MachineBasicBlock.h revision 360660
1//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect the sequence of machine instructions for a basic block.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/ilist.h"
18#include "llvm/ADT/ilist_node.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/ADT/simple_ilist.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBundleIterator.h"
23#include "llvm/IR/DebugLoc.h"
24#include "llvm/MC/LaneBitmask.h"
25#include "llvm/MC/MCRegisterInfo.h"
26#include "llvm/Support/BranchProbability.h"
27#include "llvm/Support/Printable.h"
28#include <cassert>
29#include <cstdint>
30#include <functional>
31#include <iterator>
32#include <string>
33#include <vector>
34
35namespace llvm {
36
37class BasicBlock;
38class MachineFunction;
39class MCSymbol;
40class ModuleSlotTracker;
41class Pass;
42class SlotIndexes;
43class StringRef;
44class raw_ostream;
45class TargetRegisterClass;
46class TargetRegisterInfo;
47
48template <> struct ilist_traits<MachineInstr> {
49private:
50  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
51
52  MachineBasicBlock *Parent;
53
54  using instr_iterator =
55      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
56
57public:
58  void addNodeToList(MachineInstr *N);
59  void removeNodeFromList(MachineInstr *N);
60  void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
61                             instr_iterator Last);
62  void deleteNode(MachineInstr *MI);
63};
64
65class MachineBasicBlock
66    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
67public:
68  /// Pair of physical register and lane mask.
69  /// This is not simply a std::pair typedef because the members should be named
70  /// clearly as they both have an integer type.
71  struct RegisterMaskPair {
72  public:
73    MCPhysReg PhysReg;
74    LaneBitmask LaneMask;
75
76    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
77        : PhysReg(PhysReg), LaneMask(LaneMask) {}
78  };
79
80private:
81  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
82
83  Instructions Insts;
84  const BasicBlock *BB;
85  int Number;
86  MachineFunction *xParent;
87
88  /// Keep track of the predecessor / successor basic blocks.
89  std::vector<MachineBasicBlock *> Predecessors;
90  std::vector<MachineBasicBlock *> Successors;
91
92  /// Keep track of the probabilities to the successors. This vector has the
93  /// same order as Successors, or it is empty if we don't use it (disable
94  /// optimization).
95  std::vector<BranchProbability> Probs;
96  using probability_iterator = std::vector<BranchProbability>::iterator;
97  using const_probability_iterator =
98      std::vector<BranchProbability>::const_iterator;
99
100  Optional<uint64_t> IrrLoopHeaderWeight;
101
102  /// Keep track of the physical registers that are livein of the basicblock.
103  using LiveInVector = std::vector<RegisterMaskPair>;
104  LiveInVector LiveIns;
105
106  /// Alignment of the basic block. Zero if the basic block does not need to be
107  /// aligned. The alignment is specified as log2(bytes).
108  unsigned Alignment = 0;
109
110  /// Indicate that this basic block is entered via an exception handler.
111  bool IsEHPad = false;
112
113  /// Indicate that this basic block is potentially the target of an indirect
114  /// branch.
115  bool AddressTaken = false;
116
117  /// Indicate that this basic block needs its symbol be emitted regardless of
118  /// whether the flow just falls-through to it.
119  bool LabelMustBeEmitted = false;
120
121  /// Indicate that this basic block is the entry block of an EH scope, i.e.,
122  /// the block that used to have a catchpad or cleanuppad instruction in the
123  /// LLVM IR.
124  bool IsEHScopeEntry = false;
125
126  /// Indicate that this basic block is the entry block of an EH funclet.
127  bool IsEHFuncletEntry = false;
128
129  /// Indicate that this basic block is the entry block of a cleanup funclet.
130  bool IsCleanupFuncletEntry = false;
131
132  /// since getSymbol is a relatively heavy-weight operation, the symbol
133  /// is only computed once and is cached.
134  mutable MCSymbol *CachedMCSymbol = nullptr;
135
136  // Intrusive list support
137  MachineBasicBlock() = default;
138
139  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
140
141  ~MachineBasicBlock();
142
143  // MachineBasicBlocks are allocated and owned by MachineFunction.
144  friend class MachineFunction;
145
146public:
147  /// Return the LLVM basic block that this instance corresponded to originally.
148  /// Note that this may be NULL if this instance does not correspond directly
149  /// to an LLVM basic block.
150  const BasicBlock *getBasicBlock() const { return BB; }
151
152  /// Return the name of the corresponding LLVM basic block, or an empty string.
153  StringRef getName() const;
154
155  /// Return a formatted string to identify this block and its parent function.
156  std::string getFullName() const;
157
158  /// Test whether this block is potentially the target of an indirect branch.
159  bool hasAddressTaken() const { return AddressTaken; }
160
161  /// Set this block to reflect that it potentially is the target of an indirect
162  /// branch.
163  void setHasAddressTaken() { AddressTaken = true; }
164
165  /// Test whether this block must have its label emitted.
166  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
167
168  /// Set this block to reflect that, regardless how we flow to it, we need
169  /// its label be emitted.
170  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
171
172  /// Return the MachineFunction containing this basic block.
173  const MachineFunction *getParent() const { return xParent; }
174  MachineFunction *getParent() { return xParent; }
175
176  using instr_iterator = Instructions::iterator;
177  using const_instr_iterator = Instructions::const_iterator;
178  using reverse_instr_iterator = Instructions::reverse_iterator;
179  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
180
181  using iterator = MachineInstrBundleIterator<MachineInstr>;
182  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
183  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
184  using const_reverse_iterator =
185      MachineInstrBundleIterator<const MachineInstr, true>;
186
187  unsigned size() const { return (unsigned)Insts.size(); }
188  bool empty() const { return Insts.empty(); }
189
190  MachineInstr       &instr_front()       { return Insts.front(); }
191  MachineInstr       &instr_back()        { return Insts.back();  }
192  const MachineInstr &instr_front() const { return Insts.front(); }
193  const MachineInstr &instr_back()  const { return Insts.back();  }
194
195  MachineInstr       &front()             { return Insts.front(); }
196  MachineInstr       &back()              { return *--end();      }
197  const MachineInstr &front()       const { return Insts.front(); }
198  const MachineInstr &back()        const { return *--end();      }
199
200  instr_iterator                instr_begin()       { return Insts.begin();  }
201  const_instr_iterator          instr_begin() const { return Insts.begin();  }
202  instr_iterator                  instr_end()       { return Insts.end();    }
203  const_instr_iterator            instr_end() const { return Insts.end();    }
204  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
205  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
206  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
207  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
208
209  using instr_range = iterator_range<instr_iterator>;
210  using const_instr_range = iterator_range<const_instr_iterator>;
211  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
212  const_instr_range instrs() const {
213    return const_instr_range(instr_begin(), instr_end());
214  }
215
216  iterator                begin()       { return instr_begin();  }
217  const_iterator          begin() const { return instr_begin();  }
218  iterator                end  ()       { return instr_end();    }
219  const_iterator          end  () const { return instr_end();    }
220  reverse_iterator rbegin() {
221    return reverse_iterator::getAtBundleBegin(instr_rbegin());
222  }
223  const_reverse_iterator rbegin() const {
224    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
225  }
226  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
227  const_reverse_iterator rend() const {
228    return const_reverse_iterator(instr_rend());
229  }
230
231  /// Support for MachineInstr::getNextNode().
232  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
233    return &MachineBasicBlock::Insts;
234  }
235
236  inline iterator_range<iterator> terminators() {
237    return make_range(getFirstTerminator(), end());
238  }
239  inline iterator_range<const_iterator> terminators() const {
240    return make_range(getFirstTerminator(), end());
241  }
242
243  /// Returns a range that iterates over the phis in the basic block.
244  inline iterator_range<iterator> phis() {
245    return make_range(begin(), getFirstNonPHI());
246  }
247  inline iterator_range<const_iterator> phis() const {
248    return const_cast<MachineBasicBlock *>(this)->phis();
249  }
250
251  // Machine-CFG iterators
252  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
253  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
254  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
255  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
256  using pred_reverse_iterator =
257      std::vector<MachineBasicBlock *>::reverse_iterator;
258  using const_pred_reverse_iterator =
259      std::vector<MachineBasicBlock *>::const_reverse_iterator;
260  using succ_reverse_iterator =
261      std::vector<MachineBasicBlock *>::reverse_iterator;
262  using const_succ_reverse_iterator =
263      std::vector<MachineBasicBlock *>::const_reverse_iterator;
264  pred_iterator        pred_begin()       { return Predecessors.begin(); }
265  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
266  pred_iterator        pred_end()         { return Predecessors.end();   }
267  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
268  pred_reverse_iterator        pred_rbegin()
269                                          { return Predecessors.rbegin();}
270  const_pred_reverse_iterator  pred_rbegin() const
271                                          { return Predecessors.rbegin();}
272  pred_reverse_iterator        pred_rend()
273                                          { return Predecessors.rend();  }
274  const_pred_reverse_iterator  pred_rend()   const
275                                          { return Predecessors.rend();  }
276  unsigned             pred_size()  const {
277    return (unsigned)Predecessors.size();
278  }
279  bool                 pred_empty() const { return Predecessors.empty(); }
280  succ_iterator        succ_begin()       { return Successors.begin();   }
281  const_succ_iterator  succ_begin() const { return Successors.begin();   }
282  succ_iterator        succ_end()         { return Successors.end();     }
283  const_succ_iterator  succ_end()   const { return Successors.end();     }
284  succ_reverse_iterator        succ_rbegin()
285                                          { return Successors.rbegin();  }
286  const_succ_reverse_iterator  succ_rbegin() const
287                                          { return Successors.rbegin();  }
288  succ_reverse_iterator        succ_rend()
289                                          { return Successors.rend();    }
290  const_succ_reverse_iterator  succ_rend()   const
291                                          { return Successors.rend();    }
292  unsigned             succ_size()  const {
293    return (unsigned)Successors.size();
294  }
295  bool                 succ_empty() const { return Successors.empty();   }
296
297  inline iterator_range<pred_iterator> predecessors() {
298    return make_range(pred_begin(), pred_end());
299  }
300  inline iterator_range<const_pred_iterator> predecessors() const {
301    return make_range(pred_begin(), pred_end());
302  }
303  inline iterator_range<succ_iterator> successors() {
304    return make_range(succ_begin(), succ_end());
305  }
306  inline iterator_range<const_succ_iterator> successors() const {
307    return make_range(succ_begin(), succ_end());
308  }
309
310  // LiveIn management methods.
311
312  /// Adds the specified register as a live in. Note that it is an error to add
313  /// the same register to the same set more than once unless the intention is
314  /// to call sortUniqueLiveIns after all registers are added.
315  void addLiveIn(MCPhysReg PhysReg,
316                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
317    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
318  }
319  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
320    LiveIns.push_back(RegMaskPair);
321  }
322
323  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
324  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
325  /// LiveIn insertion.
326  void sortUniqueLiveIns();
327
328  /// Clear live in list.
329  void clearLiveIns();
330
331  /// Add PhysReg as live in to this block, and ensure that there is a copy of
332  /// PhysReg to a virtual register of class RC. Return the virtual register
333  /// that is a copy of the live in PhysReg.
334  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
335
336  /// Remove the specified register from the live in set.
337  void removeLiveIn(MCPhysReg Reg,
338                    LaneBitmask LaneMask = LaneBitmask::getAll());
339
340  /// Return true if the specified register is in the live in set.
341  bool isLiveIn(MCPhysReg Reg,
342                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
343
344  // Iteration support for live in sets.  These sets are kept in sorted
345  // order by their register number.
346  using livein_iterator = LiveInVector::const_iterator;
347#ifndef NDEBUG
348  /// Unlike livein_begin, this method does not check that the liveness
349  /// information is accurate. Still for debug purposes it may be useful
350  /// to have iterators that won't assert if the liveness information
351  /// is not current.
352  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
353  iterator_range<livein_iterator> liveins_dbg() const {
354    return make_range(livein_begin_dbg(), livein_end());
355  }
356#endif
357  livein_iterator livein_begin() const;
358  livein_iterator livein_end()   const { return LiveIns.end(); }
359  bool            livein_empty() const { return LiveIns.empty(); }
360  iterator_range<livein_iterator> liveins() const {
361    return make_range(livein_begin(), livein_end());
362  }
363
364  /// Remove entry from the livein set and return iterator to the next.
365  livein_iterator removeLiveIn(livein_iterator I);
366
367  /// Get the clobber mask for the start of this basic block. Funclets use this
368  /// to prevent register allocation across funclet transitions.
369  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
370
371  /// Get the clobber mask for the end of the basic block.
372  /// \see getBeginClobberMask()
373  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
374
375  /// Return alignment of the basic block. The alignment is specified as
376  /// log2(bytes).
377  unsigned getAlignment() const { return Alignment; }
378
379  /// Set alignment of the basic block. The alignment is specified as
380  /// log2(bytes).
381  void setAlignment(unsigned Align) { Alignment = Align; }
382
383  /// Returns true if the block is a landing pad. That is this basic block is
384  /// entered via an exception handler.
385  bool isEHPad() const { return IsEHPad; }
386
387  /// Indicates the block is a landing pad.  That is this basic block is entered
388  /// via an exception handler.
389  void setIsEHPad(bool V = true) { IsEHPad = V; }
390
391  bool hasEHPadSuccessor() const;
392
393  /// Returns true if this is the entry block of an EH scope, i.e., the block
394  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
395  bool isEHScopeEntry() const { return IsEHScopeEntry; }
396
397  /// Indicates if this is the entry block of an EH scope, i.e., the block that
398  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
399  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
400
401  /// Returns true if this is the entry block of an EH funclet.
402  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
403
404  /// Indicates if this is the entry block of an EH funclet.
405  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
406
407  /// Returns true if this is the entry block of a cleanup funclet.
408  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
409
410  /// Indicates if this is the entry block of a cleanup funclet.
411  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
412
413  /// Returns true if it is legal to hoist instructions into this block.
414  bool isLegalToHoistInto() const;
415
416  // Code Layout methods.
417
418  /// Move 'this' block before or after the specified block.  This only moves
419  /// the block, it does not modify the CFG or adjust potential fall-throughs at
420  /// the end of the block.
421  void moveBefore(MachineBasicBlock *NewAfter);
422  void moveAfter(MachineBasicBlock *NewBefore);
423
424  /// Update the terminator instructions in block to account for changes to the
425  /// layout. If the block previously used a fallthrough, it may now need a
426  /// branch, and if it previously used branching it may now be able to use a
427  /// fallthrough.
428  void updateTerminator();
429
430  // Machine-CFG mutators
431
432  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
433  /// of Succ is automatically updated. PROB parameter is stored in
434  /// Probabilities list. The default probability is set as unknown. Mixing
435  /// known and unknown probabilities in successor list is not allowed. When all
436  /// successors have unknown probabilities, 1 / N is returned as the
437  /// probability for each successor, where N is the number of successors.
438  ///
439  /// Note that duplicate Machine CFG edges are not allowed.
440  void addSuccessor(MachineBasicBlock *Succ,
441                    BranchProbability Prob = BranchProbability::getUnknown());
442
443  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
444  /// of Succ is automatically updated. The probability is not provided because
445  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
446  /// won't be used. Using this interface can save some space.
447  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
448
449  /// Set successor probability of a given iterator.
450  void setSuccProbability(succ_iterator I, BranchProbability Prob);
451
452  /// Normalize probabilities of all successors so that the sum of them becomes
453  /// one. This is usually done when the current update on this MBB is done, and
454  /// the sum of its successors' probabilities is not guaranteed to be one. The
455  /// user is responsible for the correct use of this function.
456  /// MBB::removeSuccessor() has an option to do this automatically.
457  void normalizeSuccProbs() {
458    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
459  }
460
461  /// Validate successors' probabilities and check if the sum of them is
462  /// approximate one. This only works in DEBUG mode.
463  void validateSuccProbs() const;
464
465  /// Remove successor from the successors list of this MachineBasicBlock. The
466  /// Predecessors list of Succ is automatically updated.
467  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
468  /// after the successor is removed.
469  void removeSuccessor(MachineBasicBlock *Succ,
470                       bool NormalizeSuccProbs = false);
471
472  /// Remove specified successor from the successors list of this
473  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
474  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
475  /// after the successor is removed.
476  /// Return the iterator to the element after the one removed.
477  succ_iterator removeSuccessor(succ_iterator I,
478                                bool NormalizeSuccProbs = false);
479
480  /// Replace successor OLD with NEW and update probability info.
481  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
482
483  /// Copy a successor (and any probability info) from original block to this
484  /// block's. Uses an iterator into the original blocks successors.
485  ///
486  /// This is useful when doing a partial clone of successors. Afterward, the
487  /// probabilities may need to be normalized.
488  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
489
490  /// Split the old successor into old plus new and updates the probability
491  /// info.
492  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
493                      bool NormalizeSuccProbs = false);
494
495  /// Transfers all the successors from MBB to this machine basic block (i.e.,
496  /// copies all the successors FromMBB and remove all the successors from
497  /// FromMBB).
498  void transferSuccessors(MachineBasicBlock *FromMBB);
499
500  /// Transfers all the successors, as in transferSuccessors, and update PHI
501  /// operands in the successor blocks which refer to FromMBB to refer to this.
502  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
503
504  /// Return true if any of the successors have probabilities attached to them.
505  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
506
507  /// Return true if the specified MBB is a predecessor of this block.
508  bool isPredecessor(const MachineBasicBlock *MBB) const;
509
510  /// Return true if the specified MBB is a successor of this block.
511  bool isSuccessor(const MachineBasicBlock *MBB) const;
512
513  /// Return true if the specified MBB will be emitted immediately after this
514  /// block, such that if this block exits by falling through, control will
515  /// transfer to the specified MBB. Note that MBB need not be a successor at
516  /// all, for example if this block ends with an unconditional branch to some
517  /// other block.
518  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
519
520  /// Return the fallthrough block if the block can implicitly
521  /// transfer control to the block after it by falling off the end of
522  /// it.  This should return null if it can reach the block after
523  /// it, but it uses an explicit branch to do so (e.g., a table
524  /// jump).  Non-null return  is a conservative answer.
525  MachineBasicBlock *getFallThrough();
526
527  /// Return true if the block can implicitly transfer control to the
528  /// block after it by falling off the end of it.  This should return
529  /// false if it can reach the block after it, but it uses an
530  /// explicit branch to do so (e.g., a table jump).  True is a
531  /// conservative answer.
532  bool canFallThrough();
533
534  /// Returns a pointer to the first instruction in this block that is not a
535  /// PHINode instruction. When adding instructions to the beginning of the
536  /// basic block, they should be added before the returned value, not before
537  /// the first instruction, which might be PHI.
538  /// Returns end() is there's no non-PHI instruction.
539  iterator getFirstNonPHI();
540
541  /// Return the first instruction in MBB after I that is not a PHI or a label.
542  /// This is the correct point to insert lowered copies at the beginning of a
543  /// basic block that must be before any debugging information.
544  iterator SkipPHIsAndLabels(iterator I);
545
546  /// Return the first instruction in MBB after I that is not a PHI, label or
547  /// debug.  This is the correct point to insert copies at the beginning of a
548  /// basic block.
549  iterator SkipPHIsLabelsAndDebug(iterator I);
550
551  /// Returns an iterator to the first terminator instruction of this basic
552  /// block. If a terminator does not exist, it returns end().
553  iterator getFirstTerminator();
554  const_iterator getFirstTerminator() const {
555    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
556  }
557
558  /// Same getFirstTerminator but it ignores bundles and return an
559  /// instr_iterator instead.
560  instr_iterator getFirstInstrTerminator();
561
562  /// Returns an iterator to the first non-debug instruction in the basic block,
563  /// or end().
564  iterator getFirstNonDebugInstr();
565  const_iterator getFirstNonDebugInstr() const {
566    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
567  }
568
569  /// Returns an iterator to the last non-debug instruction in the basic block,
570  /// or end().
571  iterator getLastNonDebugInstr();
572  const_iterator getLastNonDebugInstr() const {
573    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
574  }
575
576  /// Convenience function that returns true if the block ends in a return
577  /// instruction.
578  bool isReturnBlock() const {
579    return !empty() && back().isReturn();
580  }
581
582  /// Convenience function that returns true if the bock ends in a EH scope
583  /// return instruction.
584  bool isEHScopeReturnBlock() const {
585    return !empty() && back().isEHScopeReturn();
586  }
587
588  /// Split the critical edge from this block to the given successor block, and
589  /// return the newly created block, or null if splitting is not possible.
590  ///
591  /// This function updates LiveVariables, MachineDominatorTree, and
592  /// MachineLoopInfo, as applicable.
593  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
594
595  /// Check if the edge between this block and the given successor \p
596  /// Succ, can be split. If this returns true a subsequent call to
597  /// SplitCriticalEdge is guaranteed to return a valid basic block if
598  /// no changes occurred in the meantime.
599  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
600
601  void pop_front() { Insts.pop_front(); }
602  void pop_back() { Insts.pop_back(); }
603  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
604
605  /// Insert MI into the instruction list before I, possibly inside a bundle.
606  ///
607  /// If the insertion point is inside a bundle, MI will be added to the bundle,
608  /// otherwise MI will not be added to any bundle. That means this function
609  /// alone can't be used to prepend or append instructions to bundles. See
610  /// MIBundleBuilder::insert() for a more reliable way of doing that.
611  instr_iterator insert(instr_iterator I, MachineInstr *M);
612
613  /// Insert a range of instructions into the instruction list before I.
614  template<typename IT>
615  void insert(iterator I, IT S, IT E) {
616    assert((I == end() || I->getParent() == this) &&
617           "iterator points outside of basic block");
618    Insts.insert(I.getInstrIterator(), S, E);
619  }
620
621  /// Insert MI into the instruction list before I.
622  iterator insert(iterator I, MachineInstr *MI) {
623    assert((I == end() || I->getParent() == this) &&
624           "iterator points outside of basic block");
625    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
626           "Cannot insert instruction with bundle flags");
627    return Insts.insert(I.getInstrIterator(), MI);
628  }
629
630  /// Insert MI into the instruction list after I.
631  iterator insertAfter(iterator I, MachineInstr *MI) {
632    assert((I == end() || I->getParent() == this) &&
633           "iterator points outside of basic block");
634    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
635           "Cannot insert instruction with bundle flags");
636    return Insts.insertAfter(I.getInstrIterator(), MI);
637  }
638
639  /// Remove an instruction from the instruction list and delete it.
640  ///
641  /// If the instruction is part of a bundle, the other instructions in the
642  /// bundle will still be bundled after removing the single instruction.
643  instr_iterator erase(instr_iterator I);
644
645  /// Remove an instruction from the instruction list and delete it.
646  ///
647  /// If the instruction is part of a bundle, the other instructions in the
648  /// bundle will still be bundled after removing the single instruction.
649  instr_iterator erase_instr(MachineInstr *I) {
650    return erase(instr_iterator(I));
651  }
652
653  /// Remove a range of instructions from the instruction list and delete them.
654  iterator erase(iterator I, iterator E) {
655    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
656  }
657
658  /// Remove an instruction or bundle from the instruction list and delete it.
659  ///
660  /// If I points to a bundle of instructions, they are all erased.
661  iterator erase(iterator I) {
662    return erase(I, std::next(I));
663  }
664
665  /// Remove an instruction from the instruction list and delete it.
666  ///
667  /// If I is the head of a bundle of instructions, the whole bundle will be
668  /// erased.
669  iterator erase(MachineInstr *I) {
670    return erase(iterator(I));
671  }
672
673  /// Remove the unbundled instruction from the instruction list without
674  /// deleting it.
675  ///
676  /// This function can not be used to remove bundled instructions, use
677  /// remove_instr to remove individual instructions from a bundle.
678  MachineInstr *remove(MachineInstr *I) {
679    assert(!I->isBundled() && "Cannot remove bundled instructions");
680    return Insts.remove(instr_iterator(I));
681  }
682
683  /// Remove the possibly bundled instruction from the instruction list
684  /// without deleting it.
685  ///
686  /// If the instruction is part of a bundle, the other instructions in the
687  /// bundle will still be bundled after removing the single instruction.
688  MachineInstr *remove_instr(MachineInstr *I);
689
690  void clear() {
691    Insts.clear();
692  }
693
694  /// Take an instruction from MBB 'Other' at the position From, and insert it
695  /// into this MBB right before 'Where'.
696  ///
697  /// If From points to a bundle of instructions, the whole bundle is moved.
698  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
699    // The range splice() doesn't allow noop moves, but this one does.
700    if (Where != From)
701      splice(Where, Other, From, std::next(From));
702  }
703
704  /// Take a block of instructions from MBB 'Other' in the range [From, To),
705  /// and insert them into this MBB right before 'Where'.
706  ///
707  /// The instruction at 'Where' must not be included in the range of
708  /// instructions to move.
709  void splice(iterator Where, MachineBasicBlock *Other,
710              iterator From, iterator To) {
711    Insts.splice(Where.getInstrIterator(), Other->Insts,
712                 From.getInstrIterator(), To.getInstrIterator());
713  }
714
715  /// This method unlinks 'this' from the containing function, and returns it,
716  /// but does not delete it.
717  MachineBasicBlock *removeFromParent();
718
719  /// This method unlinks 'this' from the containing function and deletes it.
720  void eraseFromParent();
721
722  /// Given a machine basic block that branched to 'Old', change the code and
723  /// CFG so that it branches to 'New' instead.
724  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
725
726  /// Various pieces of code can cause excess edges in the CFG to be inserted.
727  /// If we have proven that MBB can only branch to DestA and DestB, remove any
728  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
729  /// DestA and DestB, retain other edges leading to LandingPads (currently
730  /// there can be only one; we don't check or require that here). Note it is
731  /// possible that DestA and/or DestB are LandingPads.
732  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
733                            MachineBasicBlock *DestB,
734                            bool IsCond);
735
736  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
737  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
738  DebugLoc findDebugLoc(instr_iterator MBBI);
739  DebugLoc findDebugLoc(iterator MBBI) {
740    return findDebugLoc(MBBI.getInstrIterator());
741  }
742
743  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
744  /// instructions.  Return UnknownLoc if there is none.
745  DebugLoc findPrevDebugLoc(instr_iterator MBBI);
746  DebugLoc findPrevDebugLoc(iterator MBBI) {
747    return findPrevDebugLoc(MBBI.getInstrIterator());
748  }
749
750  /// Find and return the merged DebugLoc of the branch instructions of the
751  /// block. Return UnknownLoc if there is none.
752  DebugLoc findBranchDebugLoc();
753
754  /// Possible outcome of a register liveness query to computeRegisterLiveness()
755  enum LivenessQueryResult {
756    LQR_Live,   ///< Register is known to be (at least partially) live.
757    LQR_Dead,   ///< Register is known to be fully dead.
758    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
759  };
760
761  /// Return whether (physical) register \p Reg has been defined and not
762  /// killed as of just before \p Before.
763  ///
764  /// Search is localised to a neighborhood of \p Neighborhood instructions
765  /// before (searching for defs or kills) and \p Neighborhood instructions
766  /// after (searching just for defs) \p Before.
767  ///
768  /// \p Reg must be a physical register.
769  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
770                                              unsigned Reg,
771                                              const_iterator Before,
772                                              unsigned Neighborhood = 10) const;
773
774  // Debugging methods.
775  void dump() const;
776  void print(raw_ostream &OS, const SlotIndexes * = nullptr,
777             bool IsStandalone = true) const;
778  void print(raw_ostream &OS, ModuleSlotTracker &MST,
779             const SlotIndexes * = nullptr, bool IsStandalone = true) const;
780
781  // Printing method used by LoopInfo.
782  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
783
784  /// MachineBasicBlocks are uniquely numbered at the function level, unless
785  /// they're not in a MachineFunction yet, in which case this will return -1.
786  int getNumber() const { return Number; }
787  void setNumber(int N) { Number = N; }
788
789  /// Return the MCSymbol for this basic block.
790  MCSymbol *getSymbol() const;
791
792  Optional<uint64_t> getIrrLoopHeaderWeight() const {
793    return IrrLoopHeaderWeight;
794  }
795
796  void setIrrLoopHeaderWeight(uint64_t Weight) {
797    IrrLoopHeaderWeight = Weight;
798  }
799
800private:
801  /// Return probability iterator corresponding to the I successor iterator.
802  probability_iterator getProbabilityIterator(succ_iterator I);
803  const_probability_iterator
804  getProbabilityIterator(const_succ_iterator I) const;
805
806  friend class MachineBranchProbabilityInfo;
807  friend class MIPrinter;
808
809  /// Return probability of the edge from this block to MBB. This method should
810  /// NOT be called directly, but by using getEdgeProbability method from
811  /// MachineBranchProbabilityInfo class.
812  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
813
814  // Methods used to maintain doubly linked list of blocks...
815  friend struct ilist_callback_traits<MachineBasicBlock>;
816
817  // Machine-CFG mutators
818
819  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
820  /// unless you know what you're doing, because it doesn't update Pred's
821  /// successors list. Use Pred->addSuccessor instead.
822  void addPredecessor(MachineBasicBlock *Pred);
823
824  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
825  /// unless you know what you're doing, because it doesn't update Pred's
826  /// successors list. Use Pred->removeSuccessor instead.
827  void removePredecessor(MachineBasicBlock *Pred);
828};
829
830raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
831
832/// Prints a machine basic block reference.
833///
834/// The format is:
835///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
836///
837/// Usage: OS << printMBBReference(MBB) << '\n';
838Printable printMBBReference(const MachineBasicBlock &MBB);
839
840// This is useful when building IndexedMaps keyed on basic block pointers.
841struct MBB2NumberFunctor {
842  using argument_type = const MachineBasicBlock *;
843  unsigned operator()(const MachineBasicBlock *MBB) const {
844    return MBB->getNumber();
845  }
846};
847
848//===--------------------------------------------------------------------===//
849// GraphTraits specializations for machine basic block graphs (machine-CFGs)
850//===--------------------------------------------------------------------===//
851
852// Provide specializations of GraphTraits to be able to treat a
853// MachineFunction as a graph of MachineBasicBlocks.
854//
855
856template <> struct GraphTraits<MachineBasicBlock *> {
857  using NodeRef = MachineBasicBlock *;
858  using ChildIteratorType = MachineBasicBlock::succ_iterator;
859
860  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
861  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
862  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
863};
864
865template <> struct GraphTraits<const MachineBasicBlock *> {
866  using NodeRef = const MachineBasicBlock *;
867  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
868
869  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
870  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
871  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
872};
873
874// Provide specializations of GraphTraits to be able to treat a
875// MachineFunction as a graph of MachineBasicBlocks and to walk it
876// in inverse order.  Inverse order for a function is considered
877// to be when traversing the predecessor edges of a MBB
878// instead of the successor edges.
879//
880template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
881  using NodeRef = MachineBasicBlock *;
882  using ChildIteratorType = MachineBasicBlock::pred_iterator;
883
884  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
885    return G.Graph;
886  }
887
888  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
889  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
890};
891
892template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
893  using NodeRef = const MachineBasicBlock *;
894  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
895
896  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
897    return G.Graph;
898  }
899
900  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
901  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
902};
903
904/// MachineInstrSpan provides an interface to get an iteration range
905/// containing the instruction it was initialized with, along with all
906/// those instructions inserted prior to or following that instruction
907/// at some point after the MachineInstrSpan is constructed.
908class MachineInstrSpan {
909  MachineBasicBlock &MBB;
910  MachineBasicBlock::iterator I, B, E;
911
912public:
913  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
914      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
915        E(std::next(I)) {
916    assert(I == BB->end() || I->getParent() == BB);
917  }
918
919  MachineBasicBlock::iterator begin() {
920    return B == MBB.end() ? MBB.begin() : std::next(B);
921  }
922  MachineBasicBlock::iterator end() { return E; }
923  bool empty() { return begin() == end(); }
924
925  MachineBasicBlock::iterator getInitial() { return I; }
926};
927
928/// Increment \p It until it points to a non-debug instruction or to \p End
929/// and return the resulting iterator. This function should only be used
930/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
931/// const_instr_iterator} and the respective reverse iterators.
932template<typename IterT>
933inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
934  while (It != End && It->isDebugInstr())
935    It++;
936  return It;
937}
938
939/// Decrement \p It until it points to a non-debug instruction or to \p Begin
940/// and return the resulting iterator. This function should only be used
941/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
942/// const_instr_iterator} and the respective reverse iterators.
943template<class IterT>
944inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
945  while (It != Begin && It->isDebugInstr())
946    It--;
947  return It;
948}
949
950} // end namespace llvm
951
952#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
953