MachineFrameInfo.h revision 261991
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class DataLayout;
25class TargetRegisterClass;
26class Type;
27class MachineFunction;
28class MachineBasicBlock;
29class TargetFrameLowering;
30class TargetMachine;
31class BitVector;
32class Value;
33class AllocaInst;
34
35/// The CalleeSavedInfo class tracks the information need to locate where a
36/// callee saved register is in the current frame.
37class CalleeSavedInfo {
38  unsigned Reg;
39  int FrameIdx;
40
41public:
42  explicit CalleeSavedInfo(unsigned R, int FI = 0)
43  : Reg(R), FrameIdx(FI) {}
44
45  // Accessors.
46  unsigned getReg()                        const { return Reg; }
47  int getFrameIdx()                        const { return FrameIdx; }
48  void setFrameIdx(int FI)                       { FrameIdx = FI; }
49};
50
51/// The MachineFrameInfo class represents an abstract stack frame until
52/// prolog/epilog code is inserted.  This class is key to allowing stack frame
53/// representation optimizations, such as frame pointer elimination.  It also
54/// allows more mundane (but still important) optimizations, such as reordering
55/// of abstract objects on the stack frame.
56///
57/// To support this, the class assigns unique integer identifiers to stack
58/// objects requested clients.  These identifiers are negative integers for
59/// fixed stack objects (such as arguments passed on the stack) or nonnegative
60/// for objects that may be reordered.  Instructions which refer to stack
61/// objects use a special MO_FrameIndex operand to represent these frame
62/// indexes.
63///
64/// Because this class keeps track of all references to the stack frame, it
65/// knows when a variable sized object is allocated on the stack.  This is the
66/// sole condition which prevents frame pointer elimination, which is an
67/// important optimization on register-poor architectures.  Because original
68/// variable sized alloca's in the source program are the only source of
69/// variable sized stack objects, it is safe to decide whether there will be
70/// any variable sized objects before all stack objects are known (for
71/// example, register allocator spill code never needs variable sized
72/// objects).
73///
74/// When prolog/epilog code emission is performed, the final stack frame is
75/// built and the machine instructions are modified to refer to the actual
76/// stack offsets of the object, eliminating all MO_FrameIndex operands from
77/// the program.
78///
79/// @brief Abstract Stack Frame Information
80class MachineFrameInfo {
81
82  // StackObject - Represent a single object allocated on the stack.
83  struct StackObject {
84    // SPOffset - The offset of this object from the stack pointer on entry to
85    // the function.  This field has no meaning for a variable sized element.
86    int64_t SPOffset;
87
88    // The size of this object on the stack. 0 means a variable sized object,
89    // ~0ULL means a dead object.
90    uint64_t Size;
91
92    // Alignment - The required alignment of this stack slot.
93    unsigned Alignment;
94
95    // isImmutable - If true, the value of the stack object is set before
96    // entering the function and is not modified inside the function. By
97    // default, fixed objects are immutable unless marked otherwise.
98    bool isImmutable;
99
100    // isSpillSlot - If true the stack object is used as spill slot. It
101    // cannot alias any other memory objects.
102    bool isSpillSlot;
103
104    // MayNeedSP - If true the stack object triggered the creation of the stack
105    // protector. We should allocate this object right after the stack
106    // protector.
107    bool MayNeedSP;
108
109    /// Alloca - If this stack object is originated from an Alloca instruction
110    /// this value saves the original IR allocation. Can be NULL.
111    const AllocaInst *Alloca;
112
113    // PreAllocated - If true, the object was mapped into the local frame
114    // block and doesn't need additional handling for allocation beyond that.
115    bool PreAllocated;
116
117    StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
118                bool isSS, bool NSP, const AllocaInst *Val)
119      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
120        isSpillSlot(isSS), MayNeedSP(NSP), Alloca(Val), PreAllocated(false) {}
121  };
122
123  const TargetMachine &TM;
124
125  /// Objects - The list of stack objects allocated...
126  ///
127  std::vector<StackObject> Objects;
128
129  /// NumFixedObjects - This contains the number of fixed objects contained on
130  /// the stack.  Because fixed objects are stored at a negative index in the
131  /// Objects list, this is also the index to the 0th object in the list.
132  ///
133  unsigned NumFixedObjects;
134
135  /// HasVarSizedObjects - This boolean keeps track of whether any variable
136  /// sized objects have been allocated yet.
137  ///
138  bool HasVarSizedObjects;
139
140  /// FrameAddressTaken - This boolean keeps track of whether there is a call
141  /// to builtin \@llvm.frameaddress.
142  bool FrameAddressTaken;
143
144  /// ReturnAddressTaken - This boolean keeps track of whether there is a call
145  /// to builtin \@llvm.returnaddress.
146  bool ReturnAddressTaken;
147
148  /// StackSize - The prolog/epilog code inserter calculates the final stack
149  /// offsets for all of the fixed size objects, updating the Objects list
150  /// above.  It then updates StackSize to contain the number of bytes that need
151  /// to be allocated on entry to the function.
152  ///
153  uint64_t StackSize;
154
155  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
156  /// have the actual offset from the stack/frame pointer.  The exact usage of
157  /// this is target-dependent, but it is typically used to adjust between
158  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
159  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
160  /// to the distance between the initial SP and the value in FP.  For many
161  /// targets, this value is only used when generating debug info (via
162  /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
163  /// corresponding adjustments are performed directly.
164  int OffsetAdjustment;
165
166  /// MaxAlignment - The prolog/epilog code inserter may process objects
167  /// that require greater alignment than the default alignment the target
168  /// provides. To handle this, MaxAlignment is set to the maximum alignment
169  /// needed by the objects on the current frame.  If this is greater than the
170  /// native alignment maintained by the compiler, dynamic alignment code will
171  /// be needed.
172  ///
173  unsigned MaxAlignment;
174
175  /// AdjustsStack - Set to true if this function adjusts the stack -- e.g.,
176  /// when calling another function. This is only valid during and after
177  /// prolog/epilog code insertion.
178  bool AdjustsStack;
179
180  /// HasCalls - Set to true if this function has any function calls.
181  bool HasCalls;
182
183  /// StackProtectorIdx - The frame index for the stack protector.
184  int StackProtectorIdx;
185
186  /// FunctionContextIdx - The frame index for the function context. Used for
187  /// SjLj exceptions.
188  int FunctionContextIdx;
189
190  /// MaxCallFrameSize - This contains the size of the largest call frame if the
191  /// target uses frame setup/destroy pseudo instructions (as defined in the
192  /// TargetFrameInfo class).  This information is important for frame pointer
193  /// elimination.  If is only valid during and after prolog/epilog code
194  /// insertion.
195  ///
196  unsigned MaxCallFrameSize;
197
198  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
199  /// callee saved register saved in the frame.  Beyond its use by the prolog/
200  /// epilog code inserter, this data used for debug info and exception
201  /// handling.
202  std::vector<CalleeSavedInfo> CSInfo;
203
204  /// CSIValid - Has CSInfo been set yet?
205  bool CSIValid;
206
207  /// LocalFrameObjects - References to frame indices which are mapped
208  /// into the local frame allocation block. <FrameIdx, LocalOffset>
209  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
210
211  /// LocalFrameSize - Size of the pre-allocated local frame block.
212  int64_t LocalFrameSize;
213
214  /// Required alignment of the local object blob, which is the strictest
215  /// alignment of any object in it.
216  unsigned LocalFrameMaxAlign;
217
218  /// Whether the local object blob needs to be allocated together. If not,
219  /// PEI should ignore the isPreAllocated flags on the stack objects and
220  /// just allocate them normally.
221  bool UseLocalStackAllocationBlock;
222
223  /// Whether the "realign-stack" option is on.
224  bool RealignOption;
225
226  const TargetFrameLowering *getFrameLowering() const;
227public:
228    explicit MachineFrameInfo(const TargetMachine &TM, bool RealignOpt)
229    : TM(TM), RealignOption(RealignOpt) {
230    StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
231    HasVarSizedObjects = false;
232    FrameAddressTaken = false;
233    ReturnAddressTaken = false;
234    AdjustsStack = false;
235    HasCalls = false;
236    StackProtectorIdx = -1;
237    FunctionContextIdx = -1;
238    MaxCallFrameSize = 0;
239    CSIValid = false;
240    LocalFrameSize = 0;
241    LocalFrameMaxAlign = 0;
242    UseLocalStackAllocationBlock = false;
243  }
244
245  /// hasStackObjects - Return true if there are any stack objects in this
246  /// function.
247  ///
248  bool hasStackObjects() const { return !Objects.empty(); }
249
250  /// hasVarSizedObjects - This method may be called any time after instruction
251  /// selection is complete to determine if the stack frame for this function
252  /// contains any variable sized objects.
253  ///
254  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
255
256  /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
257  /// stack protector object.
258  ///
259  int getStackProtectorIndex() const { return StackProtectorIdx; }
260  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
261
262  /// getFunctionContextIndex/setFunctionContextIndex - Return the index for the
263  /// function context object. This object is used for SjLj exceptions.
264  int getFunctionContextIndex() const { return FunctionContextIdx; }
265  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
266
267  /// isFrameAddressTaken - This method may be called any time after instruction
268  /// selection is complete to determine if there is a call to
269  /// \@llvm.frameaddress in this function.
270  bool isFrameAddressTaken() const { return FrameAddressTaken; }
271  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
272
273  /// isReturnAddressTaken - This method may be called any time after
274  /// instruction selection is complete to determine if there is a call to
275  /// \@llvm.returnaddress in this function.
276  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
277  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
278
279  /// getObjectIndexBegin - Return the minimum frame object index.
280  ///
281  int getObjectIndexBegin() const { return -NumFixedObjects; }
282
283  /// getObjectIndexEnd - Return one past the maximum frame object index.
284  ///
285  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
286
287  /// getNumFixedObjects - Return the number of fixed objects.
288  unsigned getNumFixedObjects() const { return NumFixedObjects; }
289
290  /// getNumObjects - Return the number of objects.
291  ///
292  unsigned getNumObjects() const { return Objects.size(); }
293
294  /// mapLocalFrameObject - Map a frame index into the local object block
295  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
296    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
297    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
298  }
299
300  /// getLocalFrameObjectMap - Get the local offset mapping for a for an object
301  std::pair<int, int64_t> getLocalFrameObjectMap(int i) {
302    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
303            "Invalid local object reference!");
304    return LocalFrameObjects[i];
305  }
306
307  /// getLocalFrameObjectCount - Return the number of objects allocated into
308  /// the local object block.
309  int64_t getLocalFrameObjectCount() { return LocalFrameObjects.size(); }
310
311  /// setLocalFrameSize - Set the size of the local object blob.
312  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
313
314  /// getLocalFrameSize - Get the size of the local object blob.
315  int64_t getLocalFrameSize() const { return LocalFrameSize; }
316
317  /// setLocalFrameMaxAlign - Required alignment of the local object blob,
318  /// which is the strictest alignment of any object in it.
319  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
320
321  /// getLocalFrameMaxAlign - Return the required alignment of the local
322  /// object blob.
323  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
324
325  /// getUseLocalStackAllocationBlock - Get whether the local allocation blob
326  /// should be allocated together or let PEI allocate the locals in it
327  /// directly.
328  bool getUseLocalStackAllocationBlock() {return UseLocalStackAllocationBlock;}
329
330  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
331  /// should be allocated together or let PEI allocate the locals in it
332  /// directly.
333  void setUseLocalStackAllocationBlock(bool v) {
334    UseLocalStackAllocationBlock = v;
335  }
336
337  /// isObjectPreAllocated - Return true if the object was pre-allocated into
338  /// the local block.
339  bool isObjectPreAllocated(int ObjectIdx) const {
340    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
341           "Invalid Object Idx!");
342    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
343  }
344
345  /// getObjectSize - Return the size of the specified object.
346  ///
347  int64_t getObjectSize(int ObjectIdx) const {
348    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
349           "Invalid Object Idx!");
350    return Objects[ObjectIdx+NumFixedObjects].Size;
351  }
352
353  /// setObjectSize - Change the size of the specified stack object.
354  void setObjectSize(int ObjectIdx, int64_t Size) {
355    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
356           "Invalid Object Idx!");
357    Objects[ObjectIdx+NumFixedObjects].Size = Size;
358  }
359
360  /// getObjectAlignment - Return the alignment of the specified stack object.
361  unsigned getObjectAlignment(int ObjectIdx) const {
362    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
363           "Invalid Object Idx!");
364    return Objects[ObjectIdx+NumFixedObjects].Alignment;
365  }
366
367  /// setObjectAlignment - Change the alignment of the specified stack object.
368  void setObjectAlignment(int ObjectIdx, unsigned Align) {
369    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
370           "Invalid Object Idx!");
371    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
372    ensureMaxAlignment(Align);
373  }
374
375  /// getObjectAllocation - Return the underlying Alloca of the specified
376  /// stack object if it exists. Returns 0 if none exists.
377  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
378    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
379           "Invalid Object Idx!");
380    return Objects[ObjectIdx+NumFixedObjects].Alloca;
381  }
382
383  /// NeedsStackProtector - Returns true if the object may need stack
384  /// protectors.
385  bool MayNeedStackProtector(int ObjectIdx) const {
386    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
387           "Invalid Object Idx!");
388    return Objects[ObjectIdx+NumFixedObjects].MayNeedSP;
389  }
390
391  /// getObjectOffset - Return the assigned stack offset of the specified object
392  /// from the incoming stack pointer.
393  ///
394  int64_t getObjectOffset(int ObjectIdx) const {
395    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
396           "Invalid Object Idx!");
397    assert(!isDeadObjectIndex(ObjectIdx) &&
398           "Getting frame offset for a dead object?");
399    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
400  }
401
402  /// setObjectOffset - Set the stack frame offset of the specified object.  The
403  /// offset is relative to the stack pointer on entry to the function.
404  ///
405  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
406    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
407           "Invalid Object Idx!");
408    assert(!isDeadObjectIndex(ObjectIdx) &&
409           "Setting frame offset for a dead object?");
410    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
411  }
412
413  /// getStackSize - Return the number of bytes that must be allocated to hold
414  /// all of the fixed size frame objects.  This is only valid after
415  /// Prolog/Epilog code insertion has finalized the stack frame layout.
416  ///
417  uint64_t getStackSize() const { return StackSize; }
418
419  /// setStackSize - Set the size of the stack...
420  ///
421  void setStackSize(uint64_t Size) { StackSize = Size; }
422
423  /// Estimate and return the size of the stack frame.
424  unsigned estimateStackSize(const MachineFunction &MF) const;
425
426  /// getOffsetAdjustment - Return the correction for frame offsets.
427  ///
428  int getOffsetAdjustment() const { return OffsetAdjustment; }
429
430  /// setOffsetAdjustment - Set the correction for frame offsets.
431  ///
432  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
433
434  /// getMaxAlignment - Return the alignment in bytes that this function must be
435  /// aligned to, which is greater than the default stack alignment provided by
436  /// the target.
437  ///
438  unsigned getMaxAlignment() const { return MaxAlignment; }
439
440  /// ensureMaxAlignment - Make sure the function is at least Align bytes
441  /// aligned.
442  void ensureMaxAlignment(unsigned Align);
443
444  /// AdjustsStack - Return true if this function adjusts the stack -- e.g.,
445  /// when calling another function. This is only valid during and after
446  /// prolog/epilog code insertion.
447  bool adjustsStack() const { return AdjustsStack; }
448  void setAdjustsStack(bool V) { AdjustsStack = V; }
449
450  /// hasCalls - Return true if the current function has any function calls.
451  bool hasCalls() const { return HasCalls; }
452  void setHasCalls(bool V) { HasCalls = V; }
453
454  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
455  /// allocated for an outgoing function call.  This is only available if
456  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
457  /// then only during or after prolog/epilog code insertion.
458  ///
459  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
460  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
461
462  /// CreateFixedObject - Create a new object at a fixed location on the stack.
463  /// All fixed objects should be created before other objects are created for
464  /// efficiency. By default, fixed objects are immutable. This returns an
465  /// index with a negative value.
466  ///
467  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable);
468
469
470  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
471  /// fixed stack object.
472  bool isFixedObjectIndex(int ObjectIdx) const {
473    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
474  }
475
476  /// isImmutableObjectIndex - Returns true if the specified index corresponds
477  /// to an immutable object.
478  bool isImmutableObjectIndex(int ObjectIdx) const {
479    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
480           "Invalid Object Idx!");
481    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
482  }
483
484  /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
485  /// to a spill slot..
486  bool isSpillSlotObjectIndex(int ObjectIdx) const {
487    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
488           "Invalid Object Idx!");
489    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
490  }
491
492  /// isDeadObjectIndex - Returns true if the specified index corresponds to
493  /// a dead object.
494  bool isDeadObjectIndex(int ObjectIdx) const {
495    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
496           "Invalid Object Idx!");
497    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
498  }
499
500  /// CreateStackObject - Create a new statically sized stack object, returning
501  /// a nonnegative identifier to represent it.
502  ///
503  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
504                        bool MayNeedSP = false, const AllocaInst *Alloca = 0);
505
506  /// CreateSpillStackObject - Create a new statically sized stack object that
507  /// represents a spill slot, returning a nonnegative identifier to represent
508  /// it.
509  ///
510  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
511
512  /// RemoveStackObject - Remove or mark dead a statically sized stack object.
513  ///
514  void RemoveStackObject(int ObjectIdx) {
515    // Mark it dead.
516    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
517  }
518
519  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
520  /// variable sized object has been created.  This must be created whenever a
521  /// variable sized object is created, whether or not the index returned is
522  /// actually used.
523  ///
524  int CreateVariableSizedObject(unsigned Alignment);
525
526  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
527  /// current function.
528  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
529    return CSInfo;
530  }
531
532  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
533  /// callee saved information.
534  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
535    CSInfo = CSI;
536  }
537
538  /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
539  bool isCalleeSavedInfoValid() const { return CSIValid; }
540
541  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
542
543  /// getPristineRegs - Return a set of physical registers that are pristine on
544  /// entry to the MBB.
545  ///
546  /// Pristine registers hold a value that is useless to the current function,
547  /// but that must be preserved - they are callee saved registers that have not
548  /// been saved yet.
549  ///
550  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
551  /// method always returns an empty set.
552  BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
553
554  /// print - Used by the MachineFunction printer to print information about
555  /// stack objects. Implemented in MachineFunction.cpp
556  ///
557  void print(const MachineFunction &MF, raw_ostream &OS) const;
558
559  /// dump - Print the function to stderr.
560  void dump(const MachineFunction &MF) const;
561};
562
563} // End llvm namespace
564
565#endif
566