MachineFrameInfo.h revision 314564
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class DataLayout;
25class TargetRegisterClass;
26class Type;
27class MachineFunction;
28class MachineBasicBlock;
29class TargetFrameLowering;
30class TargetMachine;
31class BitVector;
32class Value;
33class AllocaInst;
34
35/// The CalleeSavedInfo class tracks the information need to locate where a
36/// callee saved register is in the current frame.
37class CalleeSavedInfo {
38  unsigned Reg;
39  int FrameIdx;
40
41public:
42  explicit CalleeSavedInfo(unsigned R, int FI = 0)
43  : Reg(R), FrameIdx(FI) {}
44
45  // Accessors.
46  unsigned getReg()                        const { return Reg; }
47  int getFrameIdx()                        const { return FrameIdx; }
48  void setFrameIdx(int FI)                       { FrameIdx = FI; }
49};
50
51/// The MachineFrameInfo class represents an abstract stack frame until
52/// prolog/epilog code is inserted.  This class is key to allowing stack frame
53/// representation optimizations, such as frame pointer elimination.  It also
54/// allows more mundane (but still important) optimizations, such as reordering
55/// of abstract objects on the stack frame.
56///
57/// To support this, the class assigns unique integer identifiers to stack
58/// objects requested clients.  These identifiers are negative integers for
59/// fixed stack objects (such as arguments passed on the stack) or nonnegative
60/// for objects that may be reordered.  Instructions which refer to stack
61/// objects use a special MO_FrameIndex operand to represent these frame
62/// indexes.
63///
64/// Because this class keeps track of all references to the stack frame, it
65/// knows when a variable sized object is allocated on the stack.  This is the
66/// sole condition which prevents frame pointer elimination, which is an
67/// important optimization on register-poor architectures.  Because original
68/// variable sized alloca's in the source program are the only source of
69/// variable sized stack objects, it is safe to decide whether there will be
70/// any variable sized objects before all stack objects are known (for
71/// example, register allocator spill code never needs variable sized
72/// objects).
73///
74/// When prolog/epilog code emission is performed, the final stack frame is
75/// built and the machine instructions are modified to refer to the actual
76/// stack offsets of the object, eliminating all MO_FrameIndex operands from
77/// the program.
78///
79/// @brief Abstract Stack Frame Information
80class MachineFrameInfo {
81
82  // Represent a single object allocated on the stack.
83  struct StackObject {
84    // The offset of this object from the stack pointer on entry to
85    // the function.  This field has no meaning for a variable sized element.
86    int64_t SPOffset;
87
88    // The size of this object on the stack. 0 means a variable sized object,
89    // ~0ULL means a dead object.
90    uint64_t Size;
91
92    // The required alignment of this stack slot.
93    unsigned Alignment;
94
95    // If true, the value of the stack object is set before
96    // entering the function and is not modified inside the function. By
97    // default, fixed objects are immutable unless marked otherwise.
98    bool isImmutable;
99
100    // If true the stack object is used as spill slot. It
101    // cannot alias any other memory objects.
102    bool isSpillSlot;
103
104    /// If true, this stack slot is used to spill a value (could be deopt
105    /// and/or GC related) over a statepoint. We know that the address of the
106    /// slot can't alias any LLVM IR value.  This is very similar to a Spill
107    /// Slot, but is created by statepoint lowering is SelectionDAG, not the
108    /// register allocator.
109    bool isStatepointSpillSlot;
110
111    /// If this stack object is originated from an Alloca instruction
112    /// this value saves the original IR allocation. Can be NULL.
113    const AllocaInst *Alloca;
114
115    // If true, the object was mapped into the local frame
116    // block and doesn't need additional handling for allocation beyond that.
117    bool PreAllocated;
118
119    // If true, an LLVM IR value might point to this object.
120    // Normally, spill slots and fixed-offset objects don't alias IR-accessible
121    // objects, but there are exceptions (on PowerPC, for example, some byval
122    // arguments have ABI-prescribed offsets).
123    bool isAliased;
124
125    /// If true, the object has been zero-extended.
126    bool isZExt;
127
128    /// If true, the object has been zero-extended.
129    bool isSExt;
130
131    StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
132                bool isSS, const AllocaInst *Val, bool A)
133      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
134        isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
135        PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
136  };
137
138  /// The alignment of the stack.
139  unsigned StackAlignment;
140
141  /// Can the stack be realigned. This can be false if the target does not
142  /// support stack realignment, or if the user asks us not to realign the
143  /// stack. In this situation, overaligned allocas are all treated as dynamic
144  /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
145  /// lowering. All non-alloca stack objects have their alignment clamped to the
146  /// base ABI stack alignment.
147  /// FIXME: There is room for improvement in this case, in terms of
148  /// grouping overaligned allocas into a "secondary stack frame" and
149  /// then only use a single alloca to allocate this frame and only a
150  /// single virtual register to access it. Currently, without such an
151  /// optimization, each such alloca gets its own dynamic realignment.
152  bool StackRealignable;
153
154  /// Whether the function has the \c alignstack attribute.
155  bool ForcedRealign;
156
157  /// The list of stack objects allocated.
158  std::vector<StackObject> Objects;
159
160  /// This contains the number of fixed objects contained on
161  /// the stack.  Because fixed objects are stored at a negative index in the
162  /// Objects list, this is also the index to the 0th object in the list.
163  unsigned NumFixedObjects = 0;
164
165  /// This boolean keeps track of whether any variable
166  /// sized objects have been allocated yet.
167  bool HasVarSizedObjects = false;
168
169  /// This boolean keeps track of whether there is a call
170  /// to builtin \@llvm.frameaddress.
171  bool FrameAddressTaken = false;
172
173  /// This boolean keeps track of whether there is a call
174  /// to builtin \@llvm.returnaddress.
175  bool ReturnAddressTaken = false;
176
177  /// This boolean keeps track of whether there is a call
178  /// to builtin \@llvm.experimental.stackmap.
179  bool HasStackMap = false;
180
181  /// This boolean keeps track of whether there is a call
182  /// to builtin \@llvm.experimental.patchpoint.
183  bool HasPatchPoint = false;
184
185  /// The prolog/epilog code inserter calculates the final stack
186  /// offsets for all of the fixed size objects, updating the Objects list
187  /// above.  It then updates StackSize to contain the number of bytes that need
188  /// to be allocated on entry to the function.
189  uint64_t StackSize = 0;
190
191  /// The amount that a frame offset needs to be adjusted to
192  /// have the actual offset from the stack/frame pointer.  The exact usage of
193  /// this is target-dependent, but it is typically used to adjust between
194  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
195  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
196  /// to the distance between the initial SP and the value in FP.  For many
197  /// targets, this value is only used when generating debug info (via
198  /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
199  /// corresponding adjustments are performed directly.
200  int OffsetAdjustment = 0;
201
202  /// The prolog/epilog code inserter may process objects that require greater
203  /// alignment than the default alignment the target provides.
204  /// To handle this, MaxAlignment is set to the maximum alignment
205  /// needed by the objects on the current frame.  If this is greater than the
206  /// native alignment maintained by the compiler, dynamic alignment code will
207  /// be needed.
208  ///
209  unsigned MaxAlignment = 0;
210
211  /// Set to true if this function adjusts the stack -- e.g.,
212  /// when calling another function. This is only valid during and after
213  /// prolog/epilog code insertion.
214  bool AdjustsStack = false;
215
216  /// Set to true if this function has any function calls.
217  bool HasCalls = false;
218
219  /// The frame index for the stack protector.
220  int StackProtectorIdx = -1;
221
222  /// The frame index for the function context. Used for SjLj exceptions.
223  int FunctionContextIdx = -1;
224
225  /// This contains the size of the largest call frame if the target uses frame
226  /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
227  /// class).  This information is important for frame pointer elimination.
228  /// It is only valid during and after prolog/epilog code insertion.
229  unsigned MaxCallFrameSize = 0;
230
231  /// The prolog/epilog code inserter fills in this vector with each
232  /// callee saved register saved in the frame.  Beyond its use by the prolog/
233  /// epilog code inserter, this data used for debug info and exception
234  /// handling.
235  std::vector<CalleeSavedInfo> CSInfo;
236
237  /// Has CSInfo been set yet?
238  bool CSIValid = false;
239
240  /// References to frame indices which are mapped
241  /// into the local frame allocation block. <FrameIdx, LocalOffset>
242  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
243
244  /// Size of the pre-allocated local frame block.
245  int64_t LocalFrameSize = 0;
246
247  /// Required alignment of the local object blob, which is the strictest
248  /// alignment of any object in it.
249  unsigned LocalFrameMaxAlign = 0;
250
251  /// Whether the local object blob needs to be allocated together. If not,
252  /// PEI should ignore the isPreAllocated flags on the stack objects and
253  /// just allocate them normally.
254  bool UseLocalStackAllocationBlock = false;
255
256  /// True if the function dynamically adjusts the stack pointer through some
257  /// opaque mechanism like inline assembly or Win32 EH.
258  bool HasOpaqueSPAdjustment = false;
259
260  /// True if the function contains operations which will lower down to
261  /// instructions which manipulate the stack pointer.
262  bool HasCopyImplyingStackAdjustment = false;
263
264  /// True if the function contains a call to the llvm.vastart intrinsic.
265  bool HasVAStart = false;
266
267  /// True if this is a varargs function that contains a musttail call.
268  bool HasMustTailInVarArgFunc = false;
269
270  /// True if this function contains a tail call. If so immutable objects like
271  /// function arguments are no longer so. A tail call *can* override fixed
272  /// stack objects like arguments so we can't treat them as immutable.
273  bool HasTailCall = false;
274
275  /// Not null, if shrink-wrapping found a better place for the prologue.
276  MachineBasicBlock *Save = nullptr;
277  /// Not null, if shrink-wrapping found a better place for the epilogue.
278  MachineBasicBlock *Restore = nullptr;
279
280public:
281  explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
282                            bool ForcedRealign)
283      : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
284        ForcedRealign(ForcedRealign) {}
285
286  /// Return true if there are any stack objects in this function.
287  bool hasStackObjects() const { return !Objects.empty(); }
288
289  /// This method may be called any time after instruction
290  /// selection is complete to determine if the stack frame for this function
291  /// contains any variable sized objects.
292  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
293
294  /// Return the index for the stack protector object.
295  int getStackProtectorIndex() const { return StackProtectorIdx; }
296  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
297  bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
298
299  /// Return the index for the function context object.
300  /// This object is used for SjLj exceptions.
301  int getFunctionContextIndex() const { return FunctionContextIdx; }
302  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
303
304  /// This method may be called any time after instruction
305  /// selection is complete to determine if there is a call to
306  /// \@llvm.frameaddress in this function.
307  bool isFrameAddressTaken() const { return FrameAddressTaken; }
308  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
309
310  /// This method may be called any time after
311  /// instruction selection is complete to determine if there is a call to
312  /// \@llvm.returnaddress in this function.
313  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
314  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
315
316  /// This method may be called any time after instruction
317  /// selection is complete to determine if there is a call to builtin
318  /// \@llvm.experimental.stackmap.
319  bool hasStackMap() const { return HasStackMap; }
320  void setHasStackMap(bool s = true) { HasStackMap = s; }
321
322  /// This method may be called any time after instruction
323  /// selection is complete to determine if there is a call to builtin
324  /// \@llvm.experimental.patchpoint.
325  bool hasPatchPoint() const { return HasPatchPoint; }
326  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
327
328  /// Return the minimum frame object index.
329  int getObjectIndexBegin() const { return -NumFixedObjects; }
330
331  /// Return one past the maximum frame object index.
332  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
333
334  /// Return the number of fixed objects.
335  unsigned getNumFixedObjects() const { return NumFixedObjects; }
336
337  /// Return the number of objects.
338  unsigned getNumObjects() const { return Objects.size(); }
339
340  /// Map a frame index into the local object block
341  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
342    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
343    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
344  }
345
346  /// Get the local offset mapping for a for an object.
347  std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
348    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
349            "Invalid local object reference!");
350    return LocalFrameObjects[i];
351  }
352
353  /// Return the number of objects allocated into the local object block.
354  int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
355
356  /// Set the size of the local object blob.
357  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
358
359  /// Get the size of the local object blob.
360  int64_t getLocalFrameSize() const { return LocalFrameSize; }
361
362  /// Required alignment of the local object blob,
363  /// which is the strictest alignment of any object in it.
364  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
365
366  /// Return the required alignment of the local object blob.
367  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
368
369  /// Get whether the local allocation blob should be allocated together or
370  /// let PEI allocate the locals in it directly.
371  bool getUseLocalStackAllocationBlock() const {
372    return UseLocalStackAllocationBlock;
373  }
374
375  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
376  /// should be allocated together or let PEI allocate the locals in it
377  /// directly.
378  void setUseLocalStackAllocationBlock(bool v) {
379    UseLocalStackAllocationBlock = v;
380  }
381
382  /// Return true if the object was pre-allocated into the local block.
383  bool isObjectPreAllocated(int ObjectIdx) const {
384    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
385           "Invalid Object Idx!");
386    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
387  }
388
389  /// Return the size of the specified object.
390  int64_t getObjectSize(int ObjectIdx) const {
391    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
392           "Invalid Object Idx!");
393    return Objects[ObjectIdx+NumFixedObjects].Size;
394  }
395
396  /// Change the size of the specified stack object.
397  void setObjectSize(int ObjectIdx, int64_t Size) {
398    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
399           "Invalid Object Idx!");
400    Objects[ObjectIdx+NumFixedObjects].Size = Size;
401  }
402
403  /// Return the alignment of the specified stack object.
404  unsigned getObjectAlignment(int ObjectIdx) const {
405    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
406           "Invalid Object Idx!");
407    return Objects[ObjectIdx+NumFixedObjects].Alignment;
408  }
409
410  /// setObjectAlignment - Change the alignment of the specified stack object.
411  void setObjectAlignment(int ObjectIdx, unsigned Align) {
412    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
413           "Invalid Object Idx!");
414    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
415    ensureMaxAlignment(Align);
416  }
417
418  /// Return the underlying Alloca of the specified
419  /// stack object if it exists. Returns 0 if none exists.
420  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
421    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
422           "Invalid Object Idx!");
423    return Objects[ObjectIdx+NumFixedObjects].Alloca;
424  }
425
426  /// Return the assigned stack offset of the specified object
427  /// from the incoming stack pointer.
428  int64_t getObjectOffset(int ObjectIdx) const {
429    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
430           "Invalid Object Idx!");
431    assert(!isDeadObjectIndex(ObjectIdx) &&
432           "Getting frame offset for a dead object?");
433    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
434  }
435
436  bool isObjectZExt(int ObjectIdx) const {
437    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
438           "Invalid Object Idx!");
439    return Objects[ObjectIdx+NumFixedObjects].isZExt;
440  }
441
442  void setObjectZExt(int ObjectIdx, bool IsZExt) {
443    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
444           "Invalid Object Idx!");
445    Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
446  }
447
448  bool isObjectSExt(int ObjectIdx) const {
449    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
450           "Invalid Object Idx!");
451    return Objects[ObjectIdx+NumFixedObjects].isSExt;
452  }
453
454  void setObjectSExt(int ObjectIdx, bool IsSExt) {
455    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
456           "Invalid Object Idx!");
457    Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
458  }
459
460  /// Set the stack frame offset of the specified object. The
461  /// offset is relative to the stack pointer on entry to the function.
462  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
463    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
464           "Invalid Object Idx!");
465    assert(!isDeadObjectIndex(ObjectIdx) &&
466           "Setting frame offset for a dead object?");
467    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
468  }
469
470  /// Return the number of bytes that must be allocated to hold
471  /// all of the fixed size frame objects.  This is only valid after
472  /// Prolog/Epilog code insertion has finalized the stack frame layout.
473  uint64_t getStackSize() const { return StackSize; }
474
475  /// Set the size of the stack.
476  void setStackSize(uint64_t Size) { StackSize = Size; }
477
478  /// Estimate and return the size of the stack frame.
479  unsigned estimateStackSize(const MachineFunction &MF) const;
480
481  /// Return the correction for frame offsets.
482  int getOffsetAdjustment() const { return OffsetAdjustment; }
483
484  /// Set the correction for frame offsets.
485  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
486
487  /// Return the alignment in bytes that this function must be aligned to,
488  /// which is greater than the default stack alignment provided by the target.
489  unsigned getMaxAlignment() const { return MaxAlignment; }
490
491  /// Make sure the function is at least Align bytes aligned.
492  void ensureMaxAlignment(unsigned Align);
493
494  /// Return true if this function adjusts the stack -- e.g.,
495  /// when calling another function. This is only valid during and after
496  /// prolog/epilog code insertion.
497  bool adjustsStack() const { return AdjustsStack; }
498  void setAdjustsStack(bool V) { AdjustsStack = V; }
499
500  /// Return true if the current function has any function calls.
501  bool hasCalls() const { return HasCalls; }
502  void setHasCalls(bool V) { HasCalls = V; }
503
504  /// Returns true if the function contains opaque dynamic stack adjustments.
505  bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
506  void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
507
508  /// Returns true if the function contains operations which will lower down to
509  /// instructions which manipulate the stack pointer.
510  bool hasCopyImplyingStackAdjustment() const {
511    return HasCopyImplyingStackAdjustment;
512  }
513  void setHasCopyImplyingStackAdjustment(bool B) {
514    HasCopyImplyingStackAdjustment = B;
515  }
516
517  /// Returns true if the function calls the llvm.va_start intrinsic.
518  bool hasVAStart() const { return HasVAStart; }
519  void setHasVAStart(bool B) { HasVAStart = B; }
520
521  /// Returns true if the function is variadic and contains a musttail call.
522  bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
523  void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
524
525  /// Returns true if the function contains a tail call.
526  bool hasTailCall() const { return HasTailCall; }
527  void setHasTailCall() { HasTailCall = true; }
528
529  /// Return the maximum size of a call frame that must be
530  /// allocated for an outgoing function call.  This is only available if
531  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
532  /// then only during or after prolog/epilog code insertion.
533  ///
534  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
535  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
536
537  /// Create a new object at a fixed location on the stack.
538  /// All fixed objects should be created before other objects are created for
539  /// efficiency. By default, fixed objects are not pointed to by LLVM IR
540  /// values. This returns an index with a negative value.
541  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
542                        bool isAliased = false);
543
544  /// Create a spill slot at a fixed location on the stack.
545  /// Returns an index with a negative value.
546  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
547                                  bool Immutable = false);
548
549  /// Returns true if the specified index corresponds to a fixed stack object.
550  bool isFixedObjectIndex(int ObjectIdx) const {
551    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
552  }
553
554  /// Returns true if the specified index corresponds
555  /// to an object that might be pointed to by an LLVM IR value.
556  bool isAliasedObjectIndex(int ObjectIdx) const {
557    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
558           "Invalid Object Idx!");
559    return Objects[ObjectIdx+NumFixedObjects].isAliased;
560  }
561
562  /// isImmutableObjectIndex - Returns true if the specified index corresponds
563  /// to an immutable object.
564  bool isImmutableObjectIndex(int ObjectIdx) const {
565    // Tail calling functions can clobber their function arguments.
566    if (HasTailCall)
567      return false;
568    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
569           "Invalid Object Idx!");
570    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
571  }
572
573  /// Returns true if the specified index corresponds to a spill slot.
574  bool isSpillSlotObjectIndex(int ObjectIdx) const {
575    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
576           "Invalid Object Idx!");
577    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
578  }
579
580  bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
581    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
582           "Invalid Object Idx!");
583    return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
584  }
585
586  /// Returns true if the specified index corresponds to a dead object.
587  bool isDeadObjectIndex(int ObjectIdx) const {
588    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
589           "Invalid Object Idx!");
590    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
591  }
592
593  /// Returns true if the specified index corresponds to a variable sized
594  /// object.
595  bool isVariableSizedObjectIndex(int ObjectIdx) const {
596    assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
597           "Invalid Object Idx!");
598    return Objects[ObjectIdx + NumFixedObjects].Size == 0;
599  }
600
601  void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
602    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
603           "Invalid Object Idx!");
604    Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
605    assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
606  }
607
608  /// Create a new statically sized stack object, returning
609  /// a nonnegative identifier to represent it.
610  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
611                        const AllocaInst *Alloca = nullptr);
612
613  /// Create a new statically sized stack object that represents a spill slot,
614  /// returning a nonnegative identifier to represent it.
615  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
616
617  /// Remove or mark dead a statically sized stack object.
618  void RemoveStackObject(int ObjectIdx) {
619    // Mark it dead.
620    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
621  }
622
623  /// Notify the MachineFrameInfo object that a variable sized object has been
624  /// created.  This must be created whenever a variable sized object is
625  /// created, whether or not the index returned is actually used.
626  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
627
628  /// Returns a reference to call saved info vector for the current function.
629  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
630    return CSInfo;
631  }
632
633  /// Used by prolog/epilog inserter to set the function's callee saved
634  /// information.
635  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
636    CSInfo = CSI;
637  }
638
639  /// Has the callee saved info been calculated yet?
640  bool isCalleeSavedInfoValid() const { return CSIValid; }
641
642  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
643
644  MachineBasicBlock *getSavePoint() const { return Save; }
645  void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
646  MachineBasicBlock *getRestorePoint() const { return Restore; }
647  void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
648
649  /// Return a set of physical registers that are pristine.
650  ///
651  /// Pristine registers hold a value that is useless to the current function,
652  /// but that must be preserved - they are callee saved registers that are not
653  /// saved.
654  ///
655  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
656  /// method always returns an empty set.
657  BitVector getPristineRegs(const MachineFunction &MF) const;
658
659  /// Used by the MachineFunction printer to print information about
660  /// stack objects. Implemented in MachineFunction.cpp.
661  void print(const MachineFunction &MF, raw_ostream &OS) const;
662
663  /// dump - Print the function to stderr.
664  void dump(const MachineFunction &MF) const;
665};
666
667} // End llvm namespace
668
669#endif
670