DataLayout.h revision 280031
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30// This needs to be outside of the namespace, to avoid conflict with llvm-c
31// decl.
32typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
33
34namespace llvm {
35
36class Value;
37class Type;
38class IntegerType;
39class StructType;
40class StructLayout;
41class Triple;
42class GlobalVariable;
43class LLVMContext;
44template<typename T>
45class ArrayRef;
46
47/// Enum used to categorize the alignment types stored by LayoutAlignElem
48enum AlignTypeEnum {
49  INVALID_ALIGN = 0,
50  INTEGER_ALIGN = 'i',
51  VECTOR_ALIGN = 'v',
52  FLOAT_ALIGN = 'f',
53  AGGREGATE_ALIGN = 'a'
54};
55
56/// \brief Layout alignment element.
57///
58/// Stores the alignment data associated with a given alignment type (integer,
59/// vector, float) and type bit width.
60///
61/// \note The unusual order of elements in the structure attempts to reduce
62/// padding and make the structure slightly more cache friendly.
63struct LayoutAlignElem {
64  /// \brief Alignment type from \c AlignTypeEnum
65  unsigned AlignType : 8;
66  unsigned TypeBitWidth : 24;
67  unsigned ABIAlign : 16;
68  unsigned PrefAlign : 16;
69
70  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
71                             unsigned pref_align, uint32_t bit_width);
72  bool operator==(const LayoutAlignElem &rhs) const;
73};
74
75/// \brief Layout pointer alignment element.
76///
77/// Stores the alignment data associated with a given pointer and address space.
78///
79/// \note The unusual order of elements in the structure attempts to reduce
80/// padding and make the structure slightly more cache friendly.
81struct PointerAlignElem {
82  unsigned ABIAlign;
83  unsigned PrefAlign;
84  uint32_t TypeByteWidth;
85  uint32_t AddressSpace;
86
87  /// Initializer
88  static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
89                              unsigned PrefAlign, uint32_t TypeByteWidth);
90  bool operator==(const PointerAlignElem &rhs) const;
91};
92
93/// \brief A parsed version of the target data layout string in and methods for
94/// querying it.
95///
96/// The target data layout string is specified *by the target* - a frontend
97/// generating LLVM IR is required to generate the right target data for the
98/// target being codegen'd to.
99class DataLayout {
100private:
101  /// Defaults to false.
102  bool BigEndian;
103
104  unsigned StackNaturalAlign;
105
106  enum ManglingModeT { MM_None, MM_ELF, MM_MachO, MM_WINCOFF, MM_Mips };
107  ManglingModeT ManglingMode;
108
109  SmallVector<unsigned char, 8> LegalIntWidths;
110
111  /// \brief Primitive type alignment data.
112  SmallVector<LayoutAlignElem, 16> Alignments;
113
114  typedef SmallVector<PointerAlignElem, 8> PointersTy;
115  PointersTy Pointers;
116
117  PointersTy::const_iterator
118  findPointerLowerBound(uint32_t AddressSpace) const {
119    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
120  }
121
122  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
123
124  /// This member is a signal that a requested alignment type and bit width were
125  /// not found in the SmallVector.
126  static const LayoutAlignElem InvalidAlignmentElem;
127
128  /// This member is a signal that a requested pointer type and bit width were
129  /// not found in the DenseSet.
130  static const PointerAlignElem InvalidPointerElem;
131
132  // The StructType -> StructLayout map.
133  mutable void *LayoutMap;
134
135  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
136                    unsigned pref_align, uint32_t bit_width);
137  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
138                            bool ABIAlign, Type *Ty) const;
139  void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
140                           unsigned PrefAlign, uint32_t TypeByteWidth);
141
142  /// Internal helper method that returns requested alignment for type.
143  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
144
145  /// \brief Valid alignment predicate.
146  ///
147  /// Predicate that tests a LayoutAlignElem reference returned by get() against
148  /// InvalidAlignmentElem.
149  bool validAlignment(const LayoutAlignElem &align) const {
150    return &align != &InvalidAlignmentElem;
151  }
152
153  /// \brief Valid pointer predicate.
154  ///
155  /// Predicate that tests a PointerAlignElem reference returned by get()
156  /// against \c InvalidPointerElem.
157  bool validPointer(const PointerAlignElem &align) const {
158    return &align != &InvalidPointerElem;
159  }
160
161  /// Parses a target data specification string. Assert if the string is
162  /// malformed.
163  void parseSpecifier(StringRef LayoutDescription);
164
165  // Free all internal data structures.
166  void clear();
167
168public:
169  /// Constructs a DataLayout from a specification string. See reset().
170  explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
171    reset(LayoutDescription);
172  }
173
174  /// Initialize target data from properties stored in the module.
175  explicit DataLayout(const Module *M);
176
177  void init(const Module *M);
178
179  DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
180
181  DataLayout &operator=(const DataLayout &DL) {
182    clear();
183    BigEndian = DL.isBigEndian();
184    StackNaturalAlign = DL.StackNaturalAlign;
185    ManglingMode = DL.ManglingMode;
186    LegalIntWidths = DL.LegalIntWidths;
187    Alignments = DL.Alignments;
188    Pointers = DL.Pointers;
189    return *this;
190  }
191
192  bool operator==(const DataLayout &Other) const;
193  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
194
195  ~DataLayout(); // Not virtual, do not subclass this class
196
197  /// Parse a data layout string (with fallback to default values).
198  void reset(StringRef LayoutDescription);
199
200  /// Layout endianness...
201  bool isLittleEndian() const { return !BigEndian; }
202  bool isBigEndian() const { return BigEndian; }
203
204  /// \brief Returns the string representation of the DataLayout.
205  ///
206  /// This representation is in the same format accepted by the string
207  /// constructor above.
208  std::string getStringRepresentation() const;
209
210  /// \brief Returns true if the specified type is known to be a native integer
211  /// type supported by the CPU.
212  ///
213  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
214  /// on any known one. This returns false if the integer width is not legal.
215  ///
216  /// The width is specified in bits.
217  bool isLegalInteger(unsigned Width) const {
218    for (unsigned LegalIntWidth : LegalIntWidths)
219      if (LegalIntWidth == Width)
220        return true;
221    return false;
222  }
223
224  bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
225
226  /// Returns true if the given alignment exceeds the natural stack alignment.
227  bool exceedsNaturalStackAlignment(unsigned Align) const {
228    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
229  }
230
231  unsigned getStackAlignment() const { return StackNaturalAlign; }
232
233  bool hasMicrosoftFastStdCallMangling() const {
234    return ManglingMode == MM_WINCOFF;
235  }
236
237  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
238
239  const char *getLinkerPrivateGlobalPrefix() const {
240    if (ManglingMode == MM_MachO)
241      return "l";
242    return getPrivateGlobalPrefix();
243  }
244
245  char getGlobalPrefix() const {
246    switch (ManglingMode) {
247    case MM_None:
248    case MM_ELF:
249    case MM_Mips:
250      return '\0';
251    case MM_MachO:
252    case MM_WINCOFF:
253      return '_';
254    }
255    llvm_unreachable("invalid mangling mode");
256  }
257
258  const char *getPrivateGlobalPrefix() const {
259    switch (ManglingMode) {
260    case MM_None:
261      return "";
262    case MM_ELF:
263      return ".L";
264    case MM_Mips:
265      return "$";
266    case MM_MachO:
267    case MM_WINCOFF:
268      return "L";
269    }
270    llvm_unreachable("invalid mangling mode");
271  }
272
273  static const char *getManglingComponent(const Triple &T);
274
275  /// \brief Returns true if the specified type fits in a native integer type
276  /// supported by the CPU.
277  ///
278  /// For example, if the CPU only supports i32 as a native integer type, then
279  /// i27 fits in a legal integer type but i45 does not.
280  bool fitsInLegalInteger(unsigned Width) const {
281    for (unsigned LegalIntWidth : LegalIntWidths)
282      if (Width <= LegalIntWidth)
283        return true;
284    return false;
285  }
286
287  /// Layout pointer alignment
288  /// FIXME: The defaults need to be removed once all of
289  /// the backends/clients are updated.
290  unsigned getPointerABIAlignment(unsigned AS = 0) const;
291
292  /// Return target's alignment for stack-based pointers
293  /// FIXME: The defaults need to be removed once all of
294  /// the backends/clients are updated.
295  unsigned getPointerPrefAlignment(unsigned AS = 0) const;
296
297  /// Layout pointer size
298  /// FIXME: The defaults need to be removed once all of
299  /// the backends/clients are updated.
300  unsigned getPointerSize(unsigned AS = 0) const;
301
302  /// Layout pointer size, in bits
303  /// FIXME: The defaults need to be removed once all of
304  /// the backends/clients are updated.
305  unsigned getPointerSizeInBits(unsigned AS = 0) const {
306    return getPointerSize(AS) * 8;
307  }
308
309  /// Layout pointer size, in bits, based on the type.  If this function is
310  /// called with a pointer type, then the type size of the pointer is returned.
311  /// If this function is called with a vector of pointers, then the type size
312  /// of the pointer is returned.  This should only be called with a pointer or
313  /// vector of pointers.
314  unsigned getPointerTypeSizeInBits(Type *) const;
315
316  unsigned getPointerTypeSize(Type *Ty) const {
317    return getPointerTypeSizeInBits(Ty) / 8;
318  }
319
320  /// Size examples:
321  ///
322  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
323  /// ----        ----------  ---------------  ---------------
324  ///  i1            1           8                8
325  ///  i8            8           8                8
326  ///  i19          19          24               32
327  ///  i32          32          32               32
328  ///  i100        100         104              128
329  ///  i128        128         128              128
330  ///  Float        32          32               32
331  ///  Double       64          64               64
332  ///  X86_FP80     80          80               96
333  ///
334  /// [*] The alloc size depends on the alignment, and thus on the target.
335  ///     These values are for x86-32 linux.
336
337  /// \brief Returns the number of bits necessary to hold the specified type.
338  ///
339  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
340  /// have a size (Type::isSized() must return true).
341  uint64_t getTypeSizeInBits(Type *Ty) const;
342
343  /// \brief Returns the maximum number of bytes that may be overwritten by
344  /// storing the specified type.
345  ///
346  /// For example, returns 5 for i36 and 10 for x86_fp80.
347  uint64_t getTypeStoreSize(Type *Ty) const {
348    return (getTypeSizeInBits(Ty) + 7) / 8;
349  }
350
351  /// \brief Returns the maximum number of bits that may be overwritten by
352  /// storing the specified type; always a multiple of 8.
353  ///
354  /// For example, returns 40 for i36 and 80 for x86_fp80.
355  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
356    return 8 * getTypeStoreSize(Ty);
357  }
358
359  /// \brief Returns the offset in bytes between successive objects of the
360  /// specified type, including alignment padding.
361  ///
362  /// This is the amount that alloca reserves for this type. For example,
363  /// returns 12 or 16 for x86_fp80, depending on alignment.
364  uint64_t getTypeAllocSize(Type *Ty) const {
365    // Round up to the next alignment boundary.
366    return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
367  }
368
369  /// \brief Returns the offset in bits between successive objects of the
370  /// specified type, including alignment padding; always a multiple of 8.
371  ///
372  /// This is the amount that alloca reserves for this type. For example,
373  /// returns 96 or 128 for x86_fp80, depending on alignment.
374  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
375    return 8 * getTypeAllocSize(Ty);
376  }
377
378  /// \brief Returns the minimum ABI-required alignment for the specified type.
379  unsigned getABITypeAlignment(Type *Ty) const;
380
381  /// \brief Returns the minimum ABI-required alignment for an integer type of
382  /// the specified bitwidth.
383  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
384
385  /// \brief Returns the preferred stack/global alignment for the specified
386  /// type.
387  ///
388  /// This is always at least as good as the ABI alignment.
389  unsigned getPrefTypeAlignment(Type *Ty) const;
390
391  /// \brief Returns the preferred alignment for the specified type, returned as
392  /// log2 of the value (a shift amount).
393  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
394
395  /// \brief Returns an integer type with size at least as big as that of a
396  /// pointer in the given address space.
397  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
398
399  /// \brief Returns an integer (vector of integer) type with size at least as
400  /// big as that of a pointer of the given pointer (vector of pointer) type.
401  Type *getIntPtrType(Type *) const;
402
403  /// \brief Returns the smallest integer type with size at least as big as
404  /// Width bits.
405  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
406
407  /// \brief Returns the largest legal integer type, or null if none are set.
408  Type *getLargestLegalIntType(LLVMContext &C) const {
409    unsigned LargestSize = getLargestLegalIntTypeSize();
410    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
411  }
412
413  /// \brief Returns the size of largest legal integer type size, or 0 if none
414  /// are set.
415  unsigned getLargestLegalIntTypeSize() const;
416
417  /// \brief Returns the offset from the beginning of the type for the specified
418  /// indices.
419  ///
420  /// This is used to implement getelementptr.
421  uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
422
423  /// \brief Returns a StructLayout object, indicating the alignment of the
424  /// struct, its size, and the offsets of its fields.
425  ///
426  /// Note that this information is lazily cached.
427  const StructLayout *getStructLayout(StructType *Ty) const;
428
429  /// \brief Returns the preferred alignment of the specified global.
430  ///
431  /// This includes an explicitly requested alignment (if the global has one).
432  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
433
434  /// \brief Returns the preferred alignment of the specified global, returned
435  /// in log form.
436  ///
437  /// This includes an explicitly requested alignment (if the global has one).
438  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
439};
440
441inline DataLayout *unwrap(LLVMTargetDataRef P) {
442  return reinterpret_cast<DataLayout *>(P);
443}
444
445inline LLVMTargetDataRef wrap(const DataLayout *P) {
446  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
447}
448
449class DataLayoutPass : public ImmutablePass {
450  DataLayout DL;
451
452public:
453  /// This has to exist, because this is a pass, but it should never be used.
454  DataLayoutPass();
455  ~DataLayoutPass();
456
457  const DataLayout &getDataLayout() const { return DL; }
458
459  static char ID; // Pass identification, replacement for typeid
460
461  bool doFinalization(Module &M) override;
462  bool doInitialization(Module &M) override;
463};
464
465/// Used to lazily calculate structure layout information for a target machine,
466/// based on the DataLayout structure.
467class StructLayout {
468  uint64_t StructSize;
469  unsigned StructAlignment;
470  unsigned NumElements;
471  uint64_t MemberOffsets[1]; // variable sized array!
472public:
473  uint64_t getSizeInBytes() const { return StructSize; }
474
475  uint64_t getSizeInBits() const { return 8 * StructSize; }
476
477  unsigned getAlignment() const { return StructAlignment; }
478
479  /// \brief Given a valid byte offset into the structure, returns the structure
480  /// index that contains it.
481  unsigned getElementContainingOffset(uint64_t Offset) const;
482
483  uint64_t getElementOffset(unsigned Idx) const {
484    assert(Idx < NumElements && "Invalid element idx!");
485    return MemberOffsets[Idx];
486  }
487
488  uint64_t getElementOffsetInBits(unsigned Idx) const {
489    return getElementOffset(Idx) * 8;
490  }
491
492private:
493  friend class DataLayout; // Only DataLayout can create this class
494  StructLayout(StructType *ST, const DataLayout &DL);
495};
496
497// The implementation of this method is provided inline as it is particularly
498// well suited to constant folding when called on a specific Type subclass.
499inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
500  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
501  switch (Ty->getTypeID()) {
502  case Type::LabelTyID:
503    return getPointerSizeInBits(0);
504  case Type::PointerTyID:
505    return getPointerSizeInBits(Ty->getPointerAddressSpace());
506  case Type::ArrayTyID: {
507    ArrayType *ATy = cast<ArrayType>(Ty);
508    return ATy->getNumElements() *
509           getTypeAllocSizeInBits(ATy->getElementType());
510  }
511  case Type::StructTyID:
512    // Get the layout annotation... which is lazily created on demand.
513    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
514  case Type::IntegerTyID:
515    return Ty->getIntegerBitWidth();
516  case Type::HalfTyID:
517    return 16;
518  case Type::FloatTyID:
519    return 32;
520  case Type::DoubleTyID:
521  case Type::X86_MMXTyID:
522    return 64;
523  case Type::PPC_FP128TyID:
524  case Type::FP128TyID:
525    return 128;
526  // In memory objects this is always aligned to a higher boundary, but
527  // only 80 bits contain information.
528  case Type::X86_FP80TyID:
529    return 80;
530  case Type::VectorTyID: {
531    VectorType *VTy = cast<VectorType>(Ty);
532    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
533  }
534  default:
535    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
536  }
537}
538
539} // End llvm namespace
540
541#endif
542