MachineFrameInfo.h revision 321369
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class MachineFunction;
25class MachineBasicBlock;
26class BitVector;
27class AllocaInst;
28
29/// The CalleeSavedInfo class tracks the information need to locate where a
30/// callee saved register is in the current frame.
31class CalleeSavedInfo {
32  unsigned Reg;
33  int FrameIdx;
34
35public:
36  explicit CalleeSavedInfo(unsigned R, int FI = 0)
37  : Reg(R), FrameIdx(FI) {}
38
39  // Accessors.
40  unsigned getReg()                        const { return Reg; }
41  int getFrameIdx()                        const { return FrameIdx; }
42  void setFrameIdx(int FI)                       { FrameIdx = FI; }
43};
44
45/// The MachineFrameInfo class represents an abstract stack frame until
46/// prolog/epilog code is inserted.  This class is key to allowing stack frame
47/// representation optimizations, such as frame pointer elimination.  It also
48/// allows more mundane (but still important) optimizations, such as reordering
49/// of abstract objects on the stack frame.
50///
51/// To support this, the class assigns unique integer identifiers to stack
52/// objects requested clients.  These identifiers are negative integers for
53/// fixed stack objects (such as arguments passed on the stack) or nonnegative
54/// for objects that may be reordered.  Instructions which refer to stack
55/// objects use a special MO_FrameIndex operand to represent these frame
56/// indexes.
57///
58/// Because this class keeps track of all references to the stack frame, it
59/// knows when a variable sized object is allocated on the stack.  This is the
60/// sole condition which prevents frame pointer elimination, which is an
61/// important optimization on register-poor architectures.  Because original
62/// variable sized alloca's in the source program are the only source of
63/// variable sized stack objects, it is safe to decide whether there will be
64/// any variable sized objects before all stack objects are known (for
65/// example, register allocator spill code never needs variable sized
66/// objects).
67///
68/// When prolog/epilog code emission is performed, the final stack frame is
69/// built and the machine instructions are modified to refer to the actual
70/// stack offsets of the object, eliminating all MO_FrameIndex operands from
71/// the program.
72///
73/// @brief Abstract Stack Frame Information
74class MachineFrameInfo {
75
76  // Represent a single object allocated on the stack.
77  struct StackObject {
78    // The offset of this object from the stack pointer on entry to
79    // the function.  This field has no meaning for a variable sized element.
80    int64_t SPOffset;
81
82    // The size of this object on the stack. 0 means a variable sized object,
83    // ~0ULL means a dead object.
84    uint64_t Size;
85
86    // The required alignment of this stack slot.
87    unsigned Alignment;
88
89    // If true, the value of the stack object is set before
90    // entering the function and is not modified inside the function. By
91    // default, fixed objects are immutable unless marked otherwise.
92    bool isImmutable;
93
94    // If true the stack object is used as spill slot. It
95    // cannot alias any other memory objects.
96    bool isSpillSlot;
97
98    /// If true, this stack slot is used to spill a value (could be deopt
99    /// and/or GC related) over a statepoint. We know that the address of the
100    /// slot can't alias any LLVM IR value.  This is very similar to a Spill
101    /// Slot, but is created by statepoint lowering is SelectionDAG, not the
102    /// register allocator.
103    bool isStatepointSpillSlot;
104
105    /// If this stack object is originated from an Alloca instruction
106    /// this value saves the original IR allocation. Can be NULL.
107    const AllocaInst *Alloca;
108
109    // If true, the object was mapped into the local frame
110    // block and doesn't need additional handling for allocation beyond that.
111    bool PreAllocated;
112
113    // If true, an LLVM IR value might point to this object.
114    // Normally, spill slots and fixed-offset objects don't alias IR-accessible
115    // objects, but there are exceptions (on PowerPC, for example, some byval
116    // arguments have ABI-prescribed offsets).
117    bool isAliased;
118
119    /// If true, the object has been zero-extended.
120    bool isZExt;
121
122    /// If true, the object has been zero-extended.
123    bool isSExt;
124
125    StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
126                bool isSS, const AllocaInst *Val, bool A)
127      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
128        isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
129        PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
130  };
131
132  /// The alignment of the stack.
133  unsigned StackAlignment;
134
135  /// Can the stack be realigned. This can be false if the target does not
136  /// support stack realignment, or if the user asks us not to realign the
137  /// stack. In this situation, overaligned allocas are all treated as dynamic
138  /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
139  /// lowering. All non-alloca stack objects have their alignment clamped to the
140  /// base ABI stack alignment.
141  /// FIXME: There is room for improvement in this case, in terms of
142  /// grouping overaligned allocas into a "secondary stack frame" and
143  /// then only use a single alloca to allocate this frame and only a
144  /// single virtual register to access it. Currently, without such an
145  /// optimization, each such alloca gets its own dynamic realignment.
146  bool StackRealignable;
147
148  /// Whether the function has the \c alignstack attribute.
149  bool ForcedRealign;
150
151  /// The list of stack objects allocated.
152  std::vector<StackObject> Objects;
153
154  /// This contains the number of fixed objects contained on
155  /// the stack.  Because fixed objects are stored at a negative index in the
156  /// Objects list, this is also the index to the 0th object in the list.
157  unsigned NumFixedObjects = 0;
158
159  /// This boolean keeps track of whether any variable
160  /// sized objects have been allocated yet.
161  bool HasVarSizedObjects = false;
162
163  /// This boolean keeps track of whether there is a call
164  /// to builtin \@llvm.frameaddress.
165  bool FrameAddressTaken = false;
166
167  /// This boolean keeps track of whether there is a call
168  /// to builtin \@llvm.returnaddress.
169  bool ReturnAddressTaken = false;
170
171  /// This boolean keeps track of whether there is a call
172  /// to builtin \@llvm.experimental.stackmap.
173  bool HasStackMap = false;
174
175  /// This boolean keeps track of whether there is a call
176  /// to builtin \@llvm.experimental.patchpoint.
177  bool HasPatchPoint = false;
178
179  /// The prolog/epilog code inserter calculates the final stack
180  /// offsets for all of the fixed size objects, updating the Objects list
181  /// above.  It then updates StackSize to contain the number of bytes that need
182  /// to be allocated on entry to the function.
183  uint64_t StackSize = 0;
184
185  /// The amount that a frame offset needs to be adjusted to
186  /// have the actual offset from the stack/frame pointer.  The exact usage of
187  /// this is target-dependent, but it is typically used to adjust between
188  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
189  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
190  /// to the distance between the initial SP and the value in FP.  For many
191  /// targets, this value is only used when generating debug info (via
192  /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
193  /// corresponding adjustments are performed directly.
194  int OffsetAdjustment = 0;
195
196  /// The prolog/epilog code inserter may process objects that require greater
197  /// alignment than the default alignment the target provides.
198  /// To handle this, MaxAlignment is set to the maximum alignment
199  /// needed by the objects on the current frame.  If this is greater than the
200  /// native alignment maintained by the compiler, dynamic alignment code will
201  /// be needed.
202  ///
203  unsigned MaxAlignment = 0;
204
205  /// Set to true if this function adjusts the stack -- e.g.,
206  /// when calling another function. This is only valid during and after
207  /// prolog/epilog code insertion.
208  bool AdjustsStack = false;
209
210  /// Set to true if this function has any function calls.
211  bool HasCalls = false;
212
213  /// The frame index for the stack protector.
214  int StackProtectorIdx = -1;
215
216  /// The frame index for the function context. Used for SjLj exceptions.
217  int FunctionContextIdx = -1;
218
219  /// This contains the size of the largest call frame if the target uses frame
220  /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
221  /// class).  This information is important for frame pointer elimination.
222  /// It is only valid during and after prolog/epilog code insertion.
223  unsigned MaxCallFrameSize = ~0u;
224
225  /// The prolog/epilog code inserter fills in this vector with each
226  /// callee saved register saved in the frame.  Beyond its use by the prolog/
227  /// epilog code inserter, this data used for debug info and exception
228  /// handling.
229  std::vector<CalleeSavedInfo> CSInfo;
230
231  /// Has CSInfo been set yet?
232  bool CSIValid = false;
233
234  /// References to frame indices which are mapped
235  /// into the local frame allocation block. <FrameIdx, LocalOffset>
236  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
237
238  /// Size of the pre-allocated local frame block.
239  int64_t LocalFrameSize = 0;
240
241  /// Required alignment of the local object blob, which is the strictest
242  /// alignment of any object in it.
243  unsigned LocalFrameMaxAlign = 0;
244
245  /// Whether the local object blob needs to be allocated together. If not,
246  /// PEI should ignore the isPreAllocated flags on the stack objects and
247  /// just allocate them normally.
248  bool UseLocalStackAllocationBlock = false;
249
250  /// True if the function dynamically adjusts the stack pointer through some
251  /// opaque mechanism like inline assembly or Win32 EH.
252  bool HasOpaqueSPAdjustment = false;
253
254  /// True if the function contains operations which will lower down to
255  /// instructions which manipulate the stack pointer.
256  bool HasCopyImplyingStackAdjustment = false;
257
258  /// True if the function contains a call to the llvm.vastart intrinsic.
259  bool HasVAStart = false;
260
261  /// True if this is a varargs function that contains a musttail call.
262  bool HasMustTailInVarArgFunc = false;
263
264  /// True if this function contains a tail call. If so immutable objects like
265  /// function arguments are no longer so. A tail call *can* override fixed
266  /// stack objects like arguments so we can't treat them as immutable.
267  bool HasTailCall = false;
268
269  /// Not null, if shrink-wrapping found a better place for the prologue.
270  MachineBasicBlock *Save = nullptr;
271  /// Not null, if shrink-wrapping found a better place for the epilogue.
272  MachineBasicBlock *Restore = nullptr;
273
274public:
275  explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
276                            bool ForcedRealign)
277      : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
278        ForcedRealign(ForcedRealign) {}
279
280  /// Return true if there are any stack objects in this function.
281  bool hasStackObjects() const { return !Objects.empty(); }
282
283  /// This method may be called any time after instruction
284  /// selection is complete to determine if the stack frame for this function
285  /// contains any variable sized objects.
286  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
287
288  /// Return the index for the stack protector object.
289  int getStackProtectorIndex() const { return StackProtectorIdx; }
290  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
291  bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
292
293  /// Return the index for the function context object.
294  /// This object is used for SjLj exceptions.
295  int getFunctionContextIndex() const { return FunctionContextIdx; }
296  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
297
298  /// This method may be called any time after instruction
299  /// selection is complete to determine if there is a call to
300  /// \@llvm.frameaddress in this function.
301  bool isFrameAddressTaken() const { return FrameAddressTaken; }
302  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
303
304  /// This method may be called any time after
305  /// instruction selection is complete to determine if there is a call to
306  /// \@llvm.returnaddress in this function.
307  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
308  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
309
310  /// This method may be called any time after instruction
311  /// selection is complete to determine if there is a call to builtin
312  /// \@llvm.experimental.stackmap.
313  bool hasStackMap() const { return HasStackMap; }
314  void setHasStackMap(bool s = true) { HasStackMap = s; }
315
316  /// This method may be called any time after instruction
317  /// selection is complete to determine if there is a call to builtin
318  /// \@llvm.experimental.patchpoint.
319  bool hasPatchPoint() const { return HasPatchPoint; }
320  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
321
322  /// Return the minimum frame object index.
323  int getObjectIndexBegin() const { return -NumFixedObjects; }
324
325  /// Return one past the maximum frame object index.
326  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
327
328  /// Return the number of fixed objects.
329  unsigned getNumFixedObjects() const { return NumFixedObjects; }
330
331  /// Return the number of objects.
332  unsigned getNumObjects() const { return Objects.size(); }
333
334  /// Map a frame index into the local object block
335  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
336    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
337    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
338  }
339
340  /// Get the local offset mapping for a for an object.
341  std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
342    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
343            "Invalid local object reference!");
344    return LocalFrameObjects[i];
345  }
346
347  /// Return the number of objects allocated into the local object block.
348  int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
349
350  /// Set the size of the local object blob.
351  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
352
353  /// Get the size of the local object blob.
354  int64_t getLocalFrameSize() const { return LocalFrameSize; }
355
356  /// Required alignment of the local object blob,
357  /// which is the strictest alignment of any object in it.
358  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
359
360  /// Return the required alignment of the local object blob.
361  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
362
363  /// Get whether the local allocation blob should be allocated together or
364  /// let PEI allocate the locals in it directly.
365  bool getUseLocalStackAllocationBlock() const {
366    return UseLocalStackAllocationBlock;
367  }
368
369  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
370  /// should be allocated together or let PEI allocate the locals in it
371  /// directly.
372  void setUseLocalStackAllocationBlock(bool v) {
373    UseLocalStackAllocationBlock = v;
374  }
375
376  /// Return true if the object was pre-allocated into the local block.
377  bool isObjectPreAllocated(int ObjectIdx) const {
378    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
379           "Invalid Object Idx!");
380    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
381  }
382
383  /// Return the size of the specified object.
384  int64_t getObjectSize(int ObjectIdx) const {
385    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
386           "Invalid Object Idx!");
387    return Objects[ObjectIdx+NumFixedObjects].Size;
388  }
389
390  /// Change the size of the specified stack object.
391  void setObjectSize(int ObjectIdx, int64_t Size) {
392    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
393           "Invalid Object Idx!");
394    Objects[ObjectIdx+NumFixedObjects].Size = Size;
395  }
396
397  /// Return the alignment of the specified stack object.
398  unsigned getObjectAlignment(int ObjectIdx) const {
399    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
400           "Invalid Object Idx!");
401    return Objects[ObjectIdx+NumFixedObjects].Alignment;
402  }
403
404  /// setObjectAlignment - Change the alignment of the specified stack object.
405  void setObjectAlignment(int ObjectIdx, unsigned Align) {
406    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
407           "Invalid Object Idx!");
408    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
409    ensureMaxAlignment(Align);
410  }
411
412  /// Return the underlying Alloca of the specified
413  /// stack object if it exists. Returns 0 if none exists.
414  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
415    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
416           "Invalid Object Idx!");
417    return Objects[ObjectIdx+NumFixedObjects].Alloca;
418  }
419
420  /// Return the assigned stack offset of the specified object
421  /// from the incoming stack pointer.
422  int64_t getObjectOffset(int ObjectIdx) const {
423    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
424           "Invalid Object Idx!");
425    assert(!isDeadObjectIndex(ObjectIdx) &&
426           "Getting frame offset for a dead object?");
427    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
428  }
429
430  bool isObjectZExt(int ObjectIdx) const {
431    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
432           "Invalid Object Idx!");
433    return Objects[ObjectIdx+NumFixedObjects].isZExt;
434  }
435
436  void setObjectZExt(int ObjectIdx, bool IsZExt) {
437    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
438           "Invalid Object Idx!");
439    Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
440  }
441
442  bool isObjectSExt(int ObjectIdx) const {
443    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
444           "Invalid Object Idx!");
445    return Objects[ObjectIdx+NumFixedObjects].isSExt;
446  }
447
448  void setObjectSExt(int ObjectIdx, bool IsSExt) {
449    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
450           "Invalid Object Idx!");
451    Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
452  }
453
454  /// Set the stack frame offset of the specified object. The
455  /// offset is relative to the stack pointer on entry to the function.
456  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
457    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
458           "Invalid Object Idx!");
459    assert(!isDeadObjectIndex(ObjectIdx) &&
460           "Setting frame offset for a dead object?");
461    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
462  }
463
464  /// Return the number of bytes that must be allocated to hold
465  /// all of the fixed size frame objects.  This is only valid after
466  /// Prolog/Epilog code insertion has finalized the stack frame layout.
467  uint64_t getStackSize() const { return StackSize; }
468
469  /// Set the size of the stack.
470  void setStackSize(uint64_t Size) { StackSize = Size; }
471
472  /// Estimate and return the size of the stack frame.
473  unsigned estimateStackSize(const MachineFunction &MF) const;
474
475  /// Return the correction for frame offsets.
476  int getOffsetAdjustment() const { return OffsetAdjustment; }
477
478  /// Set the correction for frame offsets.
479  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
480
481  /// Return the alignment in bytes that this function must be aligned to,
482  /// which is greater than the default stack alignment provided by the target.
483  unsigned getMaxAlignment() const { return MaxAlignment; }
484
485  /// Make sure the function is at least Align bytes aligned.
486  void ensureMaxAlignment(unsigned Align);
487
488  /// Return true if this function adjusts the stack -- e.g.,
489  /// when calling another function. This is only valid during and after
490  /// prolog/epilog code insertion.
491  bool adjustsStack() const { return AdjustsStack; }
492  void setAdjustsStack(bool V) { AdjustsStack = V; }
493
494  /// Return true if the current function has any function calls.
495  bool hasCalls() const { return HasCalls; }
496  void setHasCalls(bool V) { HasCalls = V; }
497
498  /// Returns true if the function contains opaque dynamic stack adjustments.
499  bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
500  void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
501
502  /// Returns true if the function contains operations which will lower down to
503  /// instructions which manipulate the stack pointer.
504  bool hasCopyImplyingStackAdjustment() const {
505    return HasCopyImplyingStackAdjustment;
506  }
507  void setHasCopyImplyingStackAdjustment(bool B) {
508    HasCopyImplyingStackAdjustment = B;
509  }
510
511  /// Returns true if the function calls the llvm.va_start intrinsic.
512  bool hasVAStart() const { return HasVAStart; }
513  void setHasVAStart(bool B) { HasVAStart = B; }
514
515  /// Returns true if the function is variadic and contains a musttail call.
516  bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
517  void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
518
519  /// Returns true if the function contains a tail call.
520  bool hasTailCall() const { return HasTailCall; }
521  void setHasTailCall() { HasTailCall = true; }
522
523  /// Computes the maximum size of a callframe and the AdjustsStack property.
524  /// This only works for targets defining
525  /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
526  /// and getFrameSize().
527  /// This is usually computed by the prologue epilogue inserter but some
528  /// targets may call this to compute it earlier.
529  void computeMaxCallFrameSize(const MachineFunction &MF);
530
531  /// Return the maximum size of a call frame that must be
532  /// allocated for an outgoing function call.  This is only available if
533  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
534  /// then only during or after prolog/epilog code insertion.
535  ///
536  unsigned getMaxCallFrameSize() const {
537    // TODO: Enable this assert when targets are fixed.
538    //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
539    if (!isMaxCallFrameSizeComputed())
540      return 0;
541    return MaxCallFrameSize;
542  }
543  bool isMaxCallFrameSizeComputed() const {
544    return MaxCallFrameSize != ~0u;
545  }
546  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
547
548  /// Create a new object at a fixed location on the stack.
549  /// All fixed objects should be created before other objects are created for
550  /// efficiency. By default, fixed objects are not pointed to by LLVM IR
551  /// values. This returns an index with a negative value.
552  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
553                        bool isAliased = false);
554
555  /// Create a spill slot at a fixed location on the stack.
556  /// Returns an index with a negative value.
557  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
558                                  bool Immutable = false);
559
560  /// Returns true if the specified index corresponds to a fixed stack object.
561  bool isFixedObjectIndex(int ObjectIdx) const {
562    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
563  }
564
565  /// Returns true if the specified index corresponds
566  /// to an object that might be pointed to by an LLVM IR value.
567  bool isAliasedObjectIndex(int ObjectIdx) const {
568    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
569           "Invalid Object Idx!");
570    return Objects[ObjectIdx+NumFixedObjects].isAliased;
571  }
572
573  /// Returns true if the specified index corresponds to an immutable object.
574  bool isImmutableObjectIndex(int ObjectIdx) const {
575    // Tail calling functions can clobber their function arguments.
576    if (HasTailCall)
577      return false;
578    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
579           "Invalid Object Idx!");
580    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
581  }
582
583  /// Marks the immutability of an object.
584  void setIsImmutableObjectIndex(int ObjectIdx, bool Immutable) {
585    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
586           "Invalid Object Idx!");
587    Objects[ObjectIdx+NumFixedObjects].isImmutable = Immutable;
588  }
589
590  /// Returns true if the specified index corresponds to a spill slot.
591  bool isSpillSlotObjectIndex(int ObjectIdx) const {
592    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
593           "Invalid Object Idx!");
594    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
595  }
596
597  bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
598    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
599           "Invalid Object Idx!");
600    return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
601  }
602
603  /// Returns true if the specified index corresponds to a dead object.
604  bool isDeadObjectIndex(int ObjectIdx) const {
605    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
606           "Invalid Object Idx!");
607    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
608  }
609
610  /// Returns true if the specified index corresponds to a variable sized
611  /// object.
612  bool isVariableSizedObjectIndex(int ObjectIdx) const {
613    assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
614           "Invalid Object Idx!");
615    return Objects[ObjectIdx + NumFixedObjects].Size == 0;
616  }
617
618  void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
619    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
620           "Invalid Object Idx!");
621    Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
622    assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
623  }
624
625  /// Create a new statically sized stack object, returning
626  /// a nonnegative identifier to represent it.
627  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
628                        const AllocaInst *Alloca = nullptr);
629
630  /// Create a new statically sized stack object that represents a spill slot,
631  /// returning a nonnegative identifier to represent it.
632  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
633
634  /// Remove or mark dead a statically sized stack object.
635  void RemoveStackObject(int ObjectIdx) {
636    // Mark it dead.
637    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
638  }
639
640  /// Notify the MachineFrameInfo object that a variable sized object has been
641  /// created.  This must be created whenever a variable sized object is
642  /// created, whether or not the index returned is actually used.
643  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
644
645  /// Returns a reference to call saved info vector for the current function.
646  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
647    return CSInfo;
648  }
649
650  /// Used by prolog/epilog inserter to set the function's callee saved
651  /// information.
652  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
653    CSInfo = CSI;
654  }
655
656  /// Has the callee saved info been calculated yet?
657  bool isCalleeSavedInfoValid() const { return CSIValid; }
658
659  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
660
661  MachineBasicBlock *getSavePoint() const { return Save; }
662  void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
663  MachineBasicBlock *getRestorePoint() const { return Restore; }
664  void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
665
666  /// Return a set of physical registers that are pristine.
667  ///
668  /// Pristine registers hold a value that is useless to the current function,
669  /// but that must be preserved - they are callee saved registers that are not
670  /// saved.
671  ///
672  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
673  /// method always returns an empty set.
674  BitVector getPristineRegs(const MachineFunction &MF) const;
675
676  /// Used by the MachineFunction printer to print information about
677  /// stack objects. Implemented in MachineFunction.cpp.
678  void print(const MachineFunction &MF, raw_ostream &OS) const;
679
680  /// dump - Print the function to stderr.
681  void dump(const MachineFunction &MF) const;
682};
683
684} // End llvm namespace
685
686#endif
687