DataLayout.h revision 251662
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30namespace llvm {
31
32class Value;
33class Type;
34class IntegerType;
35class StructType;
36class StructLayout;
37class GlobalVariable;
38class LLVMContext;
39template<typename T>
40class ArrayRef;
41
42/// Enum used to categorize the alignment types stored by LayoutAlignElem
43enum AlignTypeEnum {
44  INVALID_ALIGN = 0,                 ///< An invalid alignment
45  INTEGER_ALIGN = 'i',               ///< Integer type alignment
46  VECTOR_ALIGN = 'v',                ///< Vector type alignment
47  FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
48  AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
49  STACK_ALIGN = 's'                  ///< Stack objects alignment
50};
51
52/// Layout alignment element.
53///
54/// Stores the alignment data associated with a given alignment type (integer,
55/// vector, float) and type bit width.
56///
57/// @note The unusual order of elements in the structure attempts to reduce
58/// padding and make the structure slightly more cache friendly.
59struct LayoutAlignElem {
60  unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
61  unsigned TypeBitWidth : 24; ///< Type bit width
62  unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
63  unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
64
65  /// Initializer
66  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
67                             unsigned pref_align, uint32_t bit_width);
68  /// Equality predicate
69  bool operator==(const LayoutAlignElem &rhs) const;
70};
71
72/// Layout pointer alignment element.
73///
74/// Stores the alignment data associated with a given pointer and address space.
75///
76/// @note The unusual order of elements in the structure attempts to reduce
77/// padding and make the structure slightly more cache friendly.
78struct PointerAlignElem {
79  unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
80  unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
81  uint32_t            TypeBitWidth;   ///< Type bit width
82  uint32_t            AddressSpace;   ///< Address space for the pointer type
83
84  /// Initializer
85  static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
86                             unsigned pref_align, uint32_t bit_width);
87  /// Equality predicate
88  bool operator==(const PointerAlignElem &rhs) const;
89};
90
91
92/// DataLayout - This class holds a parsed version of the target data layout
93/// string in a module and provides methods for querying it.  The target data
94/// layout string is specified *by the target* - a frontend generating LLVM IR
95/// is required to generate the right target data for the target being codegen'd
96/// to.  If some measure of portability is desired, an empty string may be
97/// specified in the module.
98class DataLayout : public ImmutablePass {
99private:
100  bool          LittleEndian;          ///< Defaults to false
101  unsigned      StackNaturalAlign;     ///< Stack natural alignment
102
103  SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
104
105  /// Alignments - Where the primitive type alignment data is stored.
106  ///
107  /// @sa init().
108  /// @note Could support multiple size pointer alignments, e.g., 32-bit
109  /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
110  /// we don't.
111  SmallVector<LayoutAlignElem, 16> Alignments;
112  DenseMap<unsigned, PointerAlignElem> Pointers;
113
114  /// InvalidAlignmentElem - This member is a signal that a requested alignment
115  /// type and bit width were not found in the SmallVector.
116  static const LayoutAlignElem InvalidAlignmentElem;
117
118  /// InvalidPointerElem - This member is a signal that a requested pointer
119  /// type and bit width were not found in the DenseSet.
120  static const PointerAlignElem InvalidPointerElem;
121
122  // The StructType -> StructLayout map.
123  mutable void *LayoutMap;
124
125  //! Set/initialize target alignments
126  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
127                    unsigned pref_align, uint32_t bit_width);
128  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
129                            bool ABIAlign, Type *Ty) const;
130
131  //! Set/initialize pointer alignments
132  void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
133      unsigned pref_align, uint32_t bit_width);
134
135  //! Internal helper method that returns requested alignment for type.
136  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
137
138  /// Valid alignment predicate.
139  ///
140  /// Predicate that tests a LayoutAlignElem reference returned by get() against
141  /// InvalidAlignmentElem.
142  bool validAlignment(const LayoutAlignElem &align) const {
143    return &align != &InvalidAlignmentElem;
144  }
145
146  /// Valid pointer predicate.
147  ///
148  /// Predicate that tests a PointerAlignElem reference returned by get() against
149  /// InvalidPointerElem.
150  bool validPointer(const PointerAlignElem &align) const {
151    return &align != &InvalidPointerElem;
152  }
153
154  /// Parses a target data specification string. Assert if the string is
155  /// malformed.
156  void parseSpecifier(StringRef LayoutDescription);
157
158public:
159  /// Default ctor.
160  ///
161  /// @note This has to exist, because this is a pass, but it should never be
162  /// used.
163  DataLayout();
164
165  /// Constructs a DataLayout from a specification string. See init().
166  explicit DataLayout(StringRef LayoutDescription)
167    : ImmutablePass(ID) {
168    init(LayoutDescription);
169  }
170
171  /// Initialize target data from properties stored in the module.
172  explicit DataLayout(const Module *M);
173
174  DataLayout(const DataLayout &DL) :
175    ImmutablePass(ID),
176    LittleEndian(DL.isLittleEndian()),
177    StackNaturalAlign(DL.StackNaturalAlign),
178    LegalIntWidths(DL.LegalIntWidths),
179    Alignments(DL.Alignments),
180    Pointers(DL.Pointers),
181    LayoutMap(0)
182  { }
183
184  ~DataLayout();  // Not virtual, do not subclass this class
185
186  /// DataLayout is an immutable pass, but holds state.  This allows the pass
187  /// manager to clear its mutable state.
188  bool doFinalization(Module &M);
189
190  /// Parse a data layout string (with fallback to default values). Ensure that
191  /// the data layout pass is registered.
192  void init(StringRef LayoutDescription);
193
194  /// Layout endianness...
195  bool isLittleEndian() const { return LittleEndian; }
196  bool isBigEndian() const { return !LittleEndian; }
197
198  /// getStringRepresentation - Return the string representation of the
199  /// DataLayout.  This representation is in the same format accepted by the
200  /// string constructor above.
201  std::string getStringRepresentation() const;
202
203  /// isLegalInteger - This function returns true if the specified type is
204  /// known to be a native integer type supported by the CPU.  For example,
205  /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
206  /// one.  This returns false if the integer width is not legal.
207  ///
208  /// The width is specified in bits.
209  ///
210  bool isLegalInteger(unsigned Width) const {
211    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
212      if (LegalIntWidths[i] == Width)
213        return true;
214    return false;
215  }
216
217  bool isIllegalInteger(unsigned Width) const {
218    return !isLegalInteger(Width);
219  }
220
221  /// Returns true if the given alignment exceeds the natural stack alignment.
222  bool exceedsNaturalStackAlignment(unsigned Align) const {
223    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
224  }
225
226  /// fitsInLegalInteger - This function returns true if the specified type fits
227  /// in a native integer type supported by the CPU.  For example, if the CPU
228  /// only supports i32 as a native integer type, then i27 fits in a legal
229  // integer type but i45 does not.
230  bool fitsInLegalInteger(unsigned Width) const {
231    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
232      if (Width <= LegalIntWidths[i])
233        return true;
234    return false;
235  }
236
237  /// Layout pointer alignment
238  /// FIXME: The defaults need to be removed once all of
239  /// the backends/clients are updated.
240  unsigned getPointerABIAlignment(unsigned AS = 0)  const {
241    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
242    if (val == Pointers.end()) {
243      val = Pointers.find(0);
244    }
245    return val->second.ABIAlign;
246  }
247  /// Return target's alignment for stack-based pointers
248  /// FIXME: The defaults need to be removed once all of
249  /// the backends/clients are updated.
250  unsigned getPointerPrefAlignment(unsigned AS = 0) const {
251    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
252    if (val == Pointers.end()) {
253      val = Pointers.find(0);
254    }
255    return val->second.PrefAlign;
256  }
257  /// Layout pointer size
258  /// FIXME: The defaults need to be removed once all of
259  /// the backends/clients are updated.
260  unsigned getPointerSize(unsigned AS = 0)          const {
261    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
262    if (val == Pointers.end()) {
263      val = Pointers.find(0);
264    }
265    return val->second.TypeBitWidth;
266  }
267  /// Layout pointer size, in bits
268  /// FIXME: The defaults need to be removed once all of
269  /// the backends/clients are updated.
270  unsigned getPointerSizeInBits(unsigned AS = 0)    const {
271    return getPointerSize(AS) * 8;
272  }
273  /// Size examples:
274  ///
275  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
276  /// ----        ----------  ---------------  ---------------
277  ///  i1            1           8                8
278  ///  i8            8           8                8
279  ///  i19          19          24               32
280  ///  i32          32          32               32
281  ///  i100        100         104              128
282  ///  i128        128         128              128
283  ///  Float        32          32               32
284  ///  Double       64          64               64
285  ///  X86_FP80     80          80               96
286  ///
287  /// [*] The alloc size depends on the alignment, and thus on the target.
288  ///     These values are for x86-32 linux.
289
290  /// getTypeSizeInBits - Return the number of bits necessary to hold the
291  /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
292  /// The type passed must have a size (Type::isSized() must return true).
293  uint64_t getTypeSizeInBits(Type *Ty) const;
294
295  /// getTypeStoreSize - Return the maximum number of bytes that may be
296  /// overwritten by storing the specified type.  For example, returns 5
297  /// for i36 and 10 for x86_fp80.
298  uint64_t getTypeStoreSize(Type *Ty) const {
299    return (getTypeSizeInBits(Ty)+7)/8;
300  }
301
302  /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
303  /// overwritten by storing the specified type; always a multiple of 8.  For
304  /// example, returns 40 for i36 and 80 for x86_fp80.
305  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
306    return 8*getTypeStoreSize(Ty);
307  }
308
309  /// getTypeAllocSize - Return the offset in bytes between successive objects
310  /// of the specified type, including alignment padding.  This is the amount
311  /// that alloca reserves for this type.  For example, returns 12 or 16 for
312  /// x86_fp80, depending on alignment.
313  uint64_t getTypeAllocSize(Type *Ty) const {
314    // Round up to the next alignment boundary.
315    return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
316  }
317
318  /// getTypeAllocSizeInBits - Return the offset in bits between successive
319  /// objects of the specified type, including alignment padding; always a
320  /// multiple of 8.  This is the amount that alloca reserves for this type.
321  /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
322  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
323    return 8*getTypeAllocSize(Ty);
324  }
325
326  /// getABITypeAlignment - Return the minimum ABI-required alignment for the
327  /// specified type.
328  unsigned getABITypeAlignment(Type *Ty) const;
329
330  /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
331  /// an integer type of the specified bitwidth.
332  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
333
334  /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
335  /// for the specified type when it is part of a call frame.
336  unsigned getCallFrameTypeAlignment(Type *Ty) const;
337
338  /// getPrefTypeAlignment - Return the preferred stack/global alignment for
339  /// the specified type.  This is always at least as good as the ABI alignment.
340  unsigned getPrefTypeAlignment(Type *Ty) const;
341
342  /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
343  /// specified type, returned as log2 of the value (a shift amount).
344  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
345
346  /// getIntPtrType - Return an integer type with size at least as big as that
347  /// of a pointer in the given address space.
348  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
349
350  /// getIntPtrType - Return an integer (vector of integer) type with size at
351  /// least as big as that of a pointer of the given pointer (vector of pointer)
352  /// type.
353  Type *getIntPtrType(Type *) const;
354
355  /// getSmallestLegalIntType - Return the smallest integer type with size at
356  /// least as big as Width bits.
357  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
358
359  /// getIndexedOffset - return the offset from the beginning of the type for
360  /// the specified indices.  This is used to implement getelementptr.
361  uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
362
363  /// getStructLayout - Return a StructLayout object, indicating the alignment
364  /// of the struct, its size, and the offsets of its fields.  Note that this
365  /// information is lazily cached.
366  const StructLayout *getStructLayout(StructType *Ty) const;
367
368  /// getPreferredAlignment - Return the preferred alignment of the specified
369  /// global.  This includes an explicitly requested alignment (if the global
370  /// has one).
371  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
372
373  /// getPreferredAlignmentLog - Return the preferred alignment of the
374  /// specified global, returned in log form.  This includes an explicitly
375  /// requested alignment (if the global has one).
376  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
377
378  /// RoundUpAlignment - Round the specified value up to the next alignment
379  /// boundary specified by Alignment.  For example, 7 rounded up to an
380  /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
381  /// is 8 because it is already aligned.
382  template <typename UIntTy>
383  static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
384    assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
385    return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
386  }
387
388  static char ID; // Pass identification, replacement for typeid
389};
390
391/// StructLayout - used to lazily calculate structure layout information for a
392/// target machine, based on the DataLayout structure.
393///
394class StructLayout {
395  uint64_t StructSize;
396  unsigned StructAlignment;
397  unsigned NumElements;
398  uint64_t MemberOffsets[1];  // variable sized array!
399public:
400
401  uint64_t getSizeInBytes() const {
402    return StructSize;
403  }
404
405  uint64_t getSizeInBits() const {
406    return 8*StructSize;
407  }
408
409  unsigned getAlignment() const {
410    return StructAlignment;
411  }
412
413  /// getElementContainingOffset - Given a valid byte offset into the structure,
414  /// return the structure index that contains it.
415  ///
416  unsigned getElementContainingOffset(uint64_t Offset) const;
417
418  uint64_t getElementOffset(unsigned Idx) const {
419    assert(Idx < NumElements && "Invalid element idx!");
420    return MemberOffsets[Idx];
421  }
422
423  uint64_t getElementOffsetInBits(unsigned Idx) const {
424    return getElementOffset(Idx)*8;
425  }
426
427private:
428  friend class DataLayout;   // Only DataLayout can create this class
429  StructLayout(StructType *ST, const DataLayout &DL);
430};
431
432
433// The implementation of this method is provided inline as it is particularly
434// well suited to constant folding when called on a specific Type subclass.
435inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
436  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
437  switch (Ty->getTypeID()) {
438  case Type::LabelTyID:
439    return getPointerSizeInBits(0);
440  case Type::PointerTyID:
441    return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
442  case Type::ArrayTyID: {
443    ArrayType *ATy = cast<ArrayType>(Ty);
444    return ATy->getNumElements() *
445           getTypeAllocSizeInBits(ATy->getElementType());
446  }
447  case Type::StructTyID:
448    // Get the layout annotation... which is lazily created on demand.
449    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
450  case Type::IntegerTyID:
451    return cast<IntegerType>(Ty)->getBitWidth();
452  case Type::HalfTyID:
453    return 16;
454  case Type::FloatTyID:
455    return 32;
456  case Type::DoubleTyID:
457  case Type::X86_MMXTyID:
458    return 64;
459  case Type::PPC_FP128TyID:
460  case Type::FP128TyID:
461    return 128;
462    // In memory objects this is always aligned to a higher boundary, but
463  // only 80 bits contain information.
464  case Type::X86_FP80TyID:
465    return 80;
466  case Type::VectorTyID: {
467    VectorType *VTy = cast<VectorType>(Ty);
468    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
469  }
470  default:
471    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
472  }
473}
474
475} // End llvm namespace
476
477#endif
478