HashTable.h revision 353358
1//===- HashTable.h - PDB Hash Table -----------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
10#define LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
11
12#include "llvm/ADT/SparseBitVector.h"
13#include "llvm/ADT/iterator.h"
14#include "llvm/DebugInfo/PDB/Native/RawError.h"
15#include "llvm/Support/BinaryStreamReader.h"
16#include "llvm/Support/BinaryStreamWriter.h"
17#include "llvm/Support/Endian.h"
18#include "llvm/Support/Error.h"
19#include <cstdint>
20#include <iterator>
21#include <utility>
22#include <vector>
23
24namespace llvm {
25
26class BinaryStreamReader;
27class BinaryStreamWriter;
28
29namespace pdb {
30
31Error readSparseBitVector(BinaryStreamReader &Stream, SparseBitVector<> &V);
32Error writeSparseBitVector(BinaryStreamWriter &Writer, SparseBitVector<> &Vec);
33
34template <typename ValueT> class HashTable;
35
36template <typename ValueT>
37class HashTableIterator
38    : public iterator_facade_base<HashTableIterator<ValueT>,
39                                  std::forward_iterator_tag,
40                                  const std::pair<uint32_t, ValueT>> {
41  friend HashTable<ValueT>;
42
43  HashTableIterator(const HashTable<ValueT> &Map, uint32_t Index,
44                    bool IsEnd)
45      : Map(&Map), Index(Index), IsEnd(IsEnd) {}
46
47public:
48  HashTableIterator(const HashTable<ValueT> &Map) : Map(&Map) {
49    int I = Map.Present.find_first();
50    if (I == -1) {
51      Index = 0;
52      IsEnd = true;
53    } else {
54      Index = static_cast<uint32_t>(I);
55      IsEnd = false;
56    }
57  }
58
59  HashTableIterator &operator=(const HashTableIterator &R) {
60    Map = R.Map;
61    return *this;
62  }
63  bool operator==(const HashTableIterator &R) const {
64    if (IsEnd && R.IsEnd)
65      return true;
66    if (IsEnd != R.IsEnd)
67      return false;
68
69    return (Map == R.Map) && (Index == R.Index);
70  }
71  const std::pair<uint32_t, ValueT> &operator*() const {
72    assert(Map->Present.test(Index));
73    return Map->Buckets[Index];
74  }
75
76  // Implement postfix op++ in terms of prefix op++ by using the superclass
77  // implementation.
78  using iterator_facade_base<HashTableIterator<ValueT>,
79                             std::forward_iterator_tag,
80                             const std::pair<uint32_t, ValueT>>::operator++;
81  HashTableIterator &operator++() {
82    while (Index < Map->Buckets.size()) {
83      ++Index;
84      if (Map->Present.test(Index))
85        return *this;
86    }
87
88    IsEnd = true;
89    return *this;
90  }
91
92private:
93  bool isEnd() const { return IsEnd; }
94  uint32_t index() const { return Index; }
95
96  const HashTable<ValueT> *Map;
97  uint32_t Index;
98  bool IsEnd;
99};
100
101template <typename ValueT>
102class HashTable {
103  struct Header {
104    support::ulittle32_t Size;
105    support::ulittle32_t Capacity;
106  };
107
108  using BucketList = std::vector<std::pair<uint32_t, ValueT>>;
109
110public:
111  using const_iterator = HashTableIterator<ValueT>;
112  friend const_iterator;
113
114  HashTable() { Buckets.resize(8); }
115  explicit HashTable(uint32_t Capacity) {
116    Buckets.resize(Capacity);
117  }
118
119  Error load(BinaryStreamReader &Stream) {
120    const Header *H;
121    if (auto EC = Stream.readObject(H))
122      return EC;
123    if (H->Capacity == 0)
124      return make_error<RawError>(raw_error_code::corrupt_file,
125                                  "Invalid Hash Table Capacity");
126    if (H->Size > maxLoad(H->Capacity))
127      return make_error<RawError>(raw_error_code::corrupt_file,
128                                  "Invalid Hash Table Size");
129
130    Buckets.resize(H->Capacity);
131
132    if (auto EC = readSparseBitVector(Stream, Present))
133      return EC;
134    if (Present.count() != H->Size)
135      return make_error<RawError>(raw_error_code::corrupt_file,
136                                  "Present bit vector does not match size!");
137
138    if (auto EC = readSparseBitVector(Stream, Deleted))
139      return EC;
140    if (Present.intersects(Deleted))
141      return make_error<RawError>(raw_error_code::corrupt_file,
142                                  "Present bit vector intersects deleted!");
143
144    for (uint32_t P : Present) {
145      if (auto EC = Stream.readInteger(Buckets[P].first))
146        return EC;
147      const ValueT *Value;
148      if (auto EC = Stream.readObject(Value))
149        return EC;
150      Buckets[P].second = *Value;
151    }
152
153    return Error::success();
154  }
155
156  uint32_t calculateSerializedLength() const {
157    uint32_t Size = sizeof(Header);
158
159    constexpr int BitsPerWord = 8 * sizeof(uint32_t);
160
161    int NumBitsP = Present.find_last() + 1;
162    int NumBitsD = Deleted.find_last() + 1;
163
164    uint32_t NumWordsP = alignTo(NumBitsP, BitsPerWord) / BitsPerWord;
165    uint32_t NumWordsD = alignTo(NumBitsD, BitsPerWord) / BitsPerWord;
166
167    // Present bit set number of words (4 bytes), followed by that many actual
168    // words (4 bytes each).
169    Size += sizeof(uint32_t);
170    Size += NumWordsP * sizeof(uint32_t);
171
172    // Deleted bit set number of words (4 bytes), followed by that many actual
173    // words (4 bytes each).
174    Size += sizeof(uint32_t);
175    Size += NumWordsD * sizeof(uint32_t);
176
177    // One (Key, ValueT) pair for each entry Present.
178    Size += (sizeof(uint32_t) + sizeof(ValueT)) * size();
179
180    return Size;
181  }
182
183  Error commit(BinaryStreamWriter &Writer) const {
184    Header H;
185    H.Size = size();
186    H.Capacity = capacity();
187    if (auto EC = Writer.writeObject(H))
188      return EC;
189
190    if (auto EC = writeSparseBitVector(Writer, Present))
191      return EC;
192
193    if (auto EC = writeSparseBitVector(Writer, Deleted))
194      return EC;
195
196    for (const auto &Entry : *this) {
197      if (auto EC = Writer.writeInteger(Entry.first))
198        return EC;
199      if (auto EC = Writer.writeObject(Entry.second))
200        return EC;
201    }
202    return Error::success();
203  }
204
205  void clear() {
206    Buckets.resize(8);
207    Present.clear();
208    Deleted.clear();
209  }
210
211  bool empty() const { return size() == 0; }
212  uint32_t capacity() const { return Buckets.size(); }
213  uint32_t size() const { return Present.count(); }
214
215  const_iterator begin() const { return const_iterator(*this); }
216  const_iterator end() const { return const_iterator(*this, 0, true); }
217
218  /// Find the entry whose key has the specified hash value, using the specified
219  /// traits defining hash function and equality.
220  template <typename Key, typename TraitsT>
221  const_iterator find_as(const Key &K, TraitsT &Traits) const {
222    uint32_t H = Traits.hashLookupKey(K) % capacity();
223    uint32_t I = H;
224    Optional<uint32_t> FirstUnused;
225    do {
226      if (isPresent(I)) {
227        if (Traits.storageKeyToLookupKey(Buckets[I].first) == K)
228          return const_iterator(*this, I, false);
229      } else {
230        if (!FirstUnused)
231          FirstUnused = I;
232        // Insertion occurs via linear probing from the slot hint, and will be
233        // inserted at the first empty / deleted location.  Therefore, if we are
234        // probing and find a location that is neither present nor deleted, then
235        // nothing must have EVER been inserted at this location, and thus it is
236        // not possible for a matching value to occur later.
237        if (!isDeleted(I))
238          break;
239      }
240      I = (I + 1) % capacity();
241    } while (I != H);
242
243    // The only way FirstUnused would not be set is if every single entry in the
244    // table were Present.  But this would violate the load factor constraints
245    // that we impose, so it should never happen.
246    assert(FirstUnused);
247    return const_iterator(*this, *FirstUnused, true);
248  }
249
250  /// Set the entry using a key type that the specified Traits can convert
251  /// from a real key to an internal key.
252  template <typename Key, typename TraitsT>
253  bool set_as(const Key &K, ValueT V, TraitsT &Traits) {
254    return set_as_internal(K, std::move(V), Traits, None);
255  }
256
257  template <typename Key, typename TraitsT>
258  ValueT get(const Key &K, TraitsT &Traits) const {
259    auto Iter = find_as(K, Traits);
260    assert(Iter != end());
261    return (*Iter).second;
262  }
263
264protected:
265  bool isPresent(uint32_t K) const { return Present.test(K); }
266  bool isDeleted(uint32_t K) const { return Deleted.test(K); }
267
268  BucketList Buckets;
269  mutable SparseBitVector<> Present;
270  mutable SparseBitVector<> Deleted;
271
272private:
273  /// Set the entry using a key type that the specified Traits can convert
274  /// from a real key to an internal key.
275  template <typename Key, typename TraitsT>
276  bool set_as_internal(const Key &K, ValueT V, TraitsT &Traits,
277                       Optional<uint32_t> InternalKey) {
278    auto Entry = find_as(K, Traits);
279    if (Entry != end()) {
280      assert(isPresent(Entry.index()));
281      assert(Traits.storageKeyToLookupKey(Buckets[Entry.index()].first) == K);
282      // We're updating, no need to do anything special.
283      Buckets[Entry.index()].second = V;
284      return false;
285    }
286
287    auto &B = Buckets[Entry.index()];
288    assert(!isPresent(Entry.index()));
289    assert(Entry.isEnd());
290    B.first = InternalKey ? *InternalKey : Traits.lookupKeyToStorageKey(K);
291    B.second = V;
292    Present.set(Entry.index());
293    Deleted.reset(Entry.index());
294
295    grow(Traits);
296
297    assert((find_as(K, Traits)) != end());
298    return true;
299  }
300
301  static uint32_t maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }
302
303  template <typename TraitsT>
304  void grow(TraitsT &Traits) {
305    uint32_t S = size();
306    uint32_t MaxLoad = maxLoad(capacity());
307    if (S < maxLoad(capacity()))
308      return;
309    assert(capacity() != UINT32_MAX && "Can't grow Hash table!");
310
311    uint32_t NewCapacity = (capacity() <= INT32_MAX) ? MaxLoad * 2 : UINT32_MAX;
312
313    // Growing requires rebuilding the table and re-hashing every item.  Make a
314    // copy with a larger capacity, insert everything into the copy, then swap
315    // it in.
316    HashTable NewMap(NewCapacity);
317    for (auto I : Present) {
318      auto LookupKey = Traits.storageKeyToLookupKey(Buckets[I].first);
319      NewMap.set_as_internal(LookupKey, Buckets[I].second, Traits,
320                             Buckets[I].first);
321    }
322
323    Buckets.swap(NewMap.Buckets);
324    std::swap(Present, NewMap.Present);
325    std::swap(Deleted, NewMap.Deleted);
326    assert(capacity() == NewCapacity);
327    assert(size() == S);
328  }
329};
330
331} // end namespace pdb
332
333} // end namespace llvm
334
335#endif // LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H
336