RDFGraph.h revision 363496
1//===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Target-independent, SSA-based data flow graph for register data flow (RDF)
10// for a non-SSA program representation (e.g. post-RA machine code).
11//
12//
13// *** Introduction
14//
15// The RDF graph is a collection of nodes, each of which denotes some element
16// of the program. There are two main types of such elements: code and refe-
17// rences. Conceptually, "code" is something that represents the structure
18// of the program, e.g. basic block or a statement, while "reference" is an
19// instance of accessing a register, e.g. a definition or a use. Nodes are
20// connected with each other based on the structure of the program (such as
21// blocks, instructions, etc.), and based on the data flow (e.g. reaching
22// definitions, reached uses, etc.). The single-reaching-definition principle
23// of SSA is generally observed, although, due to the non-SSA representation
24// of the program, there are some differences between the graph and a "pure"
25// SSA representation.
26//
27//
28// *** Implementation remarks
29//
30// Since the graph can contain a large number of nodes, memory consumption
31// was one of the major design considerations. As a result, there is a single
32// base class NodeBase which defines all members used by all possible derived
33// classes. The members are arranged in a union, and a derived class cannot
34// add any data members of its own. Each derived class only defines the
35// functional interface, i.e. member functions. NodeBase must be a POD,
36// which implies that all of its members must also be PODs.
37// Since nodes need to be connected with other nodes, pointers have been
38// replaced with 32-bit identifiers: each node has an id of type NodeId.
39// There are mapping functions in the graph that translate between actual
40// memory addresses and the corresponding identifiers.
41// A node id of 0 is equivalent to nullptr.
42//
43//
44// *** Structure of the graph
45//
46// A code node is always a collection of other nodes. For example, a code
47// node corresponding to a basic block will contain code nodes corresponding
48// to instructions. In turn, a code node corresponding to an instruction will
49// contain a list of reference nodes that correspond to the definitions and
50// uses of registers in that instruction. The members are arranged into a
51// circular list, which is yet another consequence of the effort to save
52// memory: for each member node it should be possible to obtain its owner,
53// and it should be possible to access all other members. There are other
54// ways to accomplish that, but the circular list seemed the most natural.
55//
56// +- CodeNode -+
57// |            | <---------------------------------------------------+
58// +-+--------+-+                                                     |
59//   |FirstM  |LastM                                                  |
60//   |        +-------------------------------------+                 |
61//   |                                              |                 |
62//   V                                              V                 |
63//  +----------+ Next +----------+ Next       Next +----------+ Next  |
64//  |          |----->|          |-----> ... ----->|          |----->-+
65//  +- Member -+      +- Member -+                 +- Member -+
66//
67// The order of members is such that related reference nodes (see below)
68// should be contiguous on the member list.
69//
70// A reference node is a node that encapsulates an access to a register,
71// in other words, data flowing into or out of a register. There are two
72// major kinds of reference nodes: defs and uses. A def node will contain
73// the id of the first reached use, and the id of the first reached def.
74// Each def and use will contain the id of the reaching def, and also the
75// id of the next reached def (for def nodes) or use (for use nodes).
76// The "next node sharing the same reaching def" is denoted as "sibling".
77// In summary:
78// - Def node contains: reaching def, sibling, first reached def, and first
79// reached use.
80// - Use node contains: reaching def and sibling.
81//
82// +-- DefNode --+
83// | R2 = ...    | <---+--------------------+
84// ++---------+--+     |                    |
85//  |Reached  |Reached |                    |
86//  |Def      |Use     |                    |
87//  |         |        |Reaching            |Reaching
88//  |         V        |Def                 |Def
89//  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
90//  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
91//  |      +-------------+      +-------------+
92//  V
93// +-- DefNode --+ Sib
94// | R2 = ...    |----> ...
95// ++---------+--+
96//  |         |
97//  |         |
98// ...       ...
99//
100// To get a full picture, the circular lists connecting blocks within a
101// function, instructions within a block, etc. should be superimposed with
102// the def-def, def-use links shown above.
103// To illustrate this, consider a small example in a pseudo-assembly:
104// foo:
105//   add r2, r0, r1   ; r2 = r0+r1
106//   addi r0, r2, 1   ; r0 = r2+1
107//   ret r0           ; return value in r0
108//
109// The graph (in a format used by the debugging functions) would look like:
110//
111//   DFG dump:[
112//   f1: Function foo
113//   b2: === %bb.0 === preds(0), succs(0):
114//   p3: phi [d4<r0>(,d12,u9):]
115//   p5: phi [d6<r1>(,,u10):]
116//   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117//   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118//   s14: ret [u15<r0>(d12):]
119//   ]
120//
121// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123// ment, d - def, u - use).
124// The format of a def node is:
125//   dN<R>(rd,d,u):sib,
126// where
127//   N   - numeric node id,
128//   R   - register being defined
129//   rd  - reaching def,
130//   d   - reached def,
131//   u   - reached use,
132//   sib - sibling.
133// The format of a use node is:
134//   uN<R>[!](rd):sib,
135// where
136//   N   - numeric node id,
137//   R   - register being used,
138//   rd  - reaching def,
139//   sib - sibling.
140// Possible annotations (usually preceding the node id):
141//   +   - preserving def,
142//   ~   - clobbering def,
143//   "   - shadow ref (follows the node id),
144//   !   - fixed register (appears after register name).
145//
146// The circular lists are not explicit in the dump.
147//
148//
149// *** Node attributes
150//
151// NodeBase has a member "Attrs", which is the primary way of determining
152// the node's characteristics. The fields in this member decide whether
153// the node is a code node or a reference node (i.e. node's "type"), then
154// within each type, the "kind" determines what specifically this node
155// represents. The remaining bits, "flags", contain additional information
156// that is even more detailed than the "kind".
157// CodeNode's kinds are:
158// - Phi:   Phi node, members are reference nodes.
159// - Stmt:  Statement, members are reference nodes.
160// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161// - Func:  The whole function. The members are basic block nodes.
162// RefNode's kinds are:
163// - Use.
164// - Def.
165//
166// Meaning of flags:
167// - Preserving: applies only to defs. A preserving def is one that can
168//   preserve some of the original bits among those that are included in
169//   the register associated with that def. For example, if R0 is a 32-bit
170//   register, but a def can only change the lower 16 bits, then it will
171//   be marked as preserving.
172// - Shadow: a reference that has duplicates holding additional reaching
173//   defs (see more below).
174// - Clobbering: applied only to defs, indicates that the value generated
175//   by this def is unspecified. A typical example would be volatile registers
176//   after function calls.
177// - Fixed: the register in this def/use cannot be replaced with any other
178//   register. A typical case would be a parameter register to a call, or
179//   the register with the return value from a function.
180// - Undef: the register in this reference the register is assumed to have
181//   no pre-existing value, even if it appears to be reached by some def.
182//   This is typically used to prevent keeping registers artificially live
183//   in cases when they are defined via predicated instructions. For example:
184//     r0 = add-if-true cond, r10, r11                (1)
185//     r0 = add-if-false cond, r12, r13, implicit r0  (2)
186//     ... = r0                                       (3)
187//   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188//   not meant to be reached by any def preceding (1). However, since the
189//   defs in (1) and (2) are both preserving, these properties alone would
190//   imply that the use in (3) may indeed be reached by some prior def.
191//   Adding Undef flag to the def in (1) prevents that. The Undef flag
192//   may be applied to both defs and uses.
193// - Dead: applies only to defs. The value coming out of a "dead" def is
194//   assumed to be unused, even if the def appears to be reaching other defs
195//   or uses. The motivation for this flag comes from dead defs on function
196//   calls: there is no way to determine if such a def is dead without
197//   analyzing the target's ABI. Hence the graph should contain this info,
198//   as it is unavailable otherwise. On the other hand, a def without any
199//   uses on a typical instruction is not the intended target for this flag.
200//
201// *** Shadow references
202//
203// It may happen that a super-register can have two (or more) non-overlapping
204// sub-registers. When both of these sub-registers are defined and followed
205// by a use of the super-register, the use of the super-register will not
206// have a unique reaching def: both defs of the sub-registers need to be
207// accounted for. In such cases, a duplicate use of the super-register is
208// added and it points to the extra reaching def. Both uses are marked with
209// a flag "shadow". Example:
210// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211//   set r0, 1        ; r0 = 1
212//   set r1, 1        ; r1 = 1
213//   addi t1, t0, 1   ; t1 = t0+1
214//
215// The DFG:
216//   s1: set [d2<r0>(,,u9):]
217//   s3: set [d4<r1>(,,u10):]
218//   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
219//
220// The statement s5 has two use nodes for t0: u7" and u9". The quotation
221// mark " indicates that the node is a shadow.
222//
223
224#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
225#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
226
227#include "RDFRegisters.h"
228#include "llvm/ADT/SmallVector.h"
229#include "llvm/MC/LaneBitmask.h"
230#include "llvm/Support/Allocator.h"
231#include "llvm/Support/MathExtras.h"
232#include <cassert>
233#include <cstdint>
234#include <cstring>
235#include <map>
236#include <set>
237#include <unordered_map>
238#include <utility>
239#include <vector>
240
241// RDF uses uint32_t to refer to registers. This is to ensure that the type
242// size remains specific. In other places, registers are often stored using
243// unsigned.
244static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
245
246namespace llvm {
247
248class MachineBasicBlock;
249class MachineDominanceFrontier;
250class MachineDominatorTree;
251class MachineFunction;
252class MachineInstr;
253class MachineOperand;
254class raw_ostream;
255class TargetInstrInfo;
256class TargetRegisterInfo;
257
258namespace rdf {
259
260  using NodeId = uint32_t;
261
262  struct DataFlowGraph;
263
264  struct NodeAttrs {
265    enum : uint16_t {
266      None          = 0x0000,   // Nothing
267
268      // Types: 2 bits
269      TypeMask      = 0x0003,
270      Code          = 0x0001,   // 01, Container
271      Ref           = 0x0002,   // 10, Reference
272
273      // Kind: 3 bits
274      KindMask      = 0x0007 << 2,
275      Def           = 0x0001 << 2,  // 001
276      Use           = 0x0002 << 2,  // 010
277      Phi           = 0x0003 << 2,  // 011
278      Stmt          = 0x0004 << 2,  // 100
279      Block         = 0x0005 << 2,  // 101
280      Func          = 0x0006 << 2,  // 110
281
282      // Flags: 7 bits for now
283      FlagMask      = 0x007F << 5,
284      Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
285      Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
286      PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
287      Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
288      Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
289      Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
290      Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
291    };
292
293    static uint16_t type(uint16_t T)  { return T & TypeMask; }
294    static uint16_t kind(uint16_t T)  { return T & KindMask; }
295    static uint16_t flags(uint16_t T) { return T & FlagMask; }
296
297    static uint16_t set_type(uint16_t A, uint16_t T) {
298      return (A & ~TypeMask) | T;
299    }
300
301    static uint16_t set_kind(uint16_t A, uint16_t K) {
302      return (A & ~KindMask) | K;
303    }
304
305    static uint16_t set_flags(uint16_t A, uint16_t F) {
306      return (A & ~FlagMask) | F;
307    }
308
309    // Test if A contains B.
310    static bool contains(uint16_t A, uint16_t B) {
311      if (type(A) != Code)
312        return false;
313      uint16_t KB = kind(B);
314      switch (kind(A)) {
315        case Func:
316          return KB == Block;
317        case Block:
318          return KB == Phi || KB == Stmt;
319        case Phi:
320        case Stmt:
321          return type(B) == Ref;
322      }
323      return false;
324    }
325  };
326
327  struct BuildOptions {
328    enum : unsigned {
329      None          = 0x00,
330      KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
331    };
332  };
333
334  template <typename T> struct NodeAddr {
335    NodeAddr() = default;
336    NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
337
338    // Type cast (casting constructor). The reason for having this class
339    // instead of std::pair.
340    template <typename S> NodeAddr(const NodeAddr<S> &NA)
341      : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
342
343    bool operator== (const NodeAddr<T> &NA) const {
344      assert((Addr == NA.Addr) == (Id == NA.Id));
345      return Addr == NA.Addr;
346    }
347    bool operator!= (const NodeAddr<T> &NA) const {
348      return !operator==(NA);
349    }
350
351    T Addr = nullptr;
352    NodeId Id = 0;
353  };
354
355  struct NodeBase;
356
357  // Fast memory allocation and translation between node id and node address.
358  // This is really the same idea as the one underlying the "bump pointer
359  // allocator", the difference being in the translation. A node id is
360  // composed of two components: the index of the block in which it was
361  // allocated, and the index within the block. With the default settings,
362  // where the number of nodes per block is 4096, the node id (minus 1) is:
363  //
364  // bit position:                11             0
365  // +----------------------------+--------------+
366  // | Index of the block         |Index in block|
367  // +----------------------------+--------------+
368  //
369  // The actual node id is the above plus 1, to avoid creating a node id of 0.
370  //
371  // This method significantly improved the build time, compared to using maps
372  // (std::unordered_map or DenseMap) to translate between pointers and ids.
373  struct NodeAllocator {
374    // Amount of storage for a single node.
375    enum { NodeMemSize = 32 };
376
377    NodeAllocator(uint32_t NPB = 4096)
378        : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
379          IndexMask((1 << BitsPerIndex)-1) {
380      assert(isPowerOf2_32(NPB));
381    }
382
383    NodeBase *ptr(NodeId N) const {
384      uint32_t N1 = N-1;
385      uint32_t BlockN = N1 >> BitsPerIndex;
386      uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
387      return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
388    }
389
390    NodeId id(const NodeBase *P) const;
391    NodeAddr<NodeBase*> New();
392    void clear();
393
394  private:
395    void startNewBlock();
396    bool needNewBlock();
397
398    uint32_t makeId(uint32_t Block, uint32_t Index) const {
399      // Add 1 to the id, to avoid the id of 0, which is treated as "null".
400      return ((Block << BitsPerIndex) | Index) + 1;
401    }
402
403    const uint32_t NodesPerBlock;
404    const uint32_t BitsPerIndex;
405    const uint32_t IndexMask;
406    char *ActiveEnd = nullptr;
407    std::vector<char*> Blocks;
408    using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
409    AllocatorTy MemPool;
410  };
411
412  using RegisterSet = std::set<RegisterRef>;
413
414  struct TargetOperandInfo {
415    TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
416    virtual ~TargetOperandInfo() = default;
417
418    virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
419    virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
420    virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
421
422    const TargetInstrInfo &TII;
423  };
424
425  // Packed register reference. Only used for storage.
426  struct PackedRegisterRef {
427    RegisterId Reg;
428    uint32_t MaskId;
429  };
430
431  struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
432    LaneMaskIndex() = default;
433
434    LaneBitmask getLaneMaskForIndex(uint32_t K) const {
435      return K == 0 ? LaneBitmask::getAll() : get(K);
436    }
437
438    uint32_t getIndexForLaneMask(LaneBitmask LM) {
439      assert(LM.any());
440      return LM.all() ? 0 : insert(LM);
441    }
442
443    uint32_t getIndexForLaneMask(LaneBitmask LM) const {
444      assert(LM.any());
445      return LM.all() ? 0 : find(LM);
446    }
447  };
448
449  struct NodeBase {
450  public:
451    // Make sure this is a POD.
452    NodeBase() = default;
453
454    uint16_t getType()  const { return NodeAttrs::type(Attrs); }
455    uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
456    uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
457    NodeId   getNext()  const { return Next; }
458
459    uint16_t getAttrs() const { return Attrs; }
460    void setAttrs(uint16_t A) { Attrs = A; }
461    void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
462
463    // Insert node NA after "this" in the circular chain.
464    void append(NodeAddr<NodeBase*> NA);
465
466    // Initialize all members to 0.
467    void init() { memset(this, 0, sizeof *this); }
468
469    void setNext(NodeId N) { Next = N; }
470
471  protected:
472    uint16_t Attrs;
473    uint16_t Reserved;
474    NodeId Next;                // Id of the next node in the circular chain.
475    // Definitions of nested types. Using anonymous nested structs would make
476    // this class definition clearer, but unnamed structs are not a part of
477    // the standard.
478    struct Def_struct  {
479      NodeId DD, DU;          // Ids of the first reached def and use.
480    };
481    struct PhiU_struct  {
482      NodeId PredB;           // Id of the predecessor block for a phi use.
483    };
484    struct Code_struct {
485      void *CP;               // Pointer to the actual code.
486      NodeId FirstM, LastM;   // Id of the first member and last.
487    };
488    struct Ref_struct {
489      NodeId RD, Sib;         // Ids of the reaching def and the sibling.
490      union {
491        Def_struct Def;
492        PhiU_struct PhiU;
493      };
494      union {
495        MachineOperand *Op;   // Non-phi refs point to a machine operand.
496        PackedRegisterRef PR; // Phi refs store register info directly.
497      };
498    };
499
500    // The actual payload.
501    union {
502      Ref_struct Ref;
503      Code_struct Code;
504    };
505  };
506  // The allocator allocates chunks of 32 bytes for each node. The fact that
507  // each node takes 32 bytes in memory is used for fast translation between
508  // the node id and the node address.
509  static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
510        "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
511
512  using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
513  using NodeSet = std::set<NodeId>;
514
515  struct RefNode : public NodeBase {
516    RefNode() = default;
517
518    RegisterRef getRegRef(const DataFlowGraph &G) const;
519
520    MachineOperand &getOp() {
521      assert(!(getFlags() & NodeAttrs::PhiRef));
522      return *Ref.Op;
523    }
524
525    void setRegRef(RegisterRef RR, DataFlowGraph &G);
526    void setRegRef(MachineOperand *Op, DataFlowGraph &G);
527
528    NodeId getReachingDef() const {
529      return Ref.RD;
530    }
531    void setReachingDef(NodeId RD) {
532      Ref.RD = RD;
533    }
534
535    NodeId getSibling() const {
536      return Ref.Sib;
537    }
538    void setSibling(NodeId Sib) {
539      Ref.Sib = Sib;
540    }
541
542    bool isUse() const {
543      assert(getType() == NodeAttrs::Ref);
544      return getKind() == NodeAttrs::Use;
545    }
546
547    bool isDef() const {
548      assert(getType() == NodeAttrs::Ref);
549      return getKind() == NodeAttrs::Def;
550    }
551
552    template <typename Predicate>
553    NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
554        const DataFlowGraph &G);
555    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
556  };
557
558  struct DefNode : public RefNode {
559    NodeId getReachedDef() const {
560      return Ref.Def.DD;
561    }
562    void setReachedDef(NodeId D) {
563      Ref.Def.DD = D;
564    }
565    NodeId getReachedUse() const {
566      return Ref.Def.DU;
567    }
568    void setReachedUse(NodeId U) {
569      Ref.Def.DU = U;
570    }
571
572    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
573  };
574
575  struct UseNode : public RefNode {
576    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
577  };
578
579  struct PhiUseNode : public UseNode {
580    NodeId getPredecessor() const {
581      assert(getFlags() & NodeAttrs::PhiRef);
582      return Ref.PhiU.PredB;
583    }
584    void setPredecessor(NodeId B) {
585      assert(getFlags() & NodeAttrs::PhiRef);
586      Ref.PhiU.PredB = B;
587    }
588  };
589
590  struct CodeNode : public NodeBase {
591    template <typename T> T getCode() const {
592      return static_cast<T>(Code.CP);
593    }
594    void setCode(void *C) {
595      Code.CP = C;
596    }
597
598    NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
599    NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
600    void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
601    void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
602        const DataFlowGraph &G);
603    void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
604
605    NodeList members(const DataFlowGraph &G) const;
606    template <typename Predicate>
607    NodeList members_if(Predicate P, const DataFlowGraph &G) const;
608  };
609
610  struct InstrNode : public CodeNode {
611    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
612  };
613
614  struct PhiNode : public InstrNode {
615    MachineInstr *getCode() const {
616      return nullptr;
617    }
618  };
619
620  struct StmtNode : public InstrNode {
621    MachineInstr *getCode() const {
622      return CodeNode::getCode<MachineInstr*>();
623    }
624  };
625
626  struct BlockNode : public CodeNode {
627    MachineBasicBlock *getCode() const {
628      return CodeNode::getCode<MachineBasicBlock*>();
629    }
630
631    void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
632  };
633
634  struct FuncNode : public CodeNode {
635    MachineFunction *getCode() const {
636      return CodeNode::getCode<MachineFunction*>();
637    }
638
639    NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
640        const DataFlowGraph &G) const;
641    NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
642  };
643
644  struct DataFlowGraph {
645    DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
646        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
647        const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
648
649    NodeBase *ptr(NodeId N) const;
650    template <typename T> T ptr(NodeId N) const {
651      return static_cast<T>(ptr(N));
652    }
653
654    NodeId id(const NodeBase *P) const;
655
656    template <typename T> NodeAddr<T> addr(NodeId N) const {
657      return { ptr<T>(N), N };
658    }
659
660    NodeAddr<FuncNode*> getFunc() const { return Func; }
661    MachineFunction &getMF() const { return MF; }
662    const TargetInstrInfo &getTII() const { return TII; }
663    const TargetRegisterInfo &getTRI() const { return TRI; }
664    const PhysicalRegisterInfo &getPRI() const { return PRI; }
665    const MachineDominatorTree &getDT() const { return MDT; }
666    const MachineDominanceFrontier &getDF() const { return MDF; }
667    const RegisterAggr &getLiveIns() const { return LiveIns; }
668
669    struct DefStack {
670      DefStack() = default;
671
672      bool empty() const { return Stack.empty() || top() == bottom(); }
673
674    private:
675      using value_type = NodeAddr<DefNode *>;
676      struct Iterator {
677        using value_type = DefStack::value_type;
678
679        Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
680        Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
681
682        value_type operator*() const {
683          assert(Pos >= 1);
684          return DS.Stack[Pos-1];
685        }
686        const value_type *operator->() const {
687          assert(Pos >= 1);
688          return &DS.Stack[Pos-1];
689        }
690        bool operator==(const Iterator &It) const { return Pos == It.Pos; }
691        bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
692
693      private:
694        friend struct DefStack;
695
696        Iterator(const DefStack &S, bool Top);
697
698        // Pos-1 is the index in the StorageType object that corresponds to
699        // the top of the DefStack.
700        const DefStack &DS;
701        unsigned Pos;
702      };
703
704    public:
705      using iterator = Iterator;
706
707      iterator top() const { return Iterator(*this, true); }
708      iterator bottom() const { return Iterator(*this, false); }
709      unsigned size() const;
710
711      void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
712      void pop();
713      void start_block(NodeId N);
714      void clear_block(NodeId N);
715
716    private:
717      friend struct Iterator;
718
719      using StorageType = std::vector<value_type>;
720
721      bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
722        return (P.Addr == nullptr) && (N == 0 || P.Id == N);
723      }
724
725      unsigned nextUp(unsigned P) const;
726      unsigned nextDown(unsigned P) const;
727
728      StorageType Stack;
729    };
730
731    // Make this std::unordered_map for speed of accessing elements.
732    // Map: Register (physical or virtual) -> DefStack
733    using DefStackMap = std::unordered_map<RegisterId, DefStack>;
734
735    void build(unsigned Options = BuildOptions::None);
736    void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
737    void markBlock(NodeId B, DefStackMap &DefM);
738    void releaseBlock(NodeId B, DefStackMap &DefM);
739
740    PackedRegisterRef pack(RegisterRef RR) {
741      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
742    }
743    PackedRegisterRef pack(RegisterRef RR) const {
744      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
745    }
746    RegisterRef unpack(PackedRegisterRef PR) const {
747      return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
748    }
749
750    RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
751    RegisterRef makeRegRef(const MachineOperand &Op) const;
752    RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
753
754    NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
755        NodeAddr<RefNode*> RA) const;
756    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
757        NodeAddr<RefNode*> RA, bool Create);
758    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
759        NodeAddr<RefNode*> RA) const;
760    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
761        NodeAddr<RefNode*> RA, bool Create);
762    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
763        NodeAddr<RefNode*> RA) const;
764
765    NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
766        NodeAddr<RefNode*> RA) const;
767
768    NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
769      return BlockNodes.at(BB);
770    }
771
772    void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
773      unlinkUseDF(UA);
774      if (RemoveFromOwner)
775        removeFromOwner(UA);
776    }
777
778    void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
779      unlinkDefDF(DA);
780      if (RemoveFromOwner)
781        removeFromOwner(DA);
782    }
783
784    // Some useful filters.
785    template <uint16_t Kind>
786    static bool IsRef(const NodeAddr<NodeBase*> BA) {
787      return BA.Addr->getType() == NodeAttrs::Ref &&
788             BA.Addr->getKind() == Kind;
789    }
790
791    template <uint16_t Kind>
792    static bool IsCode(const NodeAddr<NodeBase*> BA) {
793      return BA.Addr->getType() == NodeAttrs::Code &&
794             BA.Addr->getKind() == Kind;
795    }
796
797    static bool IsDef(const NodeAddr<NodeBase*> BA) {
798      return BA.Addr->getType() == NodeAttrs::Ref &&
799             BA.Addr->getKind() == NodeAttrs::Def;
800    }
801
802    static bool IsUse(const NodeAddr<NodeBase*> BA) {
803      return BA.Addr->getType() == NodeAttrs::Ref &&
804             BA.Addr->getKind() == NodeAttrs::Use;
805    }
806
807    static bool IsPhi(const NodeAddr<NodeBase*> BA) {
808      return BA.Addr->getType() == NodeAttrs::Code &&
809             BA.Addr->getKind() == NodeAttrs::Phi;
810    }
811
812    static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
813      uint16_t Flags = DA.Addr->getFlags();
814      return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
815    }
816
817  private:
818    void reset();
819
820    RegisterSet getLandingPadLiveIns() const;
821
822    NodeAddr<NodeBase*> newNode(uint16_t Attrs);
823    NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
824    NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
825        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
826    NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
827        RegisterRef RR, NodeAddr<BlockNode*> PredB,
828        uint16_t Flags = NodeAttrs::PhiRef);
829    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
830        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
831    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
832        RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
833    NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
834    NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
835        MachineInstr *MI);
836    NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
837        MachineBasicBlock *BB);
838    NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
839
840    template <typename Predicate>
841    std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
842    locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
843        Predicate P) const;
844
845    using BlockRefsMap = std::map<NodeId, RegisterSet>;
846
847    void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
848    void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
849    void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
850        NodeAddr<BlockNode*> BA);
851    void removeUnusedPhis();
852
853    void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
854    void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
855    template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
856        NodeAddr<T> TA, DefStack &DS);
857    template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
858        NodeAddr<StmtNode*> SA, Predicate P);
859    void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
860
861    void unlinkUseDF(NodeAddr<UseNode*> UA);
862    void unlinkDefDF(NodeAddr<DefNode*> DA);
863
864    void removeFromOwner(NodeAddr<RefNode*> RA) {
865      NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
866      IA.Addr->removeMember(RA, *this);
867    }
868
869    MachineFunction &MF;
870    const TargetInstrInfo &TII;
871    const TargetRegisterInfo &TRI;
872    const PhysicalRegisterInfo PRI;
873    const MachineDominatorTree &MDT;
874    const MachineDominanceFrontier &MDF;
875    const TargetOperandInfo &TOI;
876
877    RegisterAggr LiveIns;
878    NodeAddr<FuncNode*> Func;
879    NodeAllocator Memory;
880    // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*>
881    std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
882    // Lane mask map.
883    LaneMaskIndex LMI;
884  };  // struct DataFlowGraph
885
886  template <typename Predicate>
887  NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
888        bool NextOnly, const DataFlowGraph &G) {
889    // Get the "Next" reference in the circular list that references RR and
890    // satisfies predicate "Pred".
891    auto NA = G.addr<NodeBase*>(getNext());
892
893    while (NA.Addr != this) {
894      if (NA.Addr->getType() == NodeAttrs::Ref) {
895        NodeAddr<RefNode*> RA = NA;
896        if (RA.Addr->getRegRef(G) == RR && P(NA))
897          return NA;
898        if (NextOnly)
899          break;
900        NA = G.addr<NodeBase*>(NA.Addr->getNext());
901      } else {
902        // We've hit the beginning of the chain.
903        assert(NA.Addr->getType() == NodeAttrs::Code);
904        NodeAddr<CodeNode*> CA = NA;
905        NA = CA.Addr->getFirstMember(G);
906      }
907    }
908    // Return the equivalent of "nullptr" if such a node was not found.
909    return NodeAddr<RefNode*>();
910  }
911
912  template <typename Predicate>
913  NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
914    NodeList MM;
915    auto M = getFirstMember(G);
916    if (M.Id == 0)
917      return MM;
918
919    while (M.Addr != this) {
920      if (P(M))
921        MM.push_back(M);
922      M = G.addr<NodeBase*>(M.Addr->getNext());
923    }
924    return MM;
925  }
926
927  template <typename T>
928  struct Print {
929    Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
930
931    const T &Obj;
932    const DataFlowGraph &G;
933  };
934
935  template <typename T>
936  struct PrintNode : Print<NodeAddr<T>> {
937    PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
938      : Print<NodeAddr<T>>(x, g) {}
939  };
940
941  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
942  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
943  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
944  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
945  raw_ostream &operator<<(raw_ostream &OS,
946                          const Print<NodeAddr<PhiUseNode *>> &P);
947  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
948  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
949  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
950  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
951  raw_ostream &operator<<(raw_ostream &OS,
952                          const Print<NodeAddr<StmtNode *>> &P);
953  raw_ostream &operator<<(raw_ostream &OS,
954                          const Print<NodeAddr<InstrNode *>> &P);
955  raw_ostream &operator<<(raw_ostream &OS,
956                          const Print<NodeAddr<BlockNode *>> &P);
957  raw_ostream &operator<<(raw_ostream &OS,
958                          const Print<NodeAddr<FuncNode *>> &P);
959  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
960  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
961  raw_ostream &operator<<(raw_ostream &OS,
962                          const Print<DataFlowGraph::DefStack> &P);
963
964} // end namespace rdf
965
966} // end namespace llvm
967
968#endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
969