MachineFrameInfo.h revision 341825
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class MachineFunction;
25class MachineBasicBlock;
26class BitVector;
27class AllocaInst;
28
29/// The CalleeSavedInfo class tracks the information need to locate where a
30/// callee saved register is in the current frame.
31class CalleeSavedInfo {
32  unsigned Reg;
33  int FrameIdx;
34  /// Flag indicating whether the register is actually restored in the epilog.
35  /// In most cases, if a register is saved, it is also restored. There are
36  /// some situations, though, when this is not the case. For example, the
37  /// LR register on ARM is usually saved, but on exit from the function its
38  /// saved value may be loaded directly into PC. Since liveness tracking of
39  /// physical registers treats callee-saved registers are live outside of
40  /// the function, LR would be treated as live-on-exit, even though in these
41  /// scenarios it is not. This flag is added to indicate that the saved
42  /// register described by this object is not restored in the epilog.
43  /// The long-term solution is to model the liveness of callee-saved registers
44  /// by implicit uses on the return instructions, however, the required
45  /// changes in the ARM backend would be quite extensive.
46  bool Restored;
47
48public:
49  explicit CalleeSavedInfo(unsigned R, int FI = 0)
50  : Reg(R), FrameIdx(FI), Restored(true) {}
51
52  // Accessors.
53  unsigned getReg()                        const { return Reg; }
54  int getFrameIdx()                        const { return FrameIdx; }
55  void setFrameIdx(int FI)                       { FrameIdx = FI; }
56  bool isRestored()                        const { return Restored; }
57  void setRestored(bool R)                       { Restored = R; }
58};
59
60/// The MachineFrameInfo class represents an abstract stack frame until
61/// prolog/epilog code is inserted.  This class is key to allowing stack frame
62/// representation optimizations, such as frame pointer elimination.  It also
63/// allows more mundane (but still important) optimizations, such as reordering
64/// of abstract objects on the stack frame.
65///
66/// To support this, the class assigns unique integer identifiers to stack
67/// objects requested clients.  These identifiers are negative integers for
68/// fixed stack objects (such as arguments passed on the stack) or nonnegative
69/// for objects that may be reordered.  Instructions which refer to stack
70/// objects use a special MO_FrameIndex operand to represent these frame
71/// indexes.
72///
73/// Because this class keeps track of all references to the stack frame, it
74/// knows when a variable sized object is allocated on the stack.  This is the
75/// sole condition which prevents frame pointer elimination, which is an
76/// important optimization on register-poor architectures.  Because original
77/// variable sized alloca's in the source program are the only source of
78/// variable sized stack objects, it is safe to decide whether there will be
79/// any variable sized objects before all stack objects are known (for
80/// example, register allocator spill code never needs variable sized
81/// objects).
82///
83/// When prolog/epilog code emission is performed, the final stack frame is
84/// built and the machine instructions are modified to refer to the actual
85/// stack offsets of the object, eliminating all MO_FrameIndex operands from
86/// the program.
87///
88/// Abstract Stack Frame Information
89class MachineFrameInfo {
90public:
91  /// Stack Smashing Protection (SSP) rules require that vulnerable stack
92  /// allocations are located close the stack protector.
93  enum SSPLayoutKind {
94    SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
95                      ///< layout.
96    SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
97                      ///< to the stack protector.
98    SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
99                      ///< to the stack protector.
100    SSPLK_AddrOf      ///< The address of this allocation is exposed and
101                      ///< triggered protection.  3rd closest to the protector.
102  };
103
104private:
105  // Represent a single object allocated on the stack.
106  struct StackObject {
107    // The offset of this object from the stack pointer on entry to
108    // the function.  This field has no meaning for a variable sized element.
109    int64_t SPOffset;
110
111    // The size of this object on the stack. 0 means a variable sized object,
112    // ~0ULL means a dead object.
113    uint64_t Size;
114
115    // The required alignment of this stack slot.
116    unsigned Alignment;
117
118    // If true, the value of the stack object is set before
119    // entering the function and is not modified inside the function. By
120    // default, fixed objects are immutable unless marked otherwise.
121    bool isImmutable;
122
123    // If true the stack object is used as spill slot. It
124    // cannot alias any other memory objects.
125    bool isSpillSlot;
126
127    /// If true, this stack slot is used to spill a value (could be deopt
128    /// and/or GC related) over a statepoint. We know that the address of the
129    /// slot can't alias any LLVM IR value.  This is very similar to a Spill
130    /// Slot, but is created by statepoint lowering is SelectionDAG, not the
131    /// register allocator.
132    bool isStatepointSpillSlot = false;
133
134    /// Identifier for stack memory type analagous to address space. If this is
135    /// non-0, the meaning is target defined. Offsets cannot be directly
136    /// compared between objects with different stack IDs. The object may not
137    /// necessarily reside in the same contiguous memory block as other stack
138    /// objects. Objects with differing stack IDs should not be merged or
139    /// replaced substituted for each other.
140    //
141    /// It is assumed a target uses consecutive, increasing stack IDs starting
142    /// from 1.
143    uint8_t StackID;
144
145    /// If this stack object is originated from an Alloca instruction
146    /// this value saves the original IR allocation. Can be NULL.
147    const AllocaInst *Alloca;
148
149    // If true, the object was mapped into the local frame
150    // block and doesn't need additional handling for allocation beyond that.
151    bool PreAllocated = false;
152
153    // If true, an LLVM IR value might point to this object.
154    // Normally, spill slots and fixed-offset objects don't alias IR-accessible
155    // objects, but there are exceptions (on PowerPC, for example, some byval
156    // arguments have ABI-prescribed offsets).
157    bool isAliased;
158
159    /// If true, the object has been zero-extended.
160    bool isZExt = false;
161
162    /// If true, the object has been zero-extended.
163    bool isSExt = false;
164
165    uint8_t SSPLayout;
166
167    StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
168                bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
169                bool IsAliased, uint8_t StackID = 0)
170      : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
171        isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
172        StackID(StackID), Alloca(Alloca), isAliased(IsAliased),
173        SSPLayout(SSPLK_None) {}
174  };
175
176  /// The alignment of the stack.
177  unsigned StackAlignment;
178
179  /// Can the stack be realigned. This can be false if the target does not
180  /// support stack realignment, or if the user asks us not to realign the
181  /// stack. In this situation, overaligned allocas are all treated as dynamic
182  /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
183  /// lowering. All non-alloca stack objects have their alignment clamped to the
184  /// base ABI stack alignment.
185  /// FIXME: There is room for improvement in this case, in terms of
186  /// grouping overaligned allocas into a "secondary stack frame" and
187  /// then only use a single alloca to allocate this frame and only a
188  /// single virtual register to access it. Currently, without such an
189  /// optimization, each such alloca gets its own dynamic realignment.
190  bool StackRealignable;
191
192  /// Whether the function has the \c alignstack attribute.
193  bool ForcedRealign;
194
195  /// The list of stack objects allocated.
196  std::vector<StackObject> Objects;
197
198  /// This contains the number of fixed objects contained on
199  /// the stack.  Because fixed objects are stored at a negative index in the
200  /// Objects list, this is also the index to the 0th object in the list.
201  unsigned NumFixedObjects = 0;
202
203  /// This boolean keeps track of whether any variable
204  /// sized objects have been allocated yet.
205  bool HasVarSizedObjects = false;
206
207  /// This boolean keeps track of whether there is a call
208  /// to builtin \@llvm.frameaddress.
209  bool FrameAddressTaken = false;
210
211  /// This boolean keeps track of whether there is a call
212  /// to builtin \@llvm.returnaddress.
213  bool ReturnAddressTaken = false;
214
215  /// This boolean keeps track of whether there is a call
216  /// to builtin \@llvm.experimental.stackmap.
217  bool HasStackMap = false;
218
219  /// This boolean keeps track of whether there is a call
220  /// to builtin \@llvm.experimental.patchpoint.
221  bool HasPatchPoint = false;
222
223  /// The prolog/epilog code inserter calculates the final stack
224  /// offsets for all of the fixed size objects, updating the Objects list
225  /// above.  It then updates StackSize to contain the number of bytes that need
226  /// to be allocated on entry to the function.
227  uint64_t StackSize = 0;
228
229  /// The amount that a frame offset needs to be adjusted to
230  /// have the actual offset from the stack/frame pointer.  The exact usage of
231  /// this is target-dependent, but it is typically used to adjust between
232  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
233  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
234  /// to the distance between the initial SP and the value in FP.  For many
235  /// targets, this value is only used when generating debug info (via
236  /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
237  /// corresponding adjustments are performed directly.
238  int OffsetAdjustment = 0;
239
240  /// The prolog/epilog code inserter may process objects that require greater
241  /// alignment than the default alignment the target provides.
242  /// To handle this, MaxAlignment is set to the maximum alignment
243  /// needed by the objects on the current frame.  If this is greater than the
244  /// native alignment maintained by the compiler, dynamic alignment code will
245  /// be needed.
246  ///
247  unsigned MaxAlignment = 0;
248
249  /// Set to true if this function adjusts the stack -- e.g.,
250  /// when calling another function. This is only valid during and after
251  /// prolog/epilog code insertion.
252  bool AdjustsStack = false;
253
254  /// Set to true if this function has any function calls.
255  bool HasCalls = false;
256
257  /// The frame index for the stack protector.
258  int StackProtectorIdx = -1;
259
260  /// The frame index for the function context. Used for SjLj exceptions.
261  int FunctionContextIdx = -1;
262
263  /// This contains the size of the largest call frame if the target uses frame
264  /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
265  /// class).  This information is important for frame pointer elimination.
266  /// It is only valid during and after prolog/epilog code insertion.
267  unsigned MaxCallFrameSize = ~0u;
268
269  /// The prolog/epilog code inserter fills in this vector with each
270  /// callee saved register saved in the frame.  Beyond its use by the prolog/
271  /// epilog code inserter, this data used for debug info and exception
272  /// handling.
273  std::vector<CalleeSavedInfo> CSInfo;
274
275  /// Has CSInfo been set yet?
276  bool CSIValid = false;
277
278  /// References to frame indices which are mapped
279  /// into the local frame allocation block. <FrameIdx, LocalOffset>
280  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
281
282  /// Size of the pre-allocated local frame block.
283  int64_t LocalFrameSize = 0;
284
285  /// Required alignment of the local object blob, which is the strictest
286  /// alignment of any object in it.
287  unsigned LocalFrameMaxAlign = 0;
288
289  /// Whether the local object blob needs to be allocated together. If not,
290  /// PEI should ignore the isPreAllocated flags on the stack objects and
291  /// just allocate them normally.
292  bool UseLocalStackAllocationBlock = false;
293
294  /// True if the function dynamically adjusts the stack pointer through some
295  /// opaque mechanism like inline assembly or Win32 EH.
296  bool HasOpaqueSPAdjustment = false;
297
298  /// True if the function contains operations which will lower down to
299  /// instructions which manipulate the stack pointer.
300  bool HasCopyImplyingStackAdjustment = false;
301
302  /// True if the function contains a call to the llvm.vastart intrinsic.
303  bool HasVAStart = false;
304
305  /// True if this is a varargs function that contains a musttail call.
306  bool HasMustTailInVarArgFunc = false;
307
308  /// True if this function contains a tail call. If so immutable objects like
309  /// function arguments are no longer so. A tail call *can* override fixed
310  /// stack objects like arguments so we can't treat them as immutable.
311  bool HasTailCall = false;
312
313  /// Not null, if shrink-wrapping found a better place for the prologue.
314  MachineBasicBlock *Save = nullptr;
315  /// Not null, if shrink-wrapping found a better place for the epilogue.
316  MachineBasicBlock *Restore = nullptr;
317
318public:
319  explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
320                            bool ForcedRealign)
321      : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
322        ForcedRealign(ForcedRealign) {}
323
324  /// Return true if there are any stack objects in this function.
325  bool hasStackObjects() const { return !Objects.empty(); }
326
327  /// This method may be called any time after instruction
328  /// selection is complete to determine if the stack frame for this function
329  /// contains any variable sized objects.
330  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
331
332  /// Return the index for the stack protector object.
333  int getStackProtectorIndex() const { return StackProtectorIdx; }
334  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
335  bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
336
337  /// Return the index for the function context object.
338  /// This object is used for SjLj exceptions.
339  int getFunctionContextIndex() const { return FunctionContextIdx; }
340  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
341
342  /// This method may be called any time after instruction
343  /// selection is complete to determine if there is a call to
344  /// \@llvm.frameaddress in this function.
345  bool isFrameAddressTaken() const { return FrameAddressTaken; }
346  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
347
348  /// This method may be called any time after
349  /// instruction selection is complete to determine if there is a call to
350  /// \@llvm.returnaddress in this function.
351  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
352  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
353
354  /// This method may be called any time after instruction
355  /// selection is complete to determine if there is a call to builtin
356  /// \@llvm.experimental.stackmap.
357  bool hasStackMap() const { return HasStackMap; }
358  void setHasStackMap(bool s = true) { HasStackMap = s; }
359
360  /// This method may be called any time after instruction
361  /// selection is complete to determine if there is a call to builtin
362  /// \@llvm.experimental.patchpoint.
363  bool hasPatchPoint() const { return HasPatchPoint; }
364  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
365
366  /// Return the minimum frame object index.
367  int getObjectIndexBegin() const { return -NumFixedObjects; }
368
369  /// Return one past the maximum frame object index.
370  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
371
372  /// Return the number of fixed objects.
373  unsigned getNumFixedObjects() const { return NumFixedObjects; }
374
375  /// Return the number of objects.
376  unsigned getNumObjects() const { return Objects.size(); }
377
378  /// Map a frame index into the local object block
379  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
380    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
381    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
382  }
383
384  /// Get the local offset mapping for a for an object.
385  std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
386    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
387            "Invalid local object reference!");
388    return LocalFrameObjects[i];
389  }
390
391  /// Return the number of objects allocated into the local object block.
392  int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
393
394  /// Set the size of the local object blob.
395  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
396
397  /// Get the size of the local object blob.
398  int64_t getLocalFrameSize() const { return LocalFrameSize; }
399
400  /// Required alignment of the local object blob,
401  /// which is the strictest alignment of any object in it.
402  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
403
404  /// Return the required alignment of the local object blob.
405  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
406
407  /// Get whether the local allocation blob should be allocated together or
408  /// let PEI allocate the locals in it directly.
409  bool getUseLocalStackAllocationBlock() const {
410    return UseLocalStackAllocationBlock;
411  }
412
413  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
414  /// should be allocated together or let PEI allocate the locals in it
415  /// directly.
416  void setUseLocalStackAllocationBlock(bool v) {
417    UseLocalStackAllocationBlock = v;
418  }
419
420  /// Return true if the object was pre-allocated into the local block.
421  bool isObjectPreAllocated(int ObjectIdx) const {
422    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
423           "Invalid Object Idx!");
424    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
425  }
426
427  /// Return the size of the specified object.
428  int64_t getObjectSize(int ObjectIdx) const {
429    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
430           "Invalid Object Idx!");
431    return Objects[ObjectIdx+NumFixedObjects].Size;
432  }
433
434  /// Change the size of the specified stack object.
435  void setObjectSize(int ObjectIdx, int64_t Size) {
436    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
437           "Invalid Object Idx!");
438    Objects[ObjectIdx+NumFixedObjects].Size = Size;
439  }
440
441  /// Return the alignment of the specified stack object.
442  unsigned getObjectAlignment(int ObjectIdx) const {
443    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
444           "Invalid Object Idx!");
445    return Objects[ObjectIdx+NumFixedObjects].Alignment;
446  }
447
448  /// setObjectAlignment - Change the alignment of the specified stack object.
449  void setObjectAlignment(int ObjectIdx, unsigned Align) {
450    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
451           "Invalid Object Idx!");
452    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
453    ensureMaxAlignment(Align);
454  }
455
456  /// Return the underlying Alloca of the specified
457  /// stack object if it exists. Returns 0 if none exists.
458  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
459    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
460           "Invalid Object Idx!");
461    return Objects[ObjectIdx+NumFixedObjects].Alloca;
462  }
463
464  /// Return the assigned stack offset of the specified object
465  /// from the incoming stack pointer.
466  int64_t getObjectOffset(int ObjectIdx) const {
467    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
468           "Invalid Object Idx!");
469    assert(!isDeadObjectIndex(ObjectIdx) &&
470           "Getting frame offset for a dead object?");
471    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
472  }
473
474  bool isObjectZExt(int ObjectIdx) const {
475    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
476           "Invalid Object Idx!");
477    return Objects[ObjectIdx+NumFixedObjects].isZExt;
478  }
479
480  void setObjectZExt(int ObjectIdx, bool IsZExt) {
481    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
482           "Invalid Object Idx!");
483    Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
484  }
485
486  bool isObjectSExt(int ObjectIdx) const {
487    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
488           "Invalid Object Idx!");
489    return Objects[ObjectIdx+NumFixedObjects].isSExt;
490  }
491
492  void setObjectSExt(int ObjectIdx, bool IsSExt) {
493    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
494           "Invalid Object Idx!");
495    Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
496  }
497
498  /// Set the stack frame offset of the specified object. The
499  /// offset is relative to the stack pointer on entry to the function.
500  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
501    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
502           "Invalid Object Idx!");
503    assert(!isDeadObjectIndex(ObjectIdx) &&
504           "Setting frame offset for a dead object?");
505    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
506  }
507
508  SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
509    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
510           "Invalid Object Idx!");
511    return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
512  }
513
514  void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
515    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
516           "Invalid Object Idx!");
517    assert(!isDeadObjectIndex(ObjectIdx) &&
518           "Setting SSP layout for a dead object?");
519    Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
520  }
521
522  /// Return the number of bytes that must be allocated to hold
523  /// all of the fixed size frame objects.  This is only valid after
524  /// Prolog/Epilog code insertion has finalized the stack frame layout.
525  uint64_t getStackSize() const { return StackSize; }
526
527  /// Set the size of the stack.
528  void setStackSize(uint64_t Size) { StackSize = Size; }
529
530  /// Estimate and return the size of the stack frame.
531  unsigned estimateStackSize(const MachineFunction &MF) const;
532
533  /// Return the correction for frame offsets.
534  int getOffsetAdjustment() const { return OffsetAdjustment; }
535
536  /// Set the correction for frame offsets.
537  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
538
539  /// Return the alignment in bytes that this function must be aligned to,
540  /// which is greater than the default stack alignment provided by the target.
541  unsigned getMaxAlignment() const { return MaxAlignment; }
542
543  /// Make sure the function is at least Align bytes aligned.
544  void ensureMaxAlignment(unsigned Align);
545
546  /// Return true if this function adjusts the stack -- e.g.,
547  /// when calling another function. This is only valid during and after
548  /// prolog/epilog code insertion.
549  bool adjustsStack() const { return AdjustsStack; }
550  void setAdjustsStack(bool V) { AdjustsStack = V; }
551
552  /// Return true if the current function has any function calls.
553  bool hasCalls() const { return HasCalls; }
554  void setHasCalls(bool V) { HasCalls = V; }
555
556  /// Returns true if the function contains opaque dynamic stack adjustments.
557  bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
558  void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
559
560  /// Returns true if the function contains operations which will lower down to
561  /// instructions which manipulate the stack pointer.
562  bool hasCopyImplyingStackAdjustment() const {
563    return HasCopyImplyingStackAdjustment;
564  }
565  void setHasCopyImplyingStackAdjustment(bool B) {
566    HasCopyImplyingStackAdjustment = B;
567  }
568
569  /// Returns true if the function calls the llvm.va_start intrinsic.
570  bool hasVAStart() const { return HasVAStart; }
571  void setHasVAStart(bool B) { HasVAStart = B; }
572
573  /// Returns true if the function is variadic and contains a musttail call.
574  bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
575  void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
576
577  /// Returns true if the function contains a tail call.
578  bool hasTailCall() const { return HasTailCall; }
579  void setHasTailCall() { HasTailCall = true; }
580
581  /// Computes the maximum size of a callframe and the AdjustsStack property.
582  /// This only works for targets defining
583  /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
584  /// and getFrameSize().
585  /// This is usually computed by the prologue epilogue inserter but some
586  /// targets may call this to compute it earlier.
587  void computeMaxCallFrameSize(const MachineFunction &MF);
588
589  /// Return the maximum size of a call frame that must be
590  /// allocated for an outgoing function call.  This is only available if
591  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
592  /// then only during or after prolog/epilog code insertion.
593  ///
594  unsigned getMaxCallFrameSize() const {
595    // TODO: Enable this assert when targets are fixed.
596    //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
597    if (!isMaxCallFrameSizeComputed())
598      return 0;
599    return MaxCallFrameSize;
600  }
601  bool isMaxCallFrameSizeComputed() const {
602    return MaxCallFrameSize != ~0u;
603  }
604  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
605
606  /// Create a new object at a fixed location on the stack.
607  /// All fixed objects should be created before other objects are created for
608  /// efficiency. By default, fixed objects are not pointed to by LLVM IR
609  /// values. This returns an index with a negative value.
610  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
611                        bool isAliased = false);
612
613  /// Create a spill slot at a fixed location on the stack.
614  /// Returns an index with a negative value.
615  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
616                                  bool IsImmutable = false);
617
618  /// Returns true if the specified index corresponds to a fixed stack object.
619  bool isFixedObjectIndex(int ObjectIdx) const {
620    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
621  }
622
623  /// Returns true if the specified index corresponds
624  /// to an object that might be pointed to by an LLVM IR value.
625  bool isAliasedObjectIndex(int ObjectIdx) const {
626    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
627           "Invalid Object Idx!");
628    return Objects[ObjectIdx+NumFixedObjects].isAliased;
629  }
630
631  /// Returns true if the specified index corresponds to an immutable object.
632  bool isImmutableObjectIndex(int ObjectIdx) const {
633    // Tail calling functions can clobber their function arguments.
634    if (HasTailCall)
635      return false;
636    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
637           "Invalid Object Idx!");
638    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
639  }
640
641  /// Marks the immutability of an object.
642  void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
643    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
644           "Invalid Object Idx!");
645    Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
646  }
647
648  /// Returns true if the specified index corresponds to a spill slot.
649  bool isSpillSlotObjectIndex(int ObjectIdx) const {
650    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
651           "Invalid Object Idx!");
652    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
653  }
654
655  bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
656    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
657           "Invalid Object Idx!");
658    return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
659  }
660
661  /// \see StackID
662  uint8_t getStackID(int ObjectIdx) const {
663    return Objects[ObjectIdx+NumFixedObjects].StackID;
664  }
665
666  /// \see StackID
667  void setStackID(int ObjectIdx, uint8_t ID) {
668    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
669           "Invalid Object Idx!");
670    Objects[ObjectIdx+NumFixedObjects].StackID = ID;
671  }
672
673  /// Returns true if the specified index corresponds to a dead object.
674  bool isDeadObjectIndex(int ObjectIdx) const {
675    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
676           "Invalid Object Idx!");
677    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
678  }
679
680  /// Returns true if the specified index corresponds to a variable sized
681  /// object.
682  bool isVariableSizedObjectIndex(int ObjectIdx) const {
683    assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
684           "Invalid Object Idx!");
685    return Objects[ObjectIdx + NumFixedObjects].Size == 0;
686  }
687
688  void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
689    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
690           "Invalid Object Idx!");
691    Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
692    assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
693  }
694
695  /// Create a new statically sized stack object, returning
696  /// a nonnegative identifier to represent it.
697  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
698                        const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
699
700  /// Create a new statically sized stack object that represents a spill slot,
701  /// returning a nonnegative identifier to represent it.
702  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
703
704  /// Remove or mark dead a statically sized stack object.
705  void RemoveStackObject(int ObjectIdx) {
706    // Mark it dead.
707    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
708  }
709
710  /// Notify the MachineFrameInfo object that a variable sized object has been
711  /// created.  This must be created whenever a variable sized object is
712  /// created, whether or not the index returned is actually used.
713  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
714
715  /// Returns a reference to call saved info vector for the current function.
716  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
717    return CSInfo;
718  }
719  /// \copydoc getCalleeSavedInfo()
720  std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
721
722  /// Used by prolog/epilog inserter to set the function's callee saved
723  /// information.
724  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
725    CSInfo = CSI;
726  }
727
728  /// Has the callee saved info been calculated yet?
729  bool isCalleeSavedInfoValid() const { return CSIValid; }
730
731  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
732
733  MachineBasicBlock *getSavePoint() const { return Save; }
734  void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
735  MachineBasicBlock *getRestorePoint() const { return Restore; }
736  void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
737
738  /// Return a set of physical registers that are pristine.
739  ///
740  /// Pristine registers hold a value that is useless to the current function,
741  /// but that must be preserved - they are callee saved registers that are not
742  /// saved.
743  ///
744  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
745  /// method always returns an empty set.
746  BitVector getPristineRegs(const MachineFunction &MF) const;
747
748  /// Used by the MachineFunction printer to print information about
749  /// stack objects. Implemented in MachineFunction.cpp.
750  void print(const MachineFunction &MF, raw_ostream &OS) const;
751
752  /// dump - Print the function to stderr.
753  void dump(const MachineFunction &MF) const;
754};
755
756} // End llvm namespace
757
758#endif
759