ExecutionEngine.h revision 226633
1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTION_ENGINE_H
16#define LLVM_EXECUTION_ENGINE_H
17
18#include <vector>
19#include <map>
20#include <string>
21#include "llvm/MC/MCCodeGenInfo.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/ValueMap.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/Support/ValueHandle.h"
27#include "llvm/Support/Mutex.h"
28#include "llvm/Target/TargetMachine.h"
29
30namespace llvm {
31
32struct GenericValue;
33class Constant;
34class ExecutionEngine;
35class Function;
36class GlobalVariable;
37class GlobalValue;
38class JITEventListener;
39class JITMemoryManager;
40class MachineCodeInfo;
41class Module;
42class MutexGuard;
43class TargetData;
44class Type;
45
46/// \brief Helper class for helping synchronize access to the global address map
47/// table.
48class ExecutionEngineState {
49public:
50  struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
51    typedef ExecutionEngineState *ExtraData;
52    static sys::Mutex *getMutex(ExecutionEngineState *EES);
53    static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
54    static void onRAUW(ExecutionEngineState *, const GlobalValue *,
55                       const GlobalValue *);
56  };
57
58  typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
59      GlobalAddressMapTy;
60
61private:
62  ExecutionEngine &EE;
63
64  /// GlobalAddressMap - A mapping between LLVM global values and their
65  /// actualized version...
66  GlobalAddressMapTy GlobalAddressMap;
67
68  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
69  /// used to convert raw addresses into the LLVM global value that is emitted
70  /// at the address.  This map is not computed unless getGlobalValueAtAddress
71  /// is called at some point.
72  std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
73
74public:
75  ExecutionEngineState(ExecutionEngine &EE);
76
77  GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
78    return GlobalAddressMap;
79  }
80
81  std::map<void*, AssertingVH<const GlobalValue> > &
82  getGlobalAddressReverseMap(const MutexGuard &) {
83    return GlobalAddressReverseMap;
84  }
85
86  /// \brief Erase an entry from the mapping table.
87  ///
88  /// \returns The address that \arg ToUnmap was happed to.
89  void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
90};
91
92/// \brief Abstract interface for implementation execution of LLVM modules,
93/// designed to support both interpreter and just-in-time (JIT) compiler
94/// implementations.
95class ExecutionEngine {
96  /// The state object holding the global address mapping, which must be
97  /// accessed synchronously.
98  //
99  // FIXME: There is no particular need the entire map needs to be
100  // synchronized.  Wouldn't a reader-writer design be better here?
101  ExecutionEngineState EEState;
102
103  /// The target data for the platform for which execution is being performed.
104  const TargetData *TD;
105
106  /// Whether lazy JIT compilation is enabled.
107  bool CompilingLazily;
108
109  /// Whether JIT compilation of external global variables is allowed.
110  bool GVCompilationDisabled;
111
112  /// Whether the JIT should perform lookups of external symbols (e.g.,
113  /// using dlsym).
114  bool SymbolSearchingDisabled;
115
116  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
117
118protected:
119  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
120  /// optimize for the case where there is only one module.
121  SmallVector<Module*, 1> Modules;
122
123  void setTargetData(const TargetData *td) { TD = td; }
124
125  /// getMemoryforGV - Allocate memory for a global variable.
126  virtual char *getMemoryForGV(const GlobalVariable *GV);
127
128  // To avoid having libexecutionengine depend on the JIT and interpreter
129  // libraries, the execution engine implementations set these functions to ctor
130  // pointers at startup time if they are linked in.
131  static ExecutionEngine *(*JITCtor)(
132    Module *M,
133    std::string *ErrorStr,
134    JITMemoryManager *JMM,
135    CodeGenOpt::Level OptLevel,
136    bool GVsWithCode,
137    TargetMachine *TM);
138  static ExecutionEngine *(*MCJITCtor)(
139    Module *M,
140    std::string *ErrorStr,
141    JITMemoryManager *JMM,
142    CodeGenOpt::Level OptLevel,
143    bool GVsWithCode,
144    TargetMachine *TM);
145  static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
146
147  /// LazyFunctionCreator - If an unknown function is needed, this function
148  /// pointer is invoked to create it.  If this returns null, the JIT will
149  /// abort.
150  void *(*LazyFunctionCreator)(const std::string &);
151
152  /// ExceptionTableRegister - If Exception Handling is set, the JIT will
153  /// register dwarf tables with this function.
154  typedef void (*EERegisterFn)(void*);
155  EERegisterFn ExceptionTableRegister;
156  EERegisterFn ExceptionTableDeregister;
157  /// This maps functions to their exception tables frames.
158  DenseMap<const Function*, void*> AllExceptionTables;
159
160
161public:
162  /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
163  /// JITEmitter classes.  It must be held while changing the internal state of
164  /// any of those classes.
165  sys::Mutex lock;
166
167  //===--------------------------------------------------------------------===//
168  //  ExecutionEngine Startup
169  //===--------------------------------------------------------------------===//
170
171  virtual ~ExecutionEngine();
172
173  /// create - This is the factory method for creating an execution engine which
174  /// is appropriate for the current machine.  This takes ownership of the
175  /// module.
176  ///
177  /// \param GVsWithCode - Allocating globals with code breaks
178  /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
179  /// However, we have clients who depend on this behavior, so we must support
180  /// it.  Eventually, when we're willing to break some backwards compatibility,
181  /// this flag should be flipped to false, so that by default
182  /// freeMachineCodeForFunction works.
183  static ExecutionEngine *create(Module *M,
184                                 bool ForceInterpreter = false,
185                                 std::string *ErrorStr = 0,
186                                 CodeGenOpt::Level OptLevel =
187                                 CodeGenOpt::Default,
188                                 bool GVsWithCode = true);
189
190  /// createJIT - This is the factory method for creating a JIT for the current
191  /// machine, it does not fall back to the interpreter.  This takes ownership
192  /// of the Module and JITMemoryManager if successful.
193  ///
194  /// Clients should make sure to initialize targets prior to calling this
195  /// function.
196  static ExecutionEngine *createJIT(Module *M,
197                                    std::string *ErrorStr = 0,
198                                    JITMemoryManager *JMM = 0,
199                                    CodeGenOpt::Level OptLevel =
200                                    CodeGenOpt::Default,
201                                    bool GVsWithCode = true,
202                                    Reloc::Model RM = Reloc::Default,
203                                    CodeModel::Model CMM =
204                                    CodeModel::JITDefault);
205
206  /// addModule - Add a Module to the list of modules that we can JIT from.
207  /// Note that this takes ownership of the Module: when the ExecutionEngine is
208  /// destroyed, it destroys the Module as well.
209  virtual void addModule(Module *M) {
210    Modules.push_back(M);
211  }
212
213  //===--------------------------------------------------------------------===//
214
215  const TargetData *getTargetData() const { return TD; }
216
217  /// removeModule - Remove a Module from the list of modules.  Returns true if
218  /// M is found.
219  virtual bool removeModule(Module *M);
220
221  /// FindFunctionNamed - Search all of the active modules to find the one that
222  /// defines FnName.  This is very slow operation and shouldn't be used for
223  /// general code.
224  Function *FindFunctionNamed(const char *FnName);
225
226  /// runFunction - Execute the specified function with the specified arguments,
227  /// and return the result.
228  virtual GenericValue runFunction(Function *F,
229                                const std::vector<GenericValue> &ArgValues) = 0;
230
231  /// runStaticConstructorsDestructors - This method is used to execute all of
232  /// the static constructors or destructors for a program.
233  ///
234  /// \param isDtors - Run the destructors instead of constructors.
235  void runStaticConstructorsDestructors(bool isDtors);
236
237  /// runStaticConstructorsDestructors - This method is used to execute all of
238  /// the static constructors or destructors for a particular module.
239  ///
240  /// \param isDtors - Run the destructors instead of constructors.
241  void runStaticConstructorsDestructors(Module *module, bool isDtors);
242
243
244  /// runFunctionAsMain - This is a helper function which wraps runFunction to
245  /// handle the common task of starting up main with the specified argc, argv,
246  /// and envp parameters.
247  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
248                        const char * const * envp);
249
250
251  /// addGlobalMapping - Tell the execution engine that the specified global is
252  /// at the specified location.  This is used internally as functions are JIT'd
253  /// and as global variables are laid out in memory.  It can and should also be
254  /// used by clients of the EE that want to have an LLVM global overlay
255  /// existing data in memory.  Mappings are automatically removed when their
256  /// GlobalValue is destroyed.
257  void addGlobalMapping(const GlobalValue *GV, void *Addr);
258
259  /// clearAllGlobalMappings - Clear all global mappings and start over again,
260  /// for use in dynamic compilation scenarios to move globals.
261  void clearAllGlobalMappings();
262
263  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
264  /// particular module, because it has been removed from the JIT.
265  void clearGlobalMappingsFromModule(Module *M);
266
267  /// updateGlobalMapping - Replace an existing mapping for GV with a new
268  /// address.  This updates both maps as required.  If "Addr" is null, the
269  /// entry for the global is removed from the mappings.  This returns the old
270  /// value of the pointer, or null if it was not in the map.
271  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
272
273  /// getPointerToGlobalIfAvailable - This returns the address of the specified
274  /// global value if it is has already been codegen'd, otherwise it returns
275  /// null.
276  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
277
278  /// getPointerToGlobal - This returns the address of the specified global
279  /// value. This may involve code generation if it's a function.
280  void *getPointerToGlobal(const GlobalValue *GV);
281
282  /// getPointerToFunction - The different EE's represent function bodies in
283  /// different ways.  They should each implement this to say what a function
284  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
285  /// remove its global mapping and free any machine code.  Be sure no threads
286  /// are running inside F when that happens.
287  virtual void *getPointerToFunction(Function *F) = 0;
288
289  /// getPointerToBasicBlock - The different EE's represent basic blocks in
290  /// different ways.  Return the representation for a blockaddress of the
291  /// specified block.
292  virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
293
294  /// getPointerToFunctionOrStub - If the specified function has been
295  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
296  /// a stub to implement lazy compilation if available.  See
297  /// getPointerToFunction for the requirements on destroying F.
298  virtual void *getPointerToFunctionOrStub(Function *F) {
299    // Default implementation, just codegen the function.
300    return getPointerToFunction(F);
301  }
302
303  // The JIT overrides a version that actually does this.
304  virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
305
306  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
307  /// at the specified address.
308  ///
309  const GlobalValue *getGlobalValueAtAddress(void *Addr);
310
311  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
312  /// Ptr is the address of the memory at which to store Val, cast to
313  /// GenericValue *.  It is not a pointer to a GenericValue containing the
314  /// address at which to store Val.
315  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
316                          Type *Ty);
317
318  void InitializeMemory(const Constant *Init, void *Addr);
319
320  /// recompileAndRelinkFunction - This method is used to force a function which
321  /// has already been compiled to be compiled again, possibly after it has been
322  /// modified.  Then the entry to the old copy is overwritten with a branch to
323  /// the new copy.  If there was no old copy, this acts just like
324  /// VM::getPointerToFunction().
325  virtual void *recompileAndRelinkFunction(Function *F) = 0;
326
327  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
328  /// corresponding to the machine code emitted to execute this function, useful
329  /// for garbage-collecting generated code.
330  virtual void freeMachineCodeForFunction(Function *F) = 0;
331
332  /// getOrEmitGlobalVariable - Return the address of the specified global
333  /// variable, possibly emitting it to memory if needed.  This is used by the
334  /// Emitter.
335  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
336    return getPointerToGlobal((GlobalValue*)GV);
337  }
338
339  /// Registers a listener to be called back on various events within
340  /// the JIT.  See JITEventListener.h for more details.  Does not
341  /// take ownership of the argument.  The argument may be NULL, in
342  /// which case these functions do nothing.
343  virtual void RegisterJITEventListener(JITEventListener *) {}
344  virtual void UnregisterJITEventListener(JITEventListener *) {}
345
346  /// DisableLazyCompilation - When lazy compilation is off (the default), the
347  /// JIT will eagerly compile every function reachable from the argument to
348  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
349  /// compile the one function and emit stubs to compile the rest when they're
350  /// first called.  If lazy compilation is turned off again while some lazy
351  /// stubs are still around, and one of those stubs is called, the program will
352  /// abort.
353  ///
354  /// In order to safely compile lazily in a threaded program, the user must
355  /// ensure that 1) only one thread at a time can call any particular lazy
356  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
357  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
358  /// lazy stub.  See http://llvm.org/PR5184 for details.
359  void DisableLazyCompilation(bool Disabled = true) {
360    CompilingLazily = !Disabled;
361  }
362  bool isCompilingLazily() const {
363    return CompilingLazily;
364  }
365  // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
366  // Remove this in LLVM 2.8.
367  bool isLazyCompilationDisabled() const {
368    return !CompilingLazily;
369  }
370
371  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
372  /// allocate space and populate a GlobalVariable that is not internal to
373  /// the module.
374  void DisableGVCompilation(bool Disabled = true) {
375    GVCompilationDisabled = Disabled;
376  }
377  bool isGVCompilationDisabled() const {
378    return GVCompilationDisabled;
379  }
380
381  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
382  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
383  /// resolve symbols in a custom way.
384  void DisableSymbolSearching(bool Disabled = true) {
385    SymbolSearchingDisabled = Disabled;
386  }
387  bool isSymbolSearchingDisabled() const {
388    return SymbolSearchingDisabled;
389  }
390
391  /// InstallLazyFunctionCreator - If an unknown function is needed, the
392  /// specified function pointer is invoked to create it.  If it returns null,
393  /// the JIT will abort.
394  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
395    LazyFunctionCreator = P;
396  }
397
398  /// InstallExceptionTableRegister - The JIT will use the given function
399  /// to register the exception tables it generates.
400  void InstallExceptionTableRegister(EERegisterFn F) {
401    ExceptionTableRegister = F;
402  }
403  void InstallExceptionTableDeregister(EERegisterFn F) {
404    ExceptionTableDeregister = F;
405  }
406
407  /// RegisterTable - Registers the given pointer as an exception table.  It
408  /// uses the ExceptionTableRegister function.
409  void RegisterTable(const Function *fn, void* res) {
410    if (ExceptionTableRegister) {
411      ExceptionTableRegister(res);
412      AllExceptionTables[fn] = res;
413    }
414  }
415
416  /// DeregisterTable - Deregisters the exception frame previously registered
417  /// for the given function.
418  void DeregisterTable(const Function *Fn) {
419    if (ExceptionTableDeregister) {
420      DenseMap<const Function*, void*>::iterator frame =
421        AllExceptionTables.find(Fn);
422      if(frame != AllExceptionTables.end()) {
423        ExceptionTableDeregister(frame->second);
424        AllExceptionTables.erase(frame);
425      }
426    }
427  }
428
429  /// DeregisterAllTables - Deregisters all previously registered pointers to an
430  /// exception tables.  It uses the ExceptionTableoDeregister function.
431  void DeregisterAllTables();
432
433protected:
434  explicit ExecutionEngine(Module *M);
435
436  void emitGlobals();
437
438  void EmitGlobalVariable(const GlobalVariable *GV);
439
440  GenericValue getConstantValue(const Constant *C);
441  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
442                           Type *Ty);
443};
444
445namespace EngineKind {
446  // These are actually bitmasks that get or-ed together.
447  enum Kind {
448    JIT         = 0x1,
449    Interpreter = 0x2
450  };
451  const static Kind Either = (Kind)(JIT | Interpreter);
452}
453
454/// EngineBuilder - Builder class for ExecutionEngines.  Use this by
455/// stack-allocating a builder, chaining the various set* methods, and
456/// terminating it with a .create() call.
457class EngineBuilder {
458private:
459  Module *M;
460  EngineKind::Kind WhichEngine;
461  std::string *ErrorStr;
462  CodeGenOpt::Level OptLevel;
463  JITMemoryManager *JMM;
464  bool AllocateGVsWithCode;
465  Reloc::Model RelocModel;
466  CodeModel::Model CMModel;
467  std::string MArch;
468  std::string MCPU;
469  SmallVector<std::string, 4> MAttrs;
470  bool UseMCJIT;
471
472  /// InitEngine - Does the common initialization of default options.
473  void InitEngine() {
474    WhichEngine = EngineKind::Either;
475    ErrorStr = NULL;
476    OptLevel = CodeGenOpt::Default;
477    JMM = NULL;
478    AllocateGVsWithCode = false;
479    RelocModel = Reloc::Default;
480    CMModel = CodeModel::JITDefault;
481    UseMCJIT = false;
482  }
483
484public:
485  /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
486  /// is successful, the created engine takes ownership of the module.
487  EngineBuilder(Module *m) : M(m) {
488    InitEngine();
489  }
490
491  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
492  /// or whichever engine works.  This option defaults to EngineKind::Either.
493  EngineBuilder &setEngineKind(EngineKind::Kind w) {
494    WhichEngine = w;
495    return *this;
496  }
497
498  /// setJITMemoryManager - Sets the memory manager to use.  This allows
499  /// clients to customize their memory allocation policies.  If create() is
500  /// called and is successful, the created engine takes ownership of the
501  /// memory manager.  This option defaults to NULL.
502  EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
503    JMM = jmm;
504    return *this;
505  }
506
507  /// setErrorStr - Set the error string to write to on error.  This option
508  /// defaults to NULL.
509  EngineBuilder &setErrorStr(std::string *e) {
510    ErrorStr = e;
511    return *this;
512  }
513
514  /// setOptLevel - Set the optimization level for the JIT.  This option
515  /// defaults to CodeGenOpt::Default.
516  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
517    OptLevel = l;
518    return *this;
519  }
520
521  /// setRelocationModel - Set the relocation model that the ExecutionEngine
522  /// target is using. Defaults to target specific default "Reloc::Default".
523  EngineBuilder &setRelocationModel(Reloc::Model RM) {
524    RelocModel = RM;
525    return *this;
526  }
527
528  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
529  /// data is using. Defaults to target specific default
530  /// "CodeModel::JITDefault".
531  EngineBuilder &setCodeModel(CodeModel::Model M) {
532    CMModel = M;
533    return *this;
534  }
535
536  /// setAllocateGVsWithCode - Sets whether global values should be allocated
537  /// into the same buffer as code.  For most applications this should be set
538  /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
539  /// and is probably unsafe and bad for performance.  However, we have clients
540  /// who depend on this behavior, so we must support it.  This option defaults
541  /// to false so that users of the new API can safely use the new memory
542  /// manager and free machine code.
543  EngineBuilder &setAllocateGVsWithCode(bool a) {
544    AllocateGVsWithCode = a;
545    return *this;
546  }
547
548  /// setMArch - Override the architecture set by the Module's triple.
549  EngineBuilder &setMArch(StringRef march) {
550    MArch.assign(march.begin(), march.end());
551    return *this;
552  }
553
554  /// setMCPU - Target a specific cpu type.
555  EngineBuilder &setMCPU(StringRef mcpu) {
556    MCPU.assign(mcpu.begin(), mcpu.end());
557    return *this;
558  }
559
560  /// setUseMCJIT - Set whether the MC-JIT implementation should be used
561  /// (experimental).
562  EngineBuilder &setUseMCJIT(bool Value) {
563    UseMCJIT = Value;
564    return *this;
565  }
566
567  /// setMAttrs - Set cpu-specific attributes.
568  template<typename StringSequence>
569  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
570    MAttrs.clear();
571    MAttrs.append(mattrs.begin(), mattrs.end());
572    return *this;
573  }
574
575  /// selectTarget - Pick a target either via -march or by guessing the native
576  /// arch.  Add any CPU features specified via -mcpu or -mattr.
577  static TargetMachine *selectTarget(Module *M,
578                                     StringRef MArch,
579                                     StringRef MCPU,
580                                     const SmallVectorImpl<std::string>& MAttrs,
581                                     Reloc::Model RM,
582                                     CodeModel::Model CM,
583                                     std::string *Err);
584
585  ExecutionEngine *create();
586};
587
588} // End llvm namespace
589
590#endif
591