ReductionRules.h revision 288943
1//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Reduction Rules.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
15#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
16
17#include "Graph.h"
18#include "Math.h"
19#include "Solution.h"
20
21namespace llvm {
22namespace PBQP {
23
24  /// \brief Reduce a node of degree one.
25  ///
26  /// Propagate costs from the given node, which must be of degree one, to its
27  /// neighbor. Notify the problem domain.
28  template <typename GraphT>
29  void applyR1(GraphT &G, typename GraphT::NodeId NId) {
30    typedef typename GraphT::NodeId NodeId;
31    typedef typename GraphT::EdgeId EdgeId;
32    typedef typename GraphT::Vector Vector;
33    typedef typename GraphT::Matrix Matrix;
34    typedef typename GraphT::RawVector RawVector;
35
36    assert(G.getNodeDegree(NId) == 1 &&
37           "R1 applied to node with degree != 1.");
38
39    EdgeId EId = *G.adjEdgeIds(NId).begin();
40    NodeId MId = G.getEdgeOtherNodeId(EId, NId);
41
42    const Matrix &ECosts = G.getEdgeCosts(EId);
43    const Vector &XCosts = G.getNodeCosts(NId);
44    RawVector YCosts = G.getNodeCosts(MId);
45
46    // Duplicate a little to avoid transposing matrices.
47    if (NId == G.getEdgeNode1Id(EId)) {
48      for (unsigned j = 0; j < YCosts.getLength(); ++j) {
49        PBQPNum Min = ECosts[0][j] + XCosts[0];
50        for (unsigned i = 1; i < XCosts.getLength(); ++i) {
51          PBQPNum C = ECosts[i][j] + XCosts[i];
52          if (C < Min)
53            Min = C;
54        }
55        YCosts[j] += Min;
56      }
57    } else {
58      for (unsigned i = 0; i < YCosts.getLength(); ++i) {
59        PBQPNum Min = ECosts[i][0] + XCosts[0];
60        for (unsigned j = 1; j < XCosts.getLength(); ++j) {
61          PBQPNum C = ECosts[i][j] + XCosts[j];
62          if (C < Min)
63            Min = C;
64        }
65        YCosts[i] += Min;
66      }
67    }
68    G.setNodeCosts(MId, YCosts);
69    G.disconnectEdge(EId, MId);
70  }
71
72  template <typename GraphT>
73  void applyR2(GraphT &G, typename GraphT::NodeId NId) {
74    typedef typename GraphT::NodeId NodeId;
75    typedef typename GraphT::EdgeId EdgeId;
76    typedef typename GraphT::Vector Vector;
77    typedef typename GraphT::Matrix Matrix;
78    typedef typename GraphT::RawMatrix RawMatrix;
79
80    assert(G.getNodeDegree(NId) == 2 &&
81           "R2 applied to node with degree != 2.");
82
83    const Vector &XCosts = G.getNodeCosts(NId);
84
85    typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
86    EdgeId YXEId = *AEItr,
87           ZXEId = *(++AEItr);
88
89    NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
90           ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
91
92    bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
93         FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
94
95    const Matrix *YXECosts = FlipEdge1 ?
96      new Matrix(G.getEdgeCosts(YXEId).transpose()) :
97      &G.getEdgeCosts(YXEId);
98
99    const Matrix *ZXECosts = FlipEdge2 ?
100      new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
101      &G.getEdgeCosts(ZXEId);
102
103    unsigned XLen = XCosts.getLength(),
104      YLen = YXECosts->getRows(),
105      ZLen = ZXECosts->getRows();
106
107    RawMatrix Delta(YLen, ZLen);
108
109    for (unsigned i = 0; i < YLen; ++i) {
110      for (unsigned j = 0; j < ZLen; ++j) {
111        PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
112        for (unsigned k = 1; k < XLen; ++k) {
113          PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
114          if (C < Min) {
115            Min = C;
116          }
117        }
118        Delta[i][j] = Min;
119      }
120    }
121
122    if (FlipEdge1)
123      delete YXECosts;
124
125    if (FlipEdge2)
126      delete ZXECosts;
127
128    EdgeId YZEId = G.findEdge(YNId, ZNId);
129
130    if (YZEId == G.invalidEdgeId()) {
131      YZEId = G.addEdge(YNId, ZNId, Delta);
132    } else {
133      const Matrix &YZECosts = G.getEdgeCosts(YZEId);
134      if (YNId == G.getEdgeNode1Id(YZEId)) {
135        G.updateEdgeCosts(YZEId, Delta + YZECosts);
136      } else {
137        G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
138      }
139    }
140
141    G.disconnectEdge(YXEId, YNId);
142    G.disconnectEdge(ZXEId, ZNId);
143
144    // TODO: Try to normalize newly added/modified edge.
145  }
146
147#ifndef NDEBUG
148  // Does this Cost vector have any register options ?
149  template <typename VectorT>
150  bool hasRegisterOptions(const VectorT &V) {
151    unsigned VL = V.getLength();
152
153    // An empty or spill only cost vector does not provide any register option.
154    if (VL <= 1)
155      return false;
156
157    // If there are registers in the cost vector, but all of them have infinite
158    // costs, then ... there is no available register.
159    for (unsigned i = 1; i < VL; ++i)
160      if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
161        return true;
162
163    return false;
164  }
165#endif
166
167  // \brief Find a solution to a fully reduced graph by backpropagation.
168  //
169  // Given a graph and a reduction order, pop each node from the reduction
170  // order and greedily compute a minimum solution based on the node costs, and
171  // the dependent costs due to previously solved nodes.
172  //
173  // Note - This does not return the graph to its original (pre-reduction)
174  //        state: the existing solvers destructively alter the node and edge
175  //        costs. Given that, the backpropagate function doesn't attempt to
176  //        replace the edges either, but leaves the graph in its reduced
177  //        state.
178  template <typename GraphT, typename StackT>
179  Solution backpropagate(GraphT& G, StackT stack) {
180    typedef GraphBase::NodeId NodeId;
181    typedef typename GraphT::Matrix Matrix;
182    typedef typename GraphT::RawVector RawVector;
183
184    Solution s;
185
186    while (!stack.empty()) {
187      NodeId NId = stack.back();
188      stack.pop_back();
189
190      RawVector v = G.getNodeCosts(NId);
191
192#ifndef NDEBUG
193      // Although a conservatively allocatable node can be allocated to a register,
194      // spilling it may provide a lower cost solution. Assert here that spilling
195      // is done by choice, not because there were no register available.
196      if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
197        assert(hasRegisterOptions(v) && "A conservatively allocatable node "
198                                        "must have available register options");
199#endif
200
201      for (auto EId : G.adjEdgeIds(NId)) {
202        const Matrix& edgeCosts = G.getEdgeCosts(EId);
203        if (NId == G.getEdgeNode1Id(EId)) {
204          NodeId mId = G.getEdgeNode2Id(EId);
205          v += edgeCosts.getColAsVector(s.getSelection(mId));
206        } else {
207          NodeId mId = G.getEdgeNode1Id(EId);
208          v += edgeCosts.getRowAsVector(s.getSelection(mId));
209        }
210      }
211
212      s.setSelection(NId, v.minIndex());
213    }
214
215    return s;
216  }
217
218} // namespace PBQP
219} // namespace llvm
220
221#endif
222