MachineFrameInfo.h revision 360660
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The file defines the MachineFrameInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
15
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Support/DataTypes.h"
18#include <cassert>
19#include <vector>
20
21namespace llvm {
22class raw_ostream;
23class MachineFunction;
24class MachineBasicBlock;
25class BitVector;
26class AllocaInst;
27
28/// The CalleeSavedInfo class tracks the information need to locate where a
29/// callee saved register is in the current frame.
30/// Callee saved reg can also be saved to a different register rather than
31/// on the stack by setting DstReg instead of FrameIdx.
32class CalleeSavedInfo {
33  unsigned Reg;
34  union {
35    int FrameIdx;
36    unsigned DstReg;
37  };
38  /// Flag indicating whether the register is actually restored in the epilog.
39  /// In most cases, if a register is saved, it is also restored. There are
40  /// some situations, though, when this is not the case. For example, the
41  /// LR register on ARM is usually saved, but on exit from the function its
42  /// saved value may be loaded directly into PC. Since liveness tracking of
43  /// physical registers treats callee-saved registers are live outside of
44  /// the function, LR would be treated as live-on-exit, even though in these
45  /// scenarios it is not. This flag is added to indicate that the saved
46  /// register described by this object is not restored in the epilog.
47  /// The long-term solution is to model the liveness of callee-saved registers
48  /// by implicit uses on the return instructions, however, the required
49  /// changes in the ARM backend would be quite extensive.
50  bool Restored;
51  /// Flag indicating whether the register is spilled to stack or another
52  /// register.
53  bool SpilledToReg;
54
55public:
56  explicit CalleeSavedInfo(unsigned R, int FI = 0)
57  : Reg(R), FrameIdx(FI), Restored(true), SpilledToReg(false) {}
58
59  // Accessors.
60  unsigned getReg()                        const { return Reg; }
61  int getFrameIdx()                        const { return FrameIdx; }
62  unsigned getDstReg()                     const { return DstReg; }
63  void setFrameIdx(int FI) {
64    FrameIdx = FI;
65    SpilledToReg = false;
66  }
67  void setDstReg(unsigned SpillReg) {
68    DstReg = SpillReg;
69    SpilledToReg = true;
70  }
71  bool isRestored()                        const { return Restored; }
72  void setRestored(bool R)                       { Restored = R; }
73  bool isSpilledToReg()                    const { return SpilledToReg; }
74};
75
76/// The MachineFrameInfo class represents an abstract stack frame until
77/// prolog/epilog code is inserted.  This class is key to allowing stack frame
78/// representation optimizations, such as frame pointer elimination.  It also
79/// allows more mundane (but still important) optimizations, such as reordering
80/// of abstract objects on the stack frame.
81///
82/// To support this, the class assigns unique integer identifiers to stack
83/// objects requested clients.  These identifiers are negative integers for
84/// fixed stack objects (such as arguments passed on the stack) or nonnegative
85/// for objects that may be reordered.  Instructions which refer to stack
86/// objects use a special MO_FrameIndex operand to represent these frame
87/// indexes.
88///
89/// Because this class keeps track of all references to the stack frame, it
90/// knows when a variable sized object is allocated on the stack.  This is the
91/// sole condition which prevents frame pointer elimination, which is an
92/// important optimization on register-poor architectures.  Because original
93/// variable sized alloca's in the source program are the only source of
94/// variable sized stack objects, it is safe to decide whether there will be
95/// any variable sized objects before all stack objects are known (for
96/// example, register allocator spill code never needs variable sized
97/// objects).
98///
99/// When prolog/epilog code emission is performed, the final stack frame is
100/// built and the machine instructions are modified to refer to the actual
101/// stack offsets of the object, eliminating all MO_FrameIndex operands from
102/// the program.
103///
104/// Abstract Stack Frame Information
105class MachineFrameInfo {
106public:
107  /// Stack Smashing Protection (SSP) rules require that vulnerable stack
108  /// allocations are located close the stack protector.
109  enum SSPLayoutKind {
110    SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
111                      ///< layout.
112    SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
113                      ///< to the stack protector.
114    SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
115                      ///< to the stack protector.
116    SSPLK_AddrOf      ///< The address of this allocation is exposed and
117                      ///< triggered protection.  3rd closest to the protector.
118  };
119
120private:
121  // Represent a single object allocated on the stack.
122  struct StackObject {
123    // The offset of this object from the stack pointer on entry to
124    // the function.  This field has no meaning for a variable sized element.
125    int64_t SPOffset;
126
127    // The size of this object on the stack. 0 means a variable sized object,
128    // ~0ULL means a dead object.
129    uint64_t Size;
130
131    // The required alignment of this stack slot.
132    unsigned Alignment;
133
134    // If true, the value of the stack object is set before
135    // entering the function and is not modified inside the function. By
136    // default, fixed objects are immutable unless marked otherwise.
137    bool isImmutable;
138
139    // If true the stack object is used as spill slot. It
140    // cannot alias any other memory objects.
141    bool isSpillSlot;
142
143    /// If true, this stack slot is used to spill a value (could be deopt
144    /// and/or GC related) over a statepoint. We know that the address of the
145    /// slot can't alias any LLVM IR value.  This is very similar to a Spill
146    /// Slot, but is created by statepoint lowering is SelectionDAG, not the
147    /// register allocator.
148    bool isStatepointSpillSlot = false;
149
150    /// Identifier for stack memory type analagous to address space. If this is
151    /// non-0, the meaning is target defined. Offsets cannot be directly
152    /// compared between objects with different stack IDs. The object may not
153    /// necessarily reside in the same contiguous memory block as other stack
154    /// objects. Objects with differing stack IDs should not be merged or
155    /// replaced substituted for each other.
156    //
157    /// It is assumed a target uses consecutive, increasing stack IDs starting
158    /// from 1.
159    uint8_t StackID;
160
161    /// If this stack object is originated from an Alloca instruction
162    /// this value saves the original IR allocation. Can be NULL.
163    const AllocaInst *Alloca;
164
165    // If true, the object was mapped into the local frame
166    // block and doesn't need additional handling for allocation beyond that.
167    bool PreAllocated = false;
168
169    // If true, an LLVM IR value might point to this object.
170    // Normally, spill slots and fixed-offset objects don't alias IR-accessible
171    // objects, but there are exceptions (on PowerPC, for example, some byval
172    // arguments have ABI-prescribed offsets).
173    bool isAliased;
174
175    /// If true, the object has been zero-extended.
176    bool isZExt = false;
177
178    /// If true, the object has been zero-extended.
179    bool isSExt = false;
180
181    uint8_t SSPLayout;
182
183    StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
184                bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
185                bool IsAliased, uint8_t StackID = 0)
186      : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
187        isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
188        StackID(StackID), Alloca(Alloca), isAliased(IsAliased),
189        SSPLayout(SSPLK_None) {}
190  };
191
192  /// The alignment of the stack.
193  unsigned StackAlignment;
194
195  /// Can the stack be realigned. This can be false if the target does not
196  /// support stack realignment, or if the user asks us not to realign the
197  /// stack. In this situation, overaligned allocas are all treated as dynamic
198  /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199  /// lowering. All non-alloca stack objects have their alignment clamped to the
200  /// base ABI stack alignment.
201  /// FIXME: There is room for improvement in this case, in terms of
202  /// grouping overaligned allocas into a "secondary stack frame" and
203  /// then only use a single alloca to allocate this frame and only a
204  /// single virtual register to access it. Currently, without such an
205  /// optimization, each such alloca gets its own dynamic realignment.
206  bool StackRealignable;
207
208  /// Whether the function has the \c alignstack attribute.
209  bool ForcedRealign;
210
211  /// The list of stack objects allocated.
212  std::vector<StackObject> Objects;
213
214  /// This contains the number of fixed objects contained on
215  /// the stack.  Because fixed objects are stored at a negative index in the
216  /// Objects list, this is also the index to the 0th object in the list.
217  unsigned NumFixedObjects = 0;
218
219  /// This boolean keeps track of whether any variable
220  /// sized objects have been allocated yet.
221  bool HasVarSizedObjects = false;
222
223  /// This boolean keeps track of whether there is a call
224  /// to builtin \@llvm.frameaddress.
225  bool FrameAddressTaken = false;
226
227  /// This boolean keeps track of whether there is a call
228  /// to builtin \@llvm.returnaddress.
229  bool ReturnAddressTaken = false;
230
231  /// This boolean keeps track of whether there is a call
232  /// to builtin \@llvm.experimental.stackmap.
233  bool HasStackMap = false;
234
235  /// This boolean keeps track of whether there is a call
236  /// to builtin \@llvm.experimental.patchpoint.
237  bool HasPatchPoint = false;
238
239  /// The prolog/epilog code inserter calculates the final stack
240  /// offsets for all of the fixed size objects, updating the Objects list
241  /// above.  It then updates StackSize to contain the number of bytes that need
242  /// to be allocated on entry to the function.
243  uint64_t StackSize = 0;
244
245  /// The amount that a frame offset needs to be adjusted to
246  /// have the actual offset from the stack/frame pointer.  The exact usage of
247  /// this is target-dependent, but it is typically used to adjust between
248  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
249  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250  /// to the distance between the initial SP and the value in FP.  For many
251  /// targets, this value is only used when generating debug info (via
252  /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253  /// corresponding adjustments are performed directly.
254  int OffsetAdjustment = 0;
255
256  /// The prolog/epilog code inserter may process objects that require greater
257  /// alignment than the default alignment the target provides.
258  /// To handle this, MaxAlignment is set to the maximum alignment
259  /// needed by the objects on the current frame.  If this is greater than the
260  /// native alignment maintained by the compiler, dynamic alignment code will
261  /// be needed.
262  ///
263  unsigned MaxAlignment = 0;
264
265  /// Set to true if this function adjusts the stack -- e.g.,
266  /// when calling another function. This is only valid during and after
267  /// prolog/epilog code insertion.
268  bool AdjustsStack = false;
269
270  /// Set to true if this function has any function calls.
271  bool HasCalls = false;
272
273  /// The frame index for the stack protector.
274  int StackProtectorIdx = -1;
275
276  /// The frame index for the function context. Used for SjLj exceptions.
277  int FunctionContextIdx = -1;
278
279  /// This contains the size of the largest call frame if the target uses frame
280  /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281  /// class).  This information is important for frame pointer elimination.
282  /// It is only valid during and after prolog/epilog code insertion.
283  unsigned MaxCallFrameSize = ~0u;
284
285  /// The number of bytes of callee saved registers that the target wants to
286  /// report for the current function in the CodeView S_FRAMEPROC record.
287  unsigned CVBytesOfCalleeSavedRegisters = 0;
288
289  /// The prolog/epilog code inserter fills in this vector with each
290  /// callee saved register saved in either the frame or a different
291  /// register.  Beyond its use by the prolog/ epilog code inserter,
292  /// this data is used for debug info and exception handling.
293  std::vector<CalleeSavedInfo> CSInfo;
294
295  /// Has CSInfo been set yet?
296  bool CSIValid = false;
297
298  /// References to frame indices which are mapped
299  /// into the local frame allocation block. <FrameIdx, LocalOffset>
300  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
301
302  /// Size of the pre-allocated local frame block.
303  int64_t LocalFrameSize = 0;
304
305  /// Required alignment of the local object blob, which is the strictest
306  /// alignment of any object in it.
307  unsigned LocalFrameMaxAlign = 0;
308
309  /// Whether the local object blob needs to be allocated together. If not,
310  /// PEI should ignore the isPreAllocated flags on the stack objects and
311  /// just allocate them normally.
312  bool UseLocalStackAllocationBlock = false;
313
314  /// True if the function dynamically adjusts the stack pointer through some
315  /// opaque mechanism like inline assembly or Win32 EH.
316  bool HasOpaqueSPAdjustment = false;
317
318  /// True if the function contains operations which will lower down to
319  /// instructions which manipulate the stack pointer.
320  bool HasCopyImplyingStackAdjustment = false;
321
322  /// True if the function contains a call to the llvm.vastart intrinsic.
323  bool HasVAStart = false;
324
325  /// True if this is a varargs function that contains a musttail call.
326  bool HasMustTailInVarArgFunc = false;
327
328  /// True if this function contains a tail call. If so immutable objects like
329  /// function arguments are no longer so. A tail call *can* override fixed
330  /// stack objects like arguments so we can't treat them as immutable.
331  bool HasTailCall = false;
332
333  /// Not null, if shrink-wrapping found a better place for the prologue.
334  MachineBasicBlock *Save = nullptr;
335  /// Not null, if shrink-wrapping found a better place for the epilogue.
336  MachineBasicBlock *Restore = nullptr;
337
338public:
339  explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
340                            bool ForcedRealign)
341      : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
342        ForcedRealign(ForcedRealign) {}
343
344  /// Return true if there are any stack objects in this function.
345  bool hasStackObjects() const { return !Objects.empty(); }
346
347  /// This method may be called any time after instruction
348  /// selection is complete to determine if the stack frame for this function
349  /// contains any variable sized objects.
350  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
351
352  /// Return the index for the stack protector object.
353  int getStackProtectorIndex() const { return StackProtectorIdx; }
354  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
355  bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
356
357  /// Return the index for the function context object.
358  /// This object is used for SjLj exceptions.
359  int getFunctionContextIndex() const { return FunctionContextIdx; }
360  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
361
362  /// This method may be called any time after instruction
363  /// selection is complete to determine if there is a call to
364  /// \@llvm.frameaddress in this function.
365  bool isFrameAddressTaken() const { return FrameAddressTaken; }
366  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
367
368  /// This method may be called any time after
369  /// instruction selection is complete to determine if there is a call to
370  /// \@llvm.returnaddress in this function.
371  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
372  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
373
374  /// This method may be called any time after instruction
375  /// selection is complete to determine if there is a call to builtin
376  /// \@llvm.experimental.stackmap.
377  bool hasStackMap() const { return HasStackMap; }
378  void setHasStackMap(bool s = true) { HasStackMap = s; }
379
380  /// This method may be called any time after instruction
381  /// selection is complete to determine if there is a call to builtin
382  /// \@llvm.experimental.patchpoint.
383  bool hasPatchPoint() const { return HasPatchPoint; }
384  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
385
386  /// Return the minimum frame object index.
387  int getObjectIndexBegin() const { return -NumFixedObjects; }
388
389  /// Return one past the maximum frame object index.
390  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
391
392  /// Return the number of fixed objects.
393  unsigned getNumFixedObjects() const { return NumFixedObjects; }
394
395  /// Return the number of objects.
396  unsigned getNumObjects() const { return Objects.size(); }
397
398  /// Map a frame index into the local object block
399  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
400    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
401    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
402  }
403
404  /// Get the local offset mapping for a for an object.
405  std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
406    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
407            "Invalid local object reference!");
408    return LocalFrameObjects[i];
409  }
410
411  /// Return the number of objects allocated into the local object block.
412  int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
413
414  /// Set the size of the local object blob.
415  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
416
417  /// Get the size of the local object blob.
418  int64_t getLocalFrameSize() const { return LocalFrameSize; }
419
420  /// Required alignment of the local object blob,
421  /// which is the strictest alignment of any object in it.
422  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
423
424  /// Return the required alignment of the local object blob.
425  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
426
427  /// Get whether the local allocation blob should be allocated together or
428  /// let PEI allocate the locals in it directly.
429  bool getUseLocalStackAllocationBlock() const {
430    return UseLocalStackAllocationBlock;
431  }
432
433  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
434  /// should be allocated together or let PEI allocate the locals in it
435  /// directly.
436  void setUseLocalStackAllocationBlock(bool v) {
437    UseLocalStackAllocationBlock = v;
438  }
439
440  /// Return true if the object was pre-allocated into the local block.
441  bool isObjectPreAllocated(int ObjectIdx) const {
442    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
443           "Invalid Object Idx!");
444    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
445  }
446
447  /// Return the size of the specified object.
448  int64_t getObjectSize(int ObjectIdx) const {
449    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
450           "Invalid Object Idx!");
451    return Objects[ObjectIdx+NumFixedObjects].Size;
452  }
453
454  /// Change the size of the specified stack object.
455  void setObjectSize(int ObjectIdx, int64_t Size) {
456    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
457           "Invalid Object Idx!");
458    Objects[ObjectIdx+NumFixedObjects].Size = Size;
459  }
460
461  /// Return the alignment of the specified stack object.
462  unsigned getObjectAlignment(int ObjectIdx) const {
463    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
464           "Invalid Object Idx!");
465    return Objects[ObjectIdx+NumFixedObjects].Alignment;
466  }
467
468  /// setObjectAlignment - Change the alignment of the specified stack object.
469  void setObjectAlignment(int ObjectIdx, unsigned Align) {
470    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
471           "Invalid Object Idx!");
472    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
473
474    // Only ensure max alignment for the default stack.
475    if (getStackID(ObjectIdx) == 0)
476      ensureMaxAlignment(Align);
477  }
478
479  /// Return the underlying Alloca of the specified
480  /// stack object if it exists. Returns 0 if none exists.
481  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
482    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
483           "Invalid Object Idx!");
484    return Objects[ObjectIdx+NumFixedObjects].Alloca;
485  }
486
487  /// Return the assigned stack offset of the specified object
488  /// from the incoming stack pointer.
489  int64_t getObjectOffset(int ObjectIdx) const {
490    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
491           "Invalid Object Idx!");
492    assert(!isDeadObjectIndex(ObjectIdx) &&
493           "Getting frame offset for a dead object?");
494    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
495  }
496
497  bool isObjectZExt(int ObjectIdx) const {
498    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
499           "Invalid Object Idx!");
500    return Objects[ObjectIdx+NumFixedObjects].isZExt;
501  }
502
503  void setObjectZExt(int ObjectIdx, bool IsZExt) {
504    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
505           "Invalid Object Idx!");
506    Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
507  }
508
509  bool isObjectSExt(int ObjectIdx) const {
510    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
511           "Invalid Object Idx!");
512    return Objects[ObjectIdx+NumFixedObjects].isSExt;
513  }
514
515  void setObjectSExt(int ObjectIdx, bool IsSExt) {
516    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
517           "Invalid Object Idx!");
518    Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
519  }
520
521  /// Set the stack frame offset of the specified object. The
522  /// offset is relative to the stack pointer on entry to the function.
523  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
524    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
525           "Invalid Object Idx!");
526    assert(!isDeadObjectIndex(ObjectIdx) &&
527           "Setting frame offset for a dead object?");
528    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
529  }
530
531  SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
532    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
533           "Invalid Object Idx!");
534    return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
535  }
536
537  void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
538    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
539           "Invalid Object Idx!");
540    assert(!isDeadObjectIndex(ObjectIdx) &&
541           "Setting SSP layout for a dead object?");
542    Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
543  }
544
545  /// Return the number of bytes that must be allocated to hold
546  /// all of the fixed size frame objects.  This is only valid after
547  /// Prolog/Epilog code insertion has finalized the stack frame layout.
548  uint64_t getStackSize() const { return StackSize; }
549
550  /// Set the size of the stack.
551  void setStackSize(uint64_t Size) { StackSize = Size; }
552
553  /// Estimate and return the size of the stack frame.
554  unsigned estimateStackSize(const MachineFunction &MF) const;
555
556  /// Return the correction for frame offsets.
557  int getOffsetAdjustment() const { return OffsetAdjustment; }
558
559  /// Set the correction for frame offsets.
560  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
561
562  /// Return the alignment in bytes that this function must be aligned to,
563  /// which is greater than the default stack alignment provided by the target.
564  unsigned getMaxAlignment() const { return MaxAlignment; }
565
566  /// Make sure the function is at least Align bytes aligned.
567  void ensureMaxAlignment(unsigned Align);
568
569  /// Return true if this function adjusts the stack -- e.g.,
570  /// when calling another function. This is only valid during and after
571  /// prolog/epilog code insertion.
572  bool adjustsStack() const { return AdjustsStack; }
573  void setAdjustsStack(bool V) { AdjustsStack = V; }
574
575  /// Return true if the current function has any function calls.
576  bool hasCalls() const { return HasCalls; }
577  void setHasCalls(bool V) { HasCalls = V; }
578
579  /// Returns true if the function contains opaque dynamic stack adjustments.
580  bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
581  void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
582
583  /// Returns true if the function contains operations which will lower down to
584  /// instructions which manipulate the stack pointer.
585  bool hasCopyImplyingStackAdjustment() const {
586    return HasCopyImplyingStackAdjustment;
587  }
588  void setHasCopyImplyingStackAdjustment(bool B) {
589    HasCopyImplyingStackAdjustment = B;
590  }
591
592  /// Returns true if the function calls the llvm.va_start intrinsic.
593  bool hasVAStart() const { return HasVAStart; }
594  void setHasVAStart(bool B) { HasVAStart = B; }
595
596  /// Returns true if the function is variadic and contains a musttail call.
597  bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
598  void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
599
600  /// Returns true if the function contains a tail call.
601  bool hasTailCall() const { return HasTailCall; }
602  void setHasTailCall() { HasTailCall = true; }
603
604  /// Computes the maximum size of a callframe and the AdjustsStack property.
605  /// This only works for targets defining
606  /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
607  /// and getFrameSize().
608  /// This is usually computed by the prologue epilogue inserter but some
609  /// targets may call this to compute it earlier.
610  void computeMaxCallFrameSize(const MachineFunction &MF);
611
612  /// Return the maximum size of a call frame that must be
613  /// allocated for an outgoing function call.  This is only available if
614  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
615  /// then only during or after prolog/epilog code insertion.
616  ///
617  unsigned getMaxCallFrameSize() const {
618    // TODO: Enable this assert when targets are fixed.
619    //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
620    if (!isMaxCallFrameSizeComputed())
621      return 0;
622    return MaxCallFrameSize;
623  }
624  bool isMaxCallFrameSizeComputed() const {
625    return MaxCallFrameSize != ~0u;
626  }
627  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
628
629  /// Returns how many bytes of callee-saved registers the target pushed in the
630  /// prologue. Only used for debug info.
631  unsigned getCVBytesOfCalleeSavedRegisters() const {
632    return CVBytesOfCalleeSavedRegisters;
633  }
634  void setCVBytesOfCalleeSavedRegisters(unsigned S) {
635    CVBytesOfCalleeSavedRegisters = S;
636  }
637
638  /// Create a new object at a fixed location on the stack.
639  /// All fixed objects should be created before other objects are created for
640  /// efficiency. By default, fixed objects are not pointed to by LLVM IR
641  /// values. This returns an index with a negative value.
642  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
643                        bool isAliased = false);
644
645  /// Create a spill slot at a fixed location on the stack.
646  /// Returns an index with a negative value.
647  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
648                                  bool IsImmutable = false);
649
650  /// Returns true if the specified index corresponds to a fixed stack object.
651  bool isFixedObjectIndex(int ObjectIdx) const {
652    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
653  }
654
655  /// Returns true if the specified index corresponds
656  /// to an object that might be pointed to by an LLVM IR value.
657  bool isAliasedObjectIndex(int ObjectIdx) const {
658    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
659           "Invalid Object Idx!");
660    return Objects[ObjectIdx+NumFixedObjects].isAliased;
661  }
662
663  /// Returns true if the specified index corresponds to an immutable object.
664  bool isImmutableObjectIndex(int ObjectIdx) const {
665    // Tail calling functions can clobber their function arguments.
666    if (HasTailCall)
667      return false;
668    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
669           "Invalid Object Idx!");
670    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
671  }
672
673  /// Marks the immutability of an object.
674  void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
675    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
676           "Invalid Object Idx!");
677    Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
678  }
679
680  /// Returns true if the specified index corresponds to a spill slot.
681  bool isSpillSlotObjectIndex(int ObjectIdx) const {
682    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
683           "Invalid Object Idx!");
684    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
685  }
686
687  bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
688    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
689           "Invalid Object Idx!");
690    return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
691  }
692
693  /// \see StackID
694  uint8_t getStackID(int ObjectIdx) const {
695    return Objects[ObjectIdx+NumFixedObjects].StackID;
696  }
697
698  /// \see StackID
699  void setStackID(int ObjectIdx, uint8_t ID) {
700    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
701           "Invalid Object Idx!");
702    Objects[ObjectIdx+NumFixedObjects].StackID = ID;
703    // If ID > 0, MaxAlignment may now be overly conservative.
704    // If ID == 0, MaxAlignment will need to be updated separately.
705  }
706
707  /// Returns true if the specified index corresponds to a dead object.
708  bool isDeadObjectIndex(int ObjectIdx) const {
709    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
710           "Invalid Object Idx!");
711    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
712  }
713
714  /// Returns true if the specified index corresponds to a variable sized
715  /// object.
716  bool isVariableSizedObjectIndex(int ObjectIdx) const {
717    assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
718           "Invalid Object Idx!");
719    return Objects[ObjectIdx + NumFixedObjects].Size == 0;
720  }
721
722  void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
723    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
724           "Invalid Object Idx!");
725    Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
726    assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
727  }
728
729  /// Create a new statically sized stack object, returning
730  /// a nonnegative identifier to represent it.
731  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
732                        const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
733
734  /// Create a new statically sized stack object that represents a spill slot,
735  /// returning a nonnegative identifier to represent it.
736  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
737
738  /// Remove or mark dead a statically sized stack object.
739  void RemoveStackObject(int ObjectIdx) {
740    // Mark it dead.
741    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
742  }
743
744  /// Notify the MachineFrameInfo object that a variable sized object has been
745  /// created.  This must be created whenever a variable sized object is
746  /// created, whether or not the index returned is actually used.
747  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
748
749  /// Returns a reference to call saved info vector for the current function.
750  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
751    return CSInfo;
752  }
753  /// \copydoc getCalleeSavedInfo()
754  std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
755
756  /// Used by prolog/epilog inserter to set the function's callee saved
757  /// information.
758  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
759    CSInfo = CSI;
760  }
761
762  /// Has the callee saved info been calculated yet?
763  bool isCalleeSavedInfoValid() const { return CSIValid; }
764
765  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
766
767  MachineBasicBlock *getSavePoint() const { return Save; }
768  void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
769  MachineBasicBlock *getRestorePoint() const { return Restore; }
770  void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
771
772  /// Return a set of physical registers that are pristine.
773  ///
774  /// Pristine registers hold a value that is useless to the current function,
775  /// but that must be preserved - they are callee saved registers that are not
776  /// saved.
777  ///
778  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
779  /// method always returns an empty set.
780  BitVector getPristineRegs(const MachineFunction &MF) const;
781
782  /// Used by the MachineFunction printer to print information about
783  /// stack objects. Implemented in MachineFunction.cpp.
784  void print(const MachineFunction &MF, raw_ostream &OS) const;
785
786  /// dump - Print the function to stderr.
787  void dump(const MachineFunction &MF) const;
788};
789
790} // End llvm namespace
791
792#endif
793