MachineFrameInfo.h revision 198892
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/System/DataTypes.h"
20#include <cassert>
21#include <vector>
22
23namespace llvm {
24class raw_ostream;
25class TargetData;
26class TargetRegisterClass;
27class Type;
28class MachineModuleInfo;
29class MachineFunction;
30class MachineBasicBlock;
31class TargetFrameInfo;
32
33/// The CalleeSavedInfo class tracks the information need to locate where a
34/// callee saved register in the current frame.
35class CalleeSavedInfo {
36
37private:
38  unsigned Reg;
39  const TargetRegisterClass *RegClass;
40  int FrameIdx;
41
42public:
43  CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0)
44  : Reg(R)
45  , RegClass(RC)
46  , FrameIdx(FI)
47  {}
48
49  // Accessors.
50  unsigned getReg()                        const { return Reg; }
51  const TargetRegisterClass *getRegClass() const { return RegClass; }
52  int getFrameIdx()                        const { return FrameIdx; }
53  void setFrameIdx(int FI)                       { FrameIdx = FI; }
54};
55
56/// The MachineFrameInfo class represents an abstract stack frame until
57/// prolog/epilog code is inserted.  This class is key to allowing stack frame
58/// representation optimizations, such as frame pointer elimination.  It also
59/// allows more mundane (but still important) optimizations, such as reordering
60/// of abstract objects on the stack frame.
61///
62/// To support this, the class assigns unique integer identifiers to stack
63/// objects requested clients.  These identifiers are negative integers for
64/// fixed stack objects (such as arguments passed on the stack) or nonnegative
65/// for objects that may be reordered.  Instructions which refer to stack
66/// objects use a special MO_FrameIndex operand to represent these frame
67/// indexes.
68///
69/// Because this class keeps track of all references to the stack frame, it
70/// knows when a variable sized object is allocated on the stack.  This is the
71/// sole condition which prevents frame pointer elimination, which is an
72/// important optimization on register-poor architectures.  Because original
73/// variable sized alloca's in the source program are the only source of
74/// variable sized stack objects, it is safe to decide whether there will be
75/// any variable sized objects before all stack objects are known (for
76/// example, register allocator spill code never needs variable sized
77/// objects).
78///
79/// When prolog/epilog code emission is performed, the final stack frame is
80/// built and the machine instructions are modified to refer to the actual
81/// stack offsets of the object, eliminating all MO_FrameIndex operands from
82/// the program.
83///
84/// @brief Abstract Stack Frame Information
85class MachineFrameInfo {
86
87  // StackObject - Represent a single object allocated on the stack.
88  struct StackObject {
89    // SPOffset - The offset of this object from the stack pointer on entry to
90    // the function.  This field has no meaning for a variable sized element.
91    int64_t SPOffset;
92
93    // The size of this object on the stack. 0 means a variable sized object,
94    // ~0ULL means a dead object.
95    uint64_t Size;
96
97    // Alignment - The required alignment of this stack slot.
98    unsigned Alignment;
99
100    // isImmutable - If true, the value of the stack object is set before
101    // entering the function and is not modified inside the function. By
102    // default, fixed objects are immutable unless marked otherwise.
103    bool isImmutable;
104
105    // isSpillSlot - If true, the stack object is used as spill slot. It
106    // cannot alias any other memory objects.
107    bool isSpillSlot;
108
109    StackObject(uint64_t Sz, unsigned Al, int64_t SP = 0, bool IM = false,
110                bool isSS = false)
111      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
112        isSpillSlot(isSS) {}
113  };
114
115  /// Objects - The list of stack objects allocated...
116  ///
117  std::vector<StackObject> Objects;
118
119  /// NumFixedObjects - This contains the number of fixed objects contained on
120  /// the stack.  Because fixed objects are stored at a negative index in the
121  /// Objects list, this is also the index to the 0th object in the list.
122  ///
123  unsigned NumFixedObjects;
124
125  /// HasVarSizedObjects - This boolean keeps track of whether any variable
126  /// sized objects have been allocated yet.
127  ///
128  bool HasVarSizedObjects;
129
130  /// FrameAddressTaken - This boolean keeps track of whether there is a call
131  /// to builtin \@llvm.frameaddress.
132  bool FrameAddressTaken;
133
134  /// StackSize - The prolog/epilog code inserter calculates the final stack
135  /// offsets for all of the fixed size objects, updating the Objects list
136  /// above.  It then updates StackSize to contain the number of bytes that need
137  /// to be allocated on entry to the function.
138  ///
139  uint64_t StackSize;
140
141  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
142  /// have the actual offset from the stack/frame pointer.  The exact usage of
143  /// this is target-dependent, but it is typically used to adjust between
144  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
145  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
146  /// to the distance between the initial SP and the value in FP.  For many
147  /// targets, this value is only used when generating debug info (via
148  /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
149  /// corresponding adjustments are performed directly.
150  int OffsetAdjustment;
151
152  /// MaxAlignment - The prolog/epilog code inserter may process objects
153  /// that require greater alignment than the default alignment the target
154  /// provides. To handle this, MaxAlignment is set to the maximum alignment
155  /// needed by the objects on the current frame.  If this is greater than the
156  /// native alignment maintained by the compiler, dynamic alignment code will
157  /// be needed.
158  ///
159  unsigned MaxAlignment;
160
161  /// HasCalls - Set to true if this function has any function calls.  This is
162  /// only valid during and after prolog/epilog code insertion.
163  bool HasCalls;
164
165  /// StackProtectorIdx - The frame index for the stack protector.
166  int StackProtectorIdx;
167
168  /// MaxCallFrameSize - This contains the size of the largest call frame if the
169  /// target uses frame setup/destroy pseudo instructions (as defined in the
170  /// TargetFrameInfo class).  This information is important for frame pointer
171  /// elimination.  If is only valid during and after prolog/epilog code
172  /// insertion.
173  ///
174  unsigned MaxCallFrameSize;
175
176  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
177  /// callee saved register saved in the frame.  Beyond its use by the prolog/
178  /// epilog code inserter, this data used for debug info and exception
179  /// handling.
180  std::vector<CalleeSavedInfo> CSInfo;
181
182  /// CSIValid - Has CSInfo been set yet?
183  bool CSIValid;
184
185  /// MMI - This field is set (via setMachineModuleInfo) by a module info
186  /// consumer (ex. DwarfWriter) to indicate that frame layout information
187  /// should be acquired.  Typically, it's the responsibility of the target's
188  /// TargetRegisterInfo prologue/epilogue emitting code to inform
189  /// MachineModuleInfo of frame layouts.
190  MachineModuleInfo *MMI;
191
192  /// TargetFrameInfo - Target information about frame layout.
193  ///
194  const TargetFrameInfo &TFI;
195public:
196  explicit MachineFrameInfo(const TargetFrameInfo &tfi) : TFI(tfi) {
197    StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
198    HasVarSizedObjects = false;
199    FrameAddressTaken = false;
200    HasCalls = false;
201    StackProtectorIdx = -1;
202    MaxCallFrameSize = 0;
203    CSIValid = false;
204    MMI = 0;
205  }
206
207  /// hasStackObjects - Return true if there are any stack objects in this
208  /// function.
209  ///
210  bool hasStackObjects() const { return !Objects.empty(); }
211
212  /// hasVarSizedObjects - This method may be called any time after instruction
213  /// selection is complete to determine if the stack frame for this function
214  /// contains any variable sized objects.
215  ///
216  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
217
218  /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
219  /// stack protector object.
220  ///
221  int getStackProtectorIndex() const { return StackProtectorIdx; }
222  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
223
224  /// isFrameAddressTaken - This method may be called any time after instruction
225  /// selection is complete to determine if there is a call to
226  /// \@llvm.frameaddress in this function.
227  bool isFrameAddressTaken() const { return FrameAddressTaken; }
228  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
229
230  /// getObjectIndexBegin - Return the minimum frame object index.
231  ///
232  int getObjectIndexBegin() const { return -NumFixedObjects; }
233
234  /// getObjectIndexEnd - Return one past the maximum frame object index.
235  ///
236  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
237
238  /// getNumFixedObjects() - Return the number of fixed objects.
239  unsigned getNumFixedObjects() const { return NumFixedObjects; }
240
241  /// getNumObjects() - Return the number of objects.
242  ///
243  unsigned getNumObjects() const { return Objects.size(); }
244
245  /// getObjectSize - Return the size of the specified object.
246  ///
247  int64_t getObjectSize(int ObjectIdx) const {
248    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
249           "Invalid Object Idx!");
250    return Objects[ObjectIdx+NumFixedObjects].Size;
251  }
252
253  /// setObjectSize - Change the size of the specified stack object.
254  void setObjectSize(int ObjectIdx, int64_t Size) {
255    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
256           "Invalid Object Idx!");
257    Objects[ObjectIdx+NumFixedObjects].Size = Size;
258  }
259
260  /// getObjectAlignment - Return the alignment of the specified stack object.
261  unsigned getObjectAlignment(int ObjectIdx) const {
262    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
263           "Invalid Object Idx!");
264    return Objects[ObjectIdx+NumFixedObjects].Alignment;
265  }
266
267  /// setObjectAlignment - Change the alignment of the specified stack object.
268  void setObjectAlignment(int ObjectIdx, unsigned Align) {
269    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
270           "Invalid Object Idx!");
271    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
272  }
273
274  /// getObjectOffset - Return the assigned stack offset of the specified object
275  /// from the incoming stack pointer.
276  ///
277  int64_t getObjectOffset(int ObjectIdx) const {
278    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
279           "Invalid Object Idx!");
280    assert(!isDeadObjectIndex(ObjectIdx) &&
281           "Getting frame offset for a dead object?");
282    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
283  }
284
285  /// setObjectOffset - Set the stack frame offset of the specified object.  The
286  /// offset is relative to the stack pointer on entry to the function.
287  ///
288  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
289    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
290           "Invalid Object Idx!");
291    assert(!isDeadObjectIndex(ObjectIdx) &&
292           "Setting frame offset for a dead object?");
293    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
294  }
295
296  /// getStackSize - Return the number of bytes that must be allocated to hold
297  /// all of the fixed size frame objects.  This is only valid after
298  /// Prolog/Epilog code insertion has finalized the stack frame layout.
299  ///
300  uint64_t getStackSize() const { return StackSize; }
301
302  /// setStackSize - Set the size of the stack...
303  ///
304  void setStackSize(uint64_t Size) { StackSize = Size; }
305
306  /// getOffsetAdjustment - Return the correction for frame offsets.
307  ///
308  int getOffsetAdjustment() const { return OffsetAdjustment; }
309
310  /// setOffsetAdjustment - Set the correction for frame offsets.
311  ///
312  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
313
314  /// getMaxAlignment - Return the alignment in bytes that this function must be
315  /// aligned to, which is greater than the default stack alignment provided by
316  /// the target.
317  ///
318  unsigned getMaxAlignment() const { return MaxAlignment; }
319
320  /// setMaxAlignment - Set the preferred alignment.
321  ///
322  void setMaxAlignment(unsigned Align) { MaxAlignment = Align; }
323
324  /// hasCalls - Return true if the current function has no function calls.
325  /// This is only valid during or after prolog/epilog code emission.
326  ///
327  bool hasCalls() const { return HasCalls; }
328  void setHasCalls(bool V) { HasCalls = V; }
329
330  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
331  /// allocated for an outgoing function call.  This is only available if
332  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
333  /// then only during or after prolog/epilog code insertion.
334  ///
335  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
336  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
337
338  /// CreateFixedObject - Create a new object at a fixed location on the stack.
339  /// All fixed objects should be created before other objects are created for
340  /// efficiency. By default, fixed objects are immutable. This returns an
341  /// index with a negative value.
342  ///
343  int CreateFixedObject(uint64_t Size, int64_t SPOffset,
344                        bool Immutable = true);
345
346
347  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
348  /// fixed stack object.
349  bool isFixedObjectIndex(int ObjectIdx) const {
350    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
351  }
352
353  /// isImmutableObjectIndex - Returns true if the specified index corresponds
354  /// to an immutable object.
355  bool isImmutableObjectIndex(int ObjectIdx) const {
356    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
357           "Invalid Object Idx!");
358    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
359  }
360
361  /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
362  /// to a spill slot..
363  bool isSpillSlotObjectIndex(int ObjectIdx) const {
364    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
365           "Invalid Object Idx!");
366    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;;
367  }
368
369  /// isDeadObjectIndex - Returns true if the specified index corresponds to
370  /// a dead object.
371  bool isDeadObjectIndex(int ObjectIdx) const {
372    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
373           "Invalid Object Idx!");
374    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
375  }
376
377  /// CreateStackObject - Create a new statically sized stack object, returning
378  /// a nonnegative identifier to represent it.
379  ///
380  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS = false) {
381    assert(Size != 0 && "Cannot allocate zero size stack objects!");
382    Objects.push_back(StackObject(Size, Alignment, 0, false, isSS));
383    return (int)Objects.size()-NumFixedObjects-1;
384  }
385
386  /// RemoveStackObject - Remove or mark dead a statically sized stack object.
387  ///
388  void RemoveStackObject(int ObjectIdx) {
389    // Mark it dead.
390    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
391  }
392
393  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
394  /// variable sized object has been created.  This must be created whenever a
395  /// variable sized object is created, whether or not the index returned is
396  /// actually used.
397  ///
398  int CreateVariableSizedObject() {
399    HasVarSizedObjects = true;
400    Objects.push_back(StackObject(0, 1));
401    return (int)Objects.size()-NumFixedObjects-1;
402  }
403
404  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
405  /// current function.
406  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
407    return CSInfo;
408  }
409
410  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
411  /// callee saved information.
412  void  setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
413    CSInfo = CSI;
414  }
415
416  /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
417  bool isCalleeSavedInfoValid() const { return CSIValid; }
418
419  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
420
421  /// getPristineRegs - Return a set of physical registers that are pristine on
422  /// entry to the MBB.
423  ///
424  /// Pristine registers hold a value that is useless to the current function,
425  /// but that must be preserved - they are callee saved registers that have not
426  /// been saved yet.
427  ///
428  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
429  /// method always returns an empty set.
430  BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
431
432  /// getMachineModuleInfo - Used by a prologue/epilogue
433  /// emitter (TargetRegisterInfo) to provide frame layout information.
434  MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
435
436  /// setMachineModuleInfo - Used by a meta info consumer (DwarfWriter) to
437  /// indicate that frame layout information should be gathered.
438  void setMachineModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; }
439
440  /// print - Used by the MachineFunction printer to print information about
441  /// stack objects.  Implemented in MachineFunction.cpp
442  ///
443  void print(const MachineFunction &MF, raw_ostream &OS) const;
444
445  /// dump - Print the function to stderr.
446  void dump(const MachineFunction &MF) const;
447};
448
449} // End llvm namespace
450
451#endif
452