MachineFrameInfo.h revision 198090
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/Support/DataTypes.h"
20#include <cassert>
21#include <vector>
22
23namespace llvm {
24class raw_ostream;
25class TargetData;
26class TargetRegisterClass;
27class Type;
28class MachineModuleInfo;
29class MachineFunction;
30class MachineBasicBlock;
31class TargetFrameInfo;
32
33/// The CalleeSavedInfo class tracks the information need to locate where a
34/// callee saved register in the current frame.
35class CalleeSavedInfo {
36
37private:
38  unsigned Reg;
39  const TargetRegisterClass *RegClass;
40  int FrameIdx;
41
42public:
43  CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0)
44  : Reg(R)
45  , RegClass(RC)
46  , FrameIdx(FI)
47  {}
48
49  // Accessors.
50  unsigned getReg()                        const { return Reg; }
51  const TargetRegisterClass *getRegClass() const { return RegClass; }
52  int getFrameIdx()                        const { return FrameIdx; }
53  void setFrameIdx(int FI)                       { FrameIdx = FI; }
54};
55
56/// The MachineFrameInfo class represents an abstract stack frame until
57/// prolog/epilog code is inserted.  This class is key to allowing stack frame
58/// representation optimizations, such as frame pointer elimination.  It also
59/// allows more mundane (but still important) optimizations, such as reordering
60/// of abstract objects on the stack frame.
61///
62/// To support this, the class assigns unique integer identifiers to stack
63/// objects requested clients.  These identifiers are negative integers for
64/// fixed stack objects (such as arguments passed on the stack) or nonnegative
65/// for objects that may be reordered.  Instructions which refer to stack
66/// objects use a special MO_FrameIndex operand to represent these frame
67/// indexes.
68///
69/// Because this class keeps track of all references to the stack frame, it
70/// knows when a variable sized object is allocated on the stack.  This is the
71/// sole condition which prevents frame pointer elimination, which is an
72/// important optimization on register-poor architectures.  Because original
73/// variable sized alloca's in the source program are the only source of
74/// variable sized stack objects, it is safe to decide whether there will be
75/// any variable sized objects before all stack objects are known (for
76/// example, register allocator spill code never needs variable sized
77/// objects).
78///
79/// When prolog/epilog code emission is performed, the final stack frame is
80/// built and the machine instructions are modified to refer to the actual
81/// stack offsets of the object, eliminating all MO_FrameIndex operands from
82/// the program.
83///
84/// @brief Abstract Stack Frame Information
85class MachineFrameInfo {
86
87  // StackObject - Represent a single object allocated on the stack.
88  struct StackObject {
89    // The size of this object on the stack. 0 means a variable sized object,
90    // ~0ULL means a dead object.
91    uint64_t Size;
92
93    // Alignment - The required alignment of this stack slot.
94    unsigned Alignment;
95
96    // isImmutable - If true, the value of the stack object is set before
97    // entering the function and is not modified inside the function. By
98    // default, fixed objects are immutable unless marked otherwise.
99    bool isImmutable;
100
101    // SPOffset - The offset of this object from the stack pointer on entry to
102    // the function.  This field has no meaning for a variable sized element.
103    int64_t SPOffset;
104
105    StackObject(uint64_t Sz, unsigned Al, int64_t SP = 0, bool IM = false)
106      : Size(Sz), Alignment(Al), isImmutable(IM), SPOffset(SP) {}
107  };
108
109  /// Objects - The list of stack objects allocated...
110  ///
111  std::vector<StackObject> Objects;
112
113  /// NumFixedObjects - This contains the number of fixed objects contained on
114  /// the stack.  Because fixed objects are stored at a negative index in the
115  /// Objects list, this is also the index to the 0th object in the list.
116  ///
117  unsigned NumFixedObjects;
118
119  /// HasVarSizedObjects - This boolean keeps track of whether any variable
120  /// sized objects have been allocated yet.
121  ///
122  bool HasVarSizedObjects;
123
124  /// FrameAddressTaken - This boolean keeps track of whether there is a call
125  /// to builtin \@llvm.frameaddress.
126  bool FrameAddressTaken;
127
128  /// StackSize - The prolog/epilog code inserter calculates the final stack
129  /// offsets for all of the fixed size objects, updating the Objects list
130  /// above.  It then updates StackSize to contain the number of bytes that need
131  /// to be allocated on entry to the function.
132  ///
133  uint64_t StackSize;
134
135  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
136  /// have the actual offset from the stack/frame pointer.  The exact usage of
137  /// this is target-dependent, but it is typically used to adjust between
138  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
139  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
140  /// to the distance between the initial SP and the value in FP.  For many
141  /// targets, this value is only used when generating debug info (via
142  /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
143  /// corresponding adjustments are performed directly.
144  int OffsetAdjustment;
145
146  /// MaxAlignment - The prolog/epilog code inserter may process objects
147  /// that require greater alignment than the default alignment the target
148  /// provides. To handle this, MaxAlignment is set to the maximum alignment
149  /// needed by the objects on the current frame.  If this is greater than the
150  /// native alignment maintained by the compiler, dynamic alignment code will
151  /// be needed.
152  ///
153  unsigned MaxAlignment;
154
155  /// HasCalls - Set to true if this function has any function calls.  This is
156  /// only valid during and after prolog/epilog code insertion.
157  bool HasCalls;
158
159  /// StackProtectorIdx - The frame index for the stack protector.
160  int StackProtectorIdx;
161
162  /// MaxCallFrameSize - This contains the size of the largest call frame if the
163  /// target uses frame setup/destroy pseudo instructions (as defined in the
164  /// TargetFrameInfo class).  This information is important for frame pointer
165  /// elimination.  If is only valid during and after prolog/epilog code
166  /// insertion.
167  ///
168  unsigned MaxCallFrameSize;
169
170  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
171  /// callee saved register saved in the frame.  Beyond its use by the prolog/
172  /// epilog code inserter, this data used for debug info and exception
173  /// handling.
174  std::vector<CalleeSavedInfo> CSInfo;
175
176  /// CSIValid - Has CSInfo been set yet?
177  bool CSIValid;
178
179  /// MMI - This field is set (via setMachineModuleInfo) by a module info
180  /// consumer (ex. DwarfWriter) to indicate that frame layout information
181  /// should be acquired.  Typically, it's the responsibility of the target's
182  /// TargetRegisterInfo prologue/epilogue emitting code to inform
183  /// MachineModuleInfo of frame layouts.
184  MachineModuleInfo *MMI;
185
186  /// TargetFrameInfo - Target information about frame layout.
187  ///
188  const TargetFrameInfo &TFI;
189public:
190  explicit MachineFrameInfo(const TargetFrameInfo &tfi) : TFI(tfi) {
191    StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
192    HasVarSizedObjects = false;
193    FrameAddressTaken = false;
194    HasCalls = false;
195    StackProtectorIdx = -1;
196    MaxCallFrameSize = 0;
197    CSIValid = false;
198    MMI = 0;
199  }
200
201  /// hasStackObjects - Return true if there are any stack objects in this
202  /// function.
203  ///
204  bool hasStackObjects() const { return !Objects.empty(); }
205
206  /// hasVarSizedObjects - This method may be called any time after instruction
207  /// selection is complete to determine if the stack frame for this function
208  /// contains any variable sized objects.
209  ///
210  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
211
212  /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
213  /// stack protector object.
214  ///
215  int getStackProtectorIndex() const { return StackProtectorIdx; }
216  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
217
218  /// isFrameAddressTaken - This method may be called any time after instruction
219  /// selection is complete to determine if there is a call to
220  /// \@llvm.frameaddress in this function.
221  bool isFrameAddressTaken() const { return FrameAddressTaken; }
222  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
223
224  /// getObjectIndexBegin - Return the minimum frame object index.
225  ///
226  int getObjectIndexBegin() const { return -NumFixedObjects; }
227
228  /// getObjectIndexEnd - Return one past the maximum frame object index.
229  ///
230  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
231
232  /// getNumFixedObjects() - Return the number of fixed objects.
233  unsigned getNumFixedObjects() const { return NumFixedObjects; }
234
235  /// getNumObjects() - Return the number of objects.
236  ///
237  unsigned getNumObjects() const { return Objects.size(); }
238
239  /// getObjectSize - Return the size of the specified object.
240  ///
241  int64_t getObjectSize(int ObjectIdx) const {
242    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
243           "Invalid Object Idx!");
244    return Objects[ObjectIdx+NumFixedObjects].Size;
245  }
246
247  /// setObjectSize - Change the size of the specified stack object.
248  void setObjectSize(int ObjectIdx, int64_t Size) {
249    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
250           "Invalid Object Idx!");
251    Objects[ObjectIdx+NumFixedObjects].Size = Size;
252  }
253
254  /// getObjectAlignment - Return the alignment of the specified stack object.
255  unsigned getObjectAlignment(int ObjectIdx) const {
256    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
257           "Invalid Object Idx!");
258    return Objects[ObjectIdx+NumFixedObjects].Alignment;
259  }
260
261  /// setObjectAlignment - Change the alignment of the specified stack object.
262  void setObjectAlignment(int ObjectIdx, unsigned Align) {
263    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
264           "Invalid Object Idx!");
265    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
266  }
267
268  /// getObjectOffset - Return the assigned stack offset of the specified object
269  /// from the incoming stack pointer.
270  ///
271  int64_t getObjectOffset(int ObjectIdx) const {
272    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
273           "Invalid Object Idx!");
274    assert(!isDeadObjectIndex(ObjectIdx) &&
275           "Getting frame offset for a dead object?");
276    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
277  }
278
279  /// setObjectOffset - Set the stack frame offset of the specified object.  The
280  /// offset is relative to the stack pointer on entry to the function.
281  ///
282  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
283    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
284           "Invalid Object Idx!");
285    assert(!isDeadObjectIndex(ObjectIdx) &&
286           "Setting frame offset for a dead object?");
287    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
288  }
289
290  /// getStackSize - Return the number of bytes that must be allocated to hold
291  /// all of the fixed size frame objects.  This is only valid after
292  /// Prolog/Epilog code insertion has finalized the stack frame layout.
293  ///
294  uint64_t getStackSize() const { return StackSize; }
295
296  /// setStackSize - Set the size of the stack...
297  ///
298  void setStackSize(uint64_t Size) { StackSize = Size; }
299
300  /// getOffsetAdjustment - Return the correction for frame offsets.
301  ///
302  int getOffsetAdjustment() const { return OffsetAdjustment; }
303
304  /// setOffsetAdjustment - Set the correction for frame offsets.
305  ///
306  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
307
308  /// getMaxAlignment - Return the alignment in bytes that this function must be
309  /// aligned to, which is greater than the default stack alignment provided by
310  /// the target.
311  ///
312  unsigned getMaxAlignment() const { return MaxAlignment; }
313
314  /// setMaxAlignment - Set the preferred alignment.
315  ///
316  void setMaxAlignment(unsigned Align) { MaxAlignment = Align; }
317
318  /// hasCalls - Return true if the current function has no function calls.
319  /// This is only valid during or after prolog/epilog code emission.
320  ///
321  bool hasCalls() const { return HasCalls; }
322  void setHasCalls(bool V) { HasCalls = V; }
323
324  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
325  /// allocated for an outgoing function call.  This is only available if
326  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
327  /// then only during or after prolog/epilog code insertion.
328  ///
329  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
330  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
331
332  /// CreateFixedObject - Create a new object at a fixed location on the stack.
333  /// All fixed objects should be created before other objects are created for
334  /// efficiency. By default, fixed objects are immutable. This returns an
335  /// index with a negative value.
336  ///
337  int CreateFixedObject(uint64_t Size, int64_t SPOffset,
338                        bool Immutable = true);
339
340
341  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
342  /// fixed stack object.
343  bool isFixedObjectIndex(int ObjectIdx) const {
344    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
345  }
346
347  /// isImmutableObjectIndex - Returns true if the specified index corresponds
348  /// to an immutable object.
349  bool isImmutableObjectIndex(int ObjectIdx) const {
350    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
351           "Invalid Object Idx!");
352    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
353  }
354
355  /// isDeadObjectIndex - Returns true if the specified index corresponds to
356  /// a dead object.
357  bool isDeadObjectIndex(int ObjectIdx) const {
358    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
359           "Invalid Object Idx!");
360    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
361  }
362
363  /// CreateStackObject - Create a new statically sized stack object, returning
364  /// a nonnegative identifier to represent it.
365  ///
366  int CreateStackObject(uint64_t Size, unsigned Alignment) {
367    assert(Size != 0 && "Cannot allocate zero size stack objects!");
368    Objects.push_back(StackObject(Size, Alignment));
369    return (int)Objects.size()-NumFixedObjects-1;
370  }
371
372  /// RemoveStackObject - Remove or mark dead a statically sized stack object.
373  ///
374  void RemoveStackObject(int ObjectIdx) {
375    // Mark it dead.
376    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
377  }
378
379  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
380  /// variable sized object has been created.  This must be created whenever a
381  /// variable sized object is created, whether or not the index returned is
382  /// actually used.
383  ///
384  int CreateVariableSizedObject() {
385    HasVarSizedObjects = true;
386    Objects.push_back(StackObject(0, 1));
387    return (int)Objects.size()-NumFixedObjects-1;
388  }
389
390  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
391  /// current function.
392  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
393    return CSInfo;
394  }
395
396  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
397  /// callee saved information.
398  void  setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
399    CSInfo = CSI;
400  }
401
402  /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
403  bool isCalleeSavedInfoValid() const { return CSIValid; }
404
405  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
406
407  /// getPristineRegs - Return a set of physical registers that are pristine on
408  /// entry to the MBB.
409  ///
410  /// Pristine registers hold a value that is useless to the current function,
411  /// but that must be preserved - they are callee saved registers that have not
412  /// been saved yet.
413  ///
414  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
415  /// method always returns an empty set.
416  BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
417
418  /// getMachineModuleInfo - Used by a prologue/epilogue
419  /// emitter (TargetRegisterInfo) to provide frame layout information.
420  MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
421
422  /// setMachineModuleInfo - Used by a meta info consumer (DwarfWriter) to
423  /// indicate that frame layout information should be gathered.
424  void setMachineModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; }
425
426  /// print - Used by the MachineFunction printer to print information about
427  /// stack objects.  Implemented in MachineFunction.cpp
428  ///
429  void print(const MachineFunction &MF, raw_ostream &OS) const;
430
431  /// dump - Print the function to stderr.
432  void dump(const MachineFunction &MF) const;
433};
434
435} // End llvm namespace
436
437#endif
438