389  ///
390  /// For example, returns 5 for i36 and 10 for x86_fp80.
391  uint64_t getTypeStoreSize(Type *Ty) const {
392    return (getTypeSizeInBits(Ty) + 7) / 8;
393  }
394
395  /// \brief Returns the maximum number of bits that may be overwritten by
396  /// storing the specified type; always a multiple of 8.
397  ///
398  /// For example, returns 40 for i36 and 80 for x86_fp80.
399  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
400    return 8 * getTypeStoreSize(Ty);
401  }
402
403  /// \brief Returns the offset in bytes between successive objects of the
404  /// specified type, including alignment padding.
405  ///
406  /// This is the amount that alloca reserves for this type. For example,
407  /// returns 12 or 16 for x86_fp80, depending on alignment.
408  uint64_t getTypeAllocSize(Type *Ty) const {
409    // Round up to the next alignment boundary.
410    return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
411  }
412
413  /// \brief Returns the offset in bits between successive objects of the
414  /// specified type, including alignment padding; always a multiple of 8.
415  ///
416  /// This is the amount that alloca reserves for this type. For example,
417  /// returns 96 or 128 for x86_fp80, depending on alignment.
418  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
419    return 8 * getTypeAllocSize(Ty);
420  }
421
422  /// \brief Returns the minimum ABI-required alignment for the specified type.
423  unsigned getABITypeAlignment(Type *Ty) const;
424
425  /// \brief Returns the minimum ABI-required alignment for an integer type of
426  /// the specified bitwidth.
427  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
428
429  /// \brief Returns the preferred stack/global alignment for the specified
430  /// type.
431  ///
432  /// This is always at least as good as the ABI alignment.
433  unsigned getPrefTypeAlignment(Type *Ty) const;
434
435  /// \brief Returns the preferred alignment for the specified type, returned as
436  /// log2 of the value (a shift amount).
437  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
438
439  /// \brief Returns an integer type with size at least as big as that of a
440  /// pointer in the given address space.
441  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
442
443  /// \brief Returns an integer (vector of integer) type with size at least as
444  /// big as that of a pointer of the given pointer (vector of pointer) type.
445  Type *getIntPtrType(Type *) const;
446
447  /// \brief Returns the smallest integer type with size at least as big as
448  /// Width bits.
449  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
450
451  /// \brief Returns the largest legal integer type, or null if none are set.
452  Type *getLargestLegalIntType(LLVMContext &C) const {
453    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
454    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
455  }
456
457  /// \brief Returns the size of largest legal integer type size, or 0 if none
458  /// are set.
459  unsigned getLargestLegalIntTypeSizeInBits() const;
460
461  /// \brief Returns the offset from the beginning of the type for the specified
462  /// indices.
463  ///
464  /// Note that this takes the element type, not the pointer type.
465  /// This is used to implement getelementptr.
466  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
467
468  /// \brief Returns a StructLayout object, indicating the alignment of the
469  /// struct, its size, and the offsets of its fields.
470  ///
471  /// Note that this information is lazily cached.
472  const StructLayout *getStructLayout(StructType *Ty) const;
473
474  /// \brief Returns the preferred alignment of the specified global.
475  ///
476  /// This includes an explicitly requested alignment (if the global has one).
477  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
478
479  /// \brief Returns the preferred alignment of the specified global, returned
480  /// in log form.
481  ///
482  /// This includes an explicitly requested alignment (if the global has one).
483  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
484};
485
486inline DataLayout *unwrap(LLVMTargetDataRef P) {
487  return reinterpret_cast<DataLayout *>(P);
488}
489
490inline LLVMTargetDataRef wrap(const DataLayout *P) {
491  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
492}
493
494/// Used to lazily calculate structure layout information for a target machine,
495/// based on the DataLayout structure.
496class StructLayout {
497  uint64_t StructSize;
498  unsigned StructAlignment;
499  unsigned IsPadded : 1;
500  unsigned NumElements : 31;
501  uint64_t MemberOffsets[1]; // variable sized array!
502public:
503  uint64_t getSizeInBytes() const { return StructSize; }
504
505  uint64_t getSizeInBits() const { return 8 * StructSize; }
506
507  unsigned getAlignment() const { return StructAlignment; }
508
509  /// Returns whether the struct has padding or not between its fields.
510  /// NB: Padding in nested element is not taken into account.
511  bool hasPadding() const { return IsPadded; }
512
513  /// \brief Given a valid byte offset into the structure, returns the structure
514  /// index that contains it.
515  unsigned getElementContainingOffset(uint64_t Offset) const;
516
517  uint64_t getElementOffset(unsigned Idx) const {
518    assert(Idx < NumElements && "Invalid element idx!");
519    return MemberOffsets[Idx];
520  }
521
522  uint64_t getElementOffsetInBits(unsigned Idx) const {
523    return getElementOffset(Idx) * 8;
524  }
525
526private:
527  friend class DataLayout; // Only DataLayout can create this class
528  StructLayout(StructType *ST, const DataLayout &DL);
529};
530
531// The implementation of this method is provided inline as it is particularly
532// well suited to constant folding when called on a specific Type subclass.
533inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
534  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
535  switch (Ty->getTypeID()) {
536  case Type::LabelTyID:
537    return getPointerSizeInBits(0);
538  case Type::PointerTyID:
539    return getPointerSizeInBits(Ty->getPointerAddressSpace());
540  case Type::ArrayTyID: {
541    ArrayType *ATy = cast<ArrayType>(Ty);
542    return ATy->getNumElements() *
543           getTypeAllocSizeInBits(ATy->getElementType());
544  }
545  case Type::StructTyID:
546    // Get the layout annotation... which is lazily created on demand.
547    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
548  case Type::IntegerTyID:
549    return Ty->getIntegerBitWidth();
550  case Type::HalfTyID:
551    return 16;
552  case Type::FloatTyID:
553    return 32;
554  case Type::DoubleTyID:
555  case Type::X86_MMXTyID:
556    return 64;
557  case Type::PPC_FP128TyID:
558  case Type::FP128TyID:
559    return 128;
560  // In memory objects this is always aligned to a higher boundary, but
561  // only 80 bits contain information.
562  case Type::X86_FP80TyID:
563    return 80;
564  case Type::VectorTyID: {
565    VectorType *VTy = cast<VectorType>(Ty);
566    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
567  }
568  default:
569    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
570  }
571}
572
573} // End llvm namespace
574
575#endif
576