ExecutionEngine.h revision 239462
1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTION_ENGINE_H
16#define LLVM_EXECUTION_ENGINE_H
17
18#include "llvm/MC/MCCodeGenInfo.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ValueMap.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/ValueHandle.h"
25#include "llvm/Support/Mutex.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetOptions.h"
28#include <vector>
29#include <map>
30#include <string>
31
32namespace llvm {
33
34struct GenericValue;
35class Constant;
36class ExecutionEngine;
37class Function;
38class GlobalVariable;
39class GlobalValue;
40class JITEventListener;
41class JITMemoryManager;
42class MachineCodeInfo;
43class Module;
44class MutexGuard;
45class TargetData;
46class Triple;
47class Type;
48
49/// \brief Helper class for helping synchronize access to the global address map
50/// table.
51class ExecutionEngineState {
52public:
53  struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
54    typedef ExecutionEngineState *ExtraData;
55    static sys::Mutex *getMutex(ExecutionEngineState *EES);
56    static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
57    static void onRAUW(ExecutionEngineState *, const GlobalValue *,
58                       const GlobalValue *);
59  };
60
61  typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
62      GlobalAddressMapTy;
63
64private:
65  ExecutionEngine &EE;
66
67  /// GlobalAddressMap - A mapping between LLVM global values and their
68  /// actualized version...
69  GlobalAddressMapTy GlobalAddressMap;
70
71  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
72  /// used to convert raw addresses into the LLVM global value that is emitted
73  /// at the address.  This map is not computed unless getGlobalValueAtAddress
74  /// is called at some point.
75  std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
76
77public:
78  ExecutionEngineState(ExecutionEngine &EE);
79
80  GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
81    return GlobalAddressMap;
82  }
83
84  std::map<void*, AssertingVH<const GlobalValue> > &
85  getGlobalAddressReverseMap(const MutexGuard &) {
86    return GlobalAddressReverseMap;
87  }
88
89  /// \brief Erase an entry from the mapping table.
90  ///
91  /// \returns The address that \arg ToUnmap was happed to.
92  void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
93};
94
95/// \brief Abstract interface for implementation execution of LLVM modules,
96/// designed to support both interpreter and just-in-time (JIT) compiler
97/// implementations.
98class ExecutionEngine {
99  /// The state object holding the global address mapping, which must be
100  /// accessed synchronously.
101  //
102  // FIXME: There is no particular need the entire map needs to be
103  // synchronized.  Wouldn't a reader-writer design be better here?
104  ExecutionEngineState EEState;
105
106  /// The target data for the platform for which execution is being performed.
107  const TargetData *TD;
108
109  /// Whether lazy JIT compilation is enabled.
110  bool CompilingLazily;
111
112  /// Whether JIT compilation of external global variables is allowed.
113  bool GVCompilationDisabled;
114
115  /// Whether the JIT should perform lookups of external symbols (e.g.,
116  /// using dlsym).
117  bool SymbolSearchingDisabled;
118
119  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
120
121protected:
122  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
123  /// optimize for the case where there is only one module.
124  SmallVector<Module*, 1> Modules;
125
126  void setTargetData(const TargetData *td) { TD = td; }
127
128  /// getMemoryforGV - Allocate memory for a global variable.
129  virtual char *getMemoryForGV(const GlobalVariable *GV);
130
131  // To avoid having libexecutionengine depend on the JIT and interpreter
132  // libraries, the execution engine implementations set these functions to ctor
133  // pointers at startup time if they are linked in.
134  static ExecutionEngine *(*JITCtor)(
135    Module *M,
136    std::string *ErrorStr,
137    JITMemoryManager *JMM,
138    bool GVsWithCode,
139    TargetMachine *TM);
140  static ExecutionEngine *(*MCJITCtor)(
141    Module *M,
142    std::string *ErrorStr,
143    JITMemoryManager *JMM,
144    bool GVsWithCode,
145    TargetMachine *TM);
146  static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
147
148  /// LazyFunctionCreator - If an unknown function is needed, this function
149  /// pointer is invoked to create it.  If this returns null, the JIT will
150  /// abort.
151  void *(*LazyFunctionCreator)(const std::string &);
152
153  /// ExceptionTableRegister - If Exception Handling is set, the JIT will
154  /// register dwarf tables with this function.
155  typedef void (*EERegisterFn)(void*);
156  EERegisterFn ExceptionTableRegister;
157  EERegisterFn ExceptionTableDeregister;
158  /// This maps functions to their exception tables frames.
159  DenseMap<const Function*, void*> AllExceptionTables;
160
161
162public:
163  /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
164  /// JITEmitter classes.  It must be held while changing the internal state of
165  /// any of those classes.
166  sys::Mutex lock;
167
168  //===--------------------------------------------------------------------===//
169  //  ExecutionEngine Startup
170  //===--------------------------------------------------------------------===//
171
172  virtual ~ExecutionEngine();
173
174  /// create - This is the factory method for creating an execution engine which
175  /// is appropriate for the current machine.  This takes ownership of the
176  /// module.
177  ///
178  /// \param GVsWithCode - Allocating globals with code breaks
179  /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
180  /// However, we have clients who depend on this behavior, so we must support
181  /// it.  Eventually, when we're willing to break some backwards compatibility,
182  /// this flag should be flipped to false, so that by default
183  /// freeMachineCodeForFunction works.
184  static ExecutionEngine *create(Module *M,
185                                 bool ForceInterpreter = false,
186                                 std::string *ErrorStr = 0,
187                                 CodeGenOpt::Level OptLevel =
188                                 CodeGenOpt::Default,
189                                 bool GVsWithCode = true);
190
191  /// createJIT - This is the factory method for creating a JIT for the current
192  /// machine, it does not fall back to the interpreter.  This takes ownership
193  /// of the Module and JITMemoryManager if successful.
194  ///
195  /// Clients should make sure to initialize targets prior to calling this
196  /// function.
197  static ExecutionEngine *createJIT(Module *M,
198                                    std::string *ErrorStr = 0,
199                                    JITMemoryManager *JMM = 0,
200                                    CodeGenOpt::Level OptLevel =
201                                    CodeGenOpt::Default,
202                                    bool GVsWithCode = true,
203                                    Reloc::Model RM = Reloc::Default,
204                                    CodeModel::Model CMM =
205                                    CodeModel::JITDefault);
206
207  /// addModule - Add a Module to the list of modules that we can JIT from.
208  /// Note that this takes ownership of the Module: when the ExecutionEngine is
209  /// destroyed, it destroys the Module as well.
210  virtual void addModule(Module *M) {
211    Modules.push_back(M);
212  }
213
214  //===--------------------------------------------------------------------===//
215
216  const TargetData *getTargetData() const { return TD; }
217
218  /// removeModule - Remove a Module from the list of modules.  Returns true if
219  /// M is found.
220  virtual bool removeModule(Module *M);
221
222  /// FindFunctionNamed - Search all of the active modules to find the one that
223  /// defines FnName.  This is very slow operation and shouldn't be used for
224  /// general code.
225  Function *FindFunctionNamed(const char *FnName);
226
227  /// runFunction - Execute the specified function with the specified arguments,
228  /// and return the result.
229  virtual GenericValue runFunction(Function *F,
230                                const std::vector<GenericValue> &ArgValues) = 0;
231
232  /// getPointerToNamedFunction - This method returns the address of the
233  /// specified function by using the dlsym function call.  As such it is only
234  /// useful for resolving library symbols, not code generated symbols.
235  ///
236  /// If AbortOnFailure is false and no function with the given name is
237  /// found, this function silently returns a null pointer. Otherwise,
238  /// it prints a message to stderr and aborts.
239  ///
240  virtual void *getPointerToNamedFunction(const std::string &Name,
241                                          bool AbortOnFailure = true) = 0;
242
243  /// mapSectionAddress - map a section to its target address space value.
244  /// Map the address of a JIT section as returned from the memory manager
245  /// to the address in the target process as the running code will see it.
246  /// This is the address which will be used for relocation resolution.
247  virtual void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress) {
248    llvm_unreachable("Re-mapping of section addresses not supported with this "
249                     "EE!");
250  }
251
252  /// runStaticConstructorsDestructors - This method is used to execute all of
253  /// the static constructors or destructors for a program.
254  ///
255  /// \param isDtors - Run the destructors instead of constructors.
256  void runStaticConstructorsDestructors(bool isDtors);
257
258  /// runStaticConstructorsDestructors - This method is used to execute all of
259  /// the static constructors or destructors for a particular module.
260  ///
261  /// \param isDtors - Run the destructors instead of constructors.
262  void runStaticConstructorsDestructors(Module *module, bool isDtors);
263
264
265  /// runFunctionAsMain - This is a helper function which wraps runFunction to
266  /// handle the common task of starting up main with the specified argc, argv,
267  /// and envp parameters.
268  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
269                        const char * const * envp);
270
271
272  /// addGlobalMapping - Tell the execution engine that the specified global is
273  /// at the specified location.  This is used internally as functions are JIT'd
274  /// and as global variables are laid out in memory.  It can and should also be
275  /// used by clients of the EE that want to have an LLVM global overlay
276  /// existing data in memory.  Mappings are automatically removed when their
277  /// GlobalValue is destroyed.
278  void addGlobalMapping(const GlobalValue *GV, void *Addr);
279
280  /// clearAllGlobalMappings - Clear all global mappings and start over again,
281  /// for use in dynamic compilation scenarios to move globals.
282  void clearAllGlobalMappings();
283
284  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
285  /// particular module, because it has been removed from the JIT.
286  void clearGlobalMappingsFromModule(Module *M);
287
288  /// updateGlobalMapping - Replace an existing mapping for GV with a new
289  /// address.  This updates both maps as required.  If "Addr" is null, the
290  /// entry for the global is removed from the mappings.  This returns the old
291  /// value of the pointer, or null if it was not in the map.
292  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
293
294  /// getPointerToGlobalIfAvailable - This returns the address of the specified
295  /// global value if it is has already been codegen'd, otherwise it returns
296  /// null.
297  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
298
299  /// getPointerToGlobal - This returns the address of the specified global
300  /// value. This may involve code generation if it's a function.
301  void *getPointerToGlobal(const GlobalValue *GV);
302
303  /// getPointerToFunction - The different EE's represent function bodies in
304  /// different ways.  They should each implement this to say what a function
305  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
306  /// remove its global mapping and free any machine code.  Be sure no threads
307  /// are running inside F when that happens.
308  virtual void *getPointerToFunction(Function *F) = 0;
309
310  /// getPointerToBasicBlock - The different EE's represent basic blocks in
311  /// different ways.  Return the representation for a blockaddress of the
312  /// specified block.
313  virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
314
315  /// getPointerToFunctionOrStub - If the specified function has been
316  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
317  /// a stub to implement lazy compilation if available.  See
318  /// getPointerToFunction for the requirements on destroying F.
319  virtual void *getPointerToFunctionOrStub(Function *F) {
320    // Default implementation, just codegen the function.
321    return getPointerToFunction(F);
322  }
323
324  // The JIT overrides a version that actually does this.
325  virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
326
327  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
328  /// at the specified address.
329  ///
330  const GlobalValue *getGlobalValueAtAddress(void *Addr);
331
332  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
333  /// Ptr is the address of the memory at which to store Val, cast to
334  /// GenericValue *.  It is not a pointer to a GenericValue containing the
335  /// address at which to store Val.
336  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
337                          Type *Ty);
338
339  void InitializeMemory(const Constant *Init, void *Addr);
340
341  /// recompileAndRelinkFunction - This method is used to force a function which
342  /// has already been compiled to be compiled again, possibly after it has been
343  /// modified.  Then the entry to the old copy is overwritten with a branch to
344  /// the new copy.  If there was no old copy, this acts just like
345  /// VM::getPointerToFunction().
346  virtual void *recompileAndRelinkFunction(Function *F) = 0;
347
348  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
349  /// corresponding to the machine code emitted to execute this function, useful
350  /// for garbage-collecting generated code.
351  virtual void freeMachineCodeForFunction(Function *F) = 0;
352
353  /// getOrEmitGlobalVariable - Return the address of the specified global
354  /// variable, possibly emitting it to memory if needed.  This is used by the
355  /// Emitter.
356  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
357    return getPointerToGlobal((const GlobalValue *)GV);
358  }
359
360  /// Registers a listener to be called back on various events within
361  /// the JIT.  See JITEventListener.h for more details.  Does not
362  /// take ownership of the argument.  The argument may be NULL, in
363  /// which case these functions do nothing.
364  virtual void RegisterJITEventListener(JITEventListener *) {}
365  virtual void UnregisterJITEventListener(JITEventListener *) {}
366
367  /// DisableLazyCompilation - When lazy compilation is off (the default), the
368  /// JIT will eagerly compile every function reachable from the argument to
369  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
370  /// compile the one function and emit stubs to compile the rest when they're
371  /// first called.  If lazy compilation is turned off again while some lazy
372  /// stubs are still around, and one of those stubs is called, the program will
373  /// abort.
374  ///
375  /// In order to safely compile lazily in a threaded program, the user must
376  /// ensure that 1) only one thread at a time can call any particular lazy
377  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
378  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
379  /// lazy stub.  See http://llvm.org/PR5184 for details.
380  void DisableLazyCompilation(bool Disabled = true) {
381    CompilingLazily = !Disabled;
382  }
383  bool isCompilingLazily() const {
384    return CompilingLazily;
385  }
386  // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
387  // Remove this in LLVM 2.8.
388  bool isLazyCompilationDisabled() const {
389    return !CompilingLazily;
390  }
391
392  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
393  /// allocate space and populate a GlobalVariable that is not internal to
394  /// the module.
395  void DisableGVCompilation(bool Disabled = true) {
396    GVCompilationDisabled = Disabled;
397  }
398  bool isGVCompilationDisabled() const {
399    return GVCompilationDisabled;
400  }
401
402  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
403  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
404  /// resolve symbols in a custom way.
405  void DisableSymbolSearching(bool Disabled = true) {
406    SymbolSearchingDisabled = Disabled;
407  }
408  bool isSymbolSearchingDisabled() const {
409    return SymbolSearchingDisabled;
410  }
411
412  /// InstallLazyFunctionCreator - If an unknown function is needed, the
413  /// specified function pointer is invoked to create it.  If it returns null,
414  /// the JIT will abort.
415  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
416    LazyFunctionCreator = P;
417  }
418
419  /// InstallExceptionTableRegister - The JIT will use the given function
420  /// to register the exception tables it generates.
421  void InstallExceptionTableRegister(EERegisterFn F) {
422    ExceptionTableRegister = F;
423  }
424  void InstallExceptionTableDeregister(EERegisterFn F) {
425    ExceptionTableDeregister = F;
426  }
427
428  /// RegisterTable - Registers the given pointer as an exception table.  It
429  /// uses the ExceptionTableRegister function.
430  void RegisterTable(const Function *fn, void* res) {
431    if (ExceptionTableRegister) {
432      ExceptionTableRegister(res);
433      AllExceptionTables[fn] = res;
434    }
435  }
436
437  /// DeregisterTable - Deregisters the exception frame previously registered
438  /// for the given function.
439  void DeregisterTable(const Function *Fn) {
440    if (ExceptionTableDeregister) {
441      DenseMap<const Function*, void*>::iterator frame =
442        AllExceptionTables.find(Fn);
443      if(frame != AllExceptionTables.end()) {
444        ExceptionTableDeregister(frame->second);
445        AllExceptionTables.erase(frame);
446      }
447    }
448  }
449
450  /// DeregisterAllTables - Deregisters all previously registered pointers to an
451  /// exception tables.  It uses the ExceptionTableoDeregister function.
452  void DeregisterAllTables();
453
454protected:
455  explicit ExecutionEngine(Module *M);
456
457  void emitGlobals();
458
459  void EmitGlobalVariable(const GlobalVariable *GV);
460
461  GenericValue getConstantValue(const Constant *C);
462  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
463                           Type *Ty);
464};
465
466namespace EngineKind {
467  // These are actually bitmasks that get or-ed together.
468  enum Kind {
469    JIT         = 0x1,
470    Interpreter = 0x2
471  };
472  const static Kind Either = (Kind)(JIT | Interpreter);
473}
474
475/// EngineBuilder - Builder class for ExecutionEngines.  Use this by
476/// stack-allocating a builder, chaining the various set* methods, and
477/// terminating it with a .create() call.
478class EngineBuilder {
479private:
480  Module *M;
481  EngineKind::Kind WhichEngine;
482  std::string *ErrorStr;
483  CodeGenOpt::Level OptLevel;
484  JITMemoryManager *JMM;
485  bool AllocateGVsWithCode;
486  TargetOptions Options;
487  Reloc::Model RelocModel;
488  CodeModel::Model CMModel;
489  std::string MArch;
490  std::string MCPU;
491  SmallVector<std::string, 4> MAttrs;
492  bool UseMCJIT;
493
494  /// InitEngine - Does the common initialization of default options.
495  void InitEngine() {
496    WhichEngine = EngineKind::Either;
497    ErrorStr = NULL;
498    OptLevel = CodeGenOpt::Default;
499    JMM = NULL;
500    Options = TargetOptions();
501    AllocateGVsWithCode = false;
502    RelocModel = Reloc::Default;
503    CMModel = CodeModel::JITDefault;
504    UseMCJIT = false;
505  }
506
507public:
508  /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
509  /// is successful, the created engine takes ownership of the module.
510  EngineBuilder(Module *m) : M(m) {
511    InitEngine();
512  }
513
514  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
515  /// or whichever engine works.  This option defaults to EngineKind::Either.
516  EngineBuilder &setEngineKind(EngineKind::Kind w) {
517    WhichEngine = w;
518    return *this;
519  }
520
521  /// setJITMemoryManager - Sets the memory manager to use.  This allows
522  /// clients to customize their memory allocation policies.  If create() is
523  /// called and is successful, the created engine takes ownership of the
524  /// memory manager.  This option defaults to NULL.
525  EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
526    JMM = jmm;
527    return *this;
528  }
529
530  /// setErrorStr - Set the error string to write to on error.  This option
531  /// defaults to NULL.
532  EngineBuilder &setErrorStr(std::string *e) {
533    ErrorStr = e;
534    return *this;
535  }
536
537  /// setOptLevel - Set the optimization level for the JIT.  This option
538  /// defaults to CodeGenOpt::Default.
539  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
540    OptLevel = l;
541    return *this;
542  }
543
544  /// setTargetOptions - Set the target options that the ExecutionEngine
545  /// target is using. Defaults to TargetOptions().
546  EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
547    Options = Opts;
548    return *this;
549  }
550
551  /// setRelocationModel - Set the relocation model that the ExecutionEngine
552  /// target is using. Defaults to target specific default "Reloc::Default".
553  EngineBuilder &setRelocationModel(Reloc::Model RM) {
554    RelocModel = RM;
555    return *this;
556  }
557
558  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
559  /// data is using. Defaults to target specific default
560  /// "CodeModel::JITDefault".
561  EngineBuilder &setCodeModel(CodeModel::Model M) {
562    CMModel = M;
563    return *this;
564  }
565
566  /// setAllocateGVsWithCode - Sets whether global values should be allocated
567  /// into the same buffer as code.  For most applications this should be set
568  /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
569  /// and is probably unsafe and bad for performance.  However, we have clients
570  /// who depend on this behavior, so we must support it.  This option defaults
571  /// to false so that users of the new API can safely use the new memory
572  /// manager and free machine code.
573  EngineBuilder &setAllocateGVsWithCode(bool a) {
574    AllocateGVsWithCode = a;
575    return *this;
576  }
577
578  /// setMArch - Override the architecture set by the Module's triple.
579  EngineBuilder &setMArch(StringRef march) {
580    MArch.assign(march.begin(), march.end());
581    return *this;
582  }
583
584  /// setMCPU - Target a specific cpu type.
585  EngineBuilder &setMCPU(StringRef mcpu) {
586    MCPU.assign(mcpu.begin(), mcpu.end());
587    return *this;
588  }
589
590  /// setUseMCJIT - Set whether the MC-JIT implementation should be used
591  /// (experimental).
592  EngineBuilder &setUseMCJIT(bool Value) {
593    UseMCJIT = Value;
594    return *this;
595  }
596
597  /// setMAttrs - Set cpu-specific attributes.
598  template<typename StringSequence>
599  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
600    MAttrs.clear();
601    MAttrs.append(mattrs.begin(), mattrs.end());
602    return *this;
603  }
604
605  TargetMachine *selectTarget();
606
607  /// selectTarget - Pick a target either via -march or by guessing the native
608  /// arch.  Add any CPU features specified via -mcpu or -mattr.
609  TargetMachine *selectTarget(const Triple &TargetTriple,
610                              StringRef MArch,
611                              StringRef MCPU,
612                              const SmallVectorImpl<std::string>& MAttrs);
613
614  ExecutionEngine *create() {
615    return create(selectTarget());
616  }
617
618  ExecutionEngine *create(TargetMachine *TM);
619};
620
621} // End llvm namespace
622
623#endif
624