MachineBasicBlock.h revision 332833
1//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/ilist.h"
19#include "llvm/ADT/ilist_node.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/ADT/simple_ilist.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineInstrBundleIterator.h"
24#include "llvm/IR/DebugLoc.h"
25#include "llvm/MC/LaneBitmask.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/Support/BranchProbability.h"
28#include "llvm/Support/Printable.h"
29#include <cassert>
30#include <cstdint>
31#include <functional>
32#include <iterator>
33#include <string>
34#include <vector>
35
36namespace llvm {
37
38class BasicBlock;
39class MachineFunction;
40class MCSymbol;
41class ModuleSlotTracker;
42class Pass;
43class SlotIndexes;
44class StringRef;
45class raw_ostream;
46class TargetRegisterClass;
47class TargetRegisterInfo;
48
49template <> struct ilist_traits<MachineInstr> {
50private:
51  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
52
53  MachineBasicBlock *Parent;
54
55  using instr_iterator =
56      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
57
58public:
59  void addNodeToList(MachineInstr *N);
60  void removeNodeFromList(MachineInstr *N);
61  void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
62                             instr_iterator Last);
63  void deleteNode(MachineInstr *MI);
64};
65
66class MachineBasicBlock
67    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
68public:
69  /// Pair of physical register and lane mask.
70  /// This is not simply a std::pair typedef because the members should be named
71  /// clearly as they both have an integer type.
72  struct RegisterMaskPair {
73  public:
74    MCPhysReg PhysReg;
75    LaneBitmask LaneMask;
76
77    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
78        : PhysReg(PhysReg), LaneMask(LaneMask) {}
79  };
80
81private:
82  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
83
84  Instructions Insts;
85  const BasicBlock *BB;
86  int Number;
87  MachineFunction *xParent;
88
89  /// Keep track of the predecessor / successor basic blocks.
90  std::vector<MachineBasicBlock *> Predecessors;
91  std::vector<MachineBasicBlock *> Successors;
92
93  /// Keep track of the probabilities to the successors. This vector has the
94  /// same order as Successors, or it is empty if we don't use it (disable
95  /// optimization).
96  std::vector<BranchProbability> Probs;
97  using probability_iterator = std::vector<BranchProbability>::iterator;
98  using const_probability_iterator =
99      std::vector<BranchProbability>::const_iterator;
100
101  Optional<uint64_t> IrrLoopHeaderWeight;
102
103  /// Keep track of the physical registers that are livein of the basicblock.
104  using LiveInVector = std::vector<RegisterMaskPair>;
105  LiveInVector LiveIns;
106
107  /// Alignment of the basic block. Zero if the basic block does not need to be
108  /// aligned. The alignment is specified as log2(bytes).
109  unsigned Alignment = 0;
110
111  /// Indicate that this basic block is entered via an exception handler.
112  bool IsEHPad = false;
113
114  /// Indicate that this basic block is potentially the target of an indirect
115  /// branch.
116  bool AddressTaken = false;
117
118  /// Indicate that this basic block is the entry block of an EH funclet.
119  bool IsEHFuncletEntry = false;
120
121  /// Indicate that this basic block is the entry block of a cleanup funclet.
122  bool IsCleanupFuncletEntry = false;
123
124  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
125  /// is only computed once and is cached.
126  mutable MCSymbol *CachedMCSymbol = nullptr;
127
128  // Intrusive list support
129  MachineBasicBlock() = default;
130
131  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
132
133  ~MachineBasicBlock();
134
135  // MachineBasicBlocks are allocated and owned by MachineFunction.
136  friend class MachineFunction;
137
138public:
139  /// Return the LLVM basic block that this instance corresponded to originally.
140  /// Note that this may be NULL if this instance does not correspond directly
141  /// to an LLVM basic block.
142  const BasicBlock *getBasicBlock() const { return BB; }
143
144  /// Return the name of the corresponding LLVM basic block, or an empty string.
145  StringRef getName() const;
146
147  /// Return a formatted string to identify this block and its parent function.
148  std::string getFullName() const;
149
150  /// Test whether this block is potentially the target of an indirect branch.
151  bool hasAddressTaken() const { return AddressTaken; }
152
153  /// Set this block to reflect that it potentially is the target of an indirect
154  /// branch.
155  void setHasAddressTaken() { AddressTaken = true; }
156
157  /// Return the MachineFunction containing this basic block.
158  const MachineFunction *getParent() const { return xParent; }
159  MachineFunction *getParent() { return xParent; }
160
161  using instr_iterator = Instructions::iterator;
162  using const_instr_iterator = Instructions::const_iterator;
163  using reverse_instr_iterator = Instructions::reverse_iterator;
164  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
165
166  using iterator = MachineInstrBundleIterator<MachineInstr>;
167  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
168  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
169  using const_reverse_iterator =
170      MachineInstrBundleIterator<const MachineInstr, true>;
171
172  unsigned size() const { return (unsigned)Insts.size(); }
173  bool empty() const { return Insts.empty(); }
174
175  MachineInstr       &instr_front()       { return Insts.front(); }
176  MachineInstr       &instr_back()        { return Insts.back();  }
177  const MachineInstr &instr_front() const { return Insts.front(); }
178  const MachineInstr &instr_back()  const { return Insts.back();  }
179
180  MachineInstr       &front()             { return Insts.front(); }
181  MachineInstr       &back()              { return *--end();      }
182  const MachineInstr &front()       const { return Insts.front(); }
183  const MachineInstr &back()        const { return *--end();      }
184
185  instr_iterator                instr_begin()       { return Insts.begin();  }
186  const_instr_iterator          instr_begin() const { return Insts.begin();  }
187  instr_iterator                  instr_end()       { return Insts.end();    }
188  const_instr_iterator            instr_end() const { return Insts.end();    }
189  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
190  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
191  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
192  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
193
194  using instr_range = iterator_range<instr_iterator>;
195  using const_instr_range = iterator_range<const_instr_iterator>;
196  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
197  const_instr_range instrs() const {
198    return const_instr_range(instr_begin(), instr_end());
199  }
200
201  iterator                begin()       { return instr_begin();  }
202  const_iterator          begin() const { return instr_begin();  }
203  iterator                end  ()       { return instr_end();    }
204  const_iterator          end  () const { return instr_end();    }
205  reverse_iterator rbegin() {
206    return reverse_iterator::getAtBundleBegin(instr_rbegin());
207  }
208  const_reverse_iterator rbegin() const {
209    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
210  }
211  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
212  const_reverse_iterator rend() const {
213    return const_reverse_iterator(instr_rend());
214  }
215
216  /// Support for MachineInstr::getNextNode().
217  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
218    return &MachineBasicBlock::Insts;
219  }
220
221  inline iterator_range<iterator> terminators() {
222    return make_range(getFirstTerminator(), end());
223  }
224  inline iterator_range<const_iterator> terminators() const {
225    return make_range(getFirstTerminator(), end());
226  }
227
228  // Machine-CFG iterators
229  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
230  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
231  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
232  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
233  using pred_reverse_iterator =
234      std::vector<MachineBasicBlock *>::reverse_iterator;
235  using const_pred_reverse_iterator =
236      std::vector<MachineBasicBlock *>::const_reverse_iterator;
237  using succ_reverse_iterator =
238      std::vector<MachineBasicBlock *>::reverse_iterator;
239  using const_succ_reverse_iterator =
240      std::vector<MachineBasicBlock *>::const_reverse_iterator;
241  pred_iterator        pred_begin()       { return Predecessors.begin(); }
242  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
243  pred_iterator        pred_end()         { return Predecessors.end();   }
244  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
245  pred_reverse_iterator        pred_rbegin()
246                                          { return Predecessors.rbegin();}
247  const_pred_reverse_iterator  pred_rbegin() const
248                                          { return Predecessors.rbegin();}
249  pred_reverse_iterator        pred_rend()
250                                          { return Predecessors.rend();  }
251  const_pred_reverse_iterator  pred_rend()   const
252                                          { return Predecessors.rend();  }
253  unsigned             pred_size()  const {
254    return (unsigned)Predecessors.size();
255  }
256  bool                 pred_empty() const { return Predecessors.empty(); }
257  succ_iterator        succ_begin()       { return Successors.begin();   }
258  const_succ_iterator  succ_begin() const { return Successors.begin();   }
259  succ_iterator        succ_end()         { return Successors.end();     }
260  const_succ_iterator  succ_end()   const { return Successors.end();     }
261  succ_reverse_iterator        succ_rbegin()
262                                          { return Successors.rbegin();  }
263  const_succ_reverse_iterator  succ_rbegin() const
264                                          { return Successors.rbegin();  }
265  succ_reverse_iterator        succ_rend()
266                                          { return Successors.rend();    }
267  const_succ_reverse_iterator  succ_rend()   const
268                                          { return Successors.rend();    }
269  unsigned             succ_size()  const {
270    return (unsigned)Successors.size();
271  }
272  bool                 succ_empty() const { return Successors.empty();   }
273
274  inline iterator_range<pred_iterator> predecessors() {
275    return make_range(pred_begin(), pred_end());
276  }
277  inline iterator_range<const_pred_iterator> predecessors() const {
278    return make_range(pred_begin(), pred_end());
279  }
280  inline iterator_range<succ_iterator> successors() {
281    return make_range(succ_begin(), succ_end());
282  }
283  inline iterator_range<const_succ_iterator> successors() const {
284    return make_range(succ_begin(), succ_end());
285  }
286
287  // LiveIn management methods.
288
289  /// Adds the specified register as a live in. Note that it is an error to add
290  /// the same register to the same set more than once unless the intention is
291  /// to call sortUniqueLiveIns after all registers are added.
292  void addLiveIn(MCPhysReg PhysReg,
293                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
294    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
295  }
296  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
297    LiveIns.push_back(RegMaskPair);
298  }
299
300  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
301  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
302  /// LiveIn insertion.
303  void sortUniqueLiveIns();
304
305  /// Clear live in list.
306  void clearLiveIns();
307
308  /// Add PhysReg as live in to this block, and ensure that there is a copy of
309  /// PhysReg to a virtual register of class RC. Return the virtual register
310  /// that is a copy of the live in PhysReg.
311  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
312
313  /// Remove the specified register from the live in set.
314  void removeLiveIn(MCPhysReg Reg,
315                    LaneBitmask LaneMask = LaneBitmask::getAll());
316
317  /// Return true if the specified register is in the live in set.
318  bool isLiveIn(MCPhysReg Reg,
319                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
320
321  // Iteration support for live in sets.  These sets are kept in sorted
322  // order by their register number.
323  using livein_iterator = LiveInVector::const_iterator;
324#ifndef NDEBUG
325  /// Unlike livein_begin, this method does not check that the liveness
326  /// information is accurate. Still for debug purposes it may be useful
327  /// to have iterators that won't assert if the liveness information
328  /// is not current.
329  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
330  iterator_range<livein_iterator> liveins_dbg() const {
331    return make_range(livein_begin_dbg(), livein_end());
332  }
333#endif
334  livein_iterator livein_begin() const;
335  livein_iterator livein_end()   const { return LiveIns.end(); }
336  bool            livein_empty() const { return LiveIns.empty(); }
337  iterator_range<livein_iterator> liveins() const {
338    return make_range(livein_begin(), livein_end());
339  }
340
341  /// Remove entry from the livein set and return iterator to the next.
342  livein_iterator removeLiveIn(livein_iterator I);
343
344  /// Get the clobber mask for the start of this basic block. Funclets use this
345  /// to prevent register allocation across funclet transitions.
346  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
347
348  /// Get the clobber mask for the end of the basic block.
349  /// \see getBeginClobberMask()
350  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
351
352  /// Return alignment of the basic block. The alignment is specified as
353  /// log2(bytes).
354  unsigned getAlignment() const { return Alignment; }
355
356  /// Set alignment of the basic block. The alignment is specified as
357  /// log2(bytes).
358  void setAlignment(unsigned Align) { Alignment = Align; }
359
360  /// Returns true if the block is a landing pad. That is this basic block is
361  /// entered via an exception handler.
362  bool isEHPad() const { return IsEHPad; }
363
364  /// Indicates the block is a landing pad.  That is this basic block is entered
365  /// via an exception handler.
366  void setIsEHPad(bool V = true) { IsEHPad = V; }
367
368  bool hasEHPadSuccessor() const;
369
370  /// Returns true if this is the entry block of an EH funclet.
371  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
372
373  /// Indicates if this is the entry block of an EH funclet.
374  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
375
376  /// Returns true if this is the entry block of a cleanup funclet.
377  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
378
379  /// Indicates if this is the entry block of a cleanup funclet.
380  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
381
382  /// Returns true if it is legal to hoist instructions into this block.
383  bool isLegalToHoistInto() const;
384
385  // Code Layout methods.
386
387  /// Move 'this' block before or after the specified block.  This only moves
388  /// the block, it does not modify the CFG or adjust potential fall-throughs at
389  /// the end of the block.
390  void moveBefore(MachineBasicBlock *NewAfter);
391  void moveAfter(MachineBasicBlock *NewBefore);
392
393  /// Update the terminator instructions in block to account for changes to the
394  /// layout. If the block previously used a fallthrough, it may now need a
395  /// branch, and if it previously used branching it may now be able to use a
396  /// fallthrough.
397  void updateTerminator();
398
399  // Machine-CFG mutators
400
401  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
402  /// of Succ is automatically updated. PROB parameter is stored in
403  /// Probabilities list. The default probability is set as unknown. Mixing
404  /// known and unknown probabilities in successor list is not allowed. When all
405  /// successors have unknown probabilities, 1 / N is returned as the
406  /// probability for each successor, where N is the number of successors.
407  ///
408  /// Note that duplicate Machine CFG edges are not allowed.
409  void addSuccessor(MachineBasicBlock *Succ,
410                    BranchProbability Prob = BranchProbability::getUnknown());
411
412  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
413  /// of Succ is automatically updated. The probability is not provided because
414  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
415  /// won't be used. Using this interface can save some space.
416  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
417
418  /// Set successor probability of a given iterator.
419  void setSuccProbability(succ_iterator I, BranchProbability Prob);
420
421  /// Normalize probabilities of all successors so that the sum of them becomes
422  /// one. This is usually done when the current update on this MBB is done, and
423  /// the sum of its successors' probabilities is not guaranteed to be one. The
424  /// user is responsible for the correct use of this function.
425  /// MBB::removeSuccessor() has an option to do this automatically.
426  void normalizeSuccProbs() {
427    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
428  }
429
430  /// Validate successors' probabilities and check if the sum of them is
431  /// approximate one. This only works in DEBUG mode.
432  void validateSuccProbs() const;
433
434  /// Remove successor from the successors list of this MachineBasicBlock. The
435  /// Predecessors list of Succ is automatically updated.
436  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
437  /// after the successor is removed.
438  void removeSuccessor(MachineBasicBlock *Succ,
439                       bool NormalizeSuccProbs = false);
440
441  /// Remove specified successor from the successors list of this
442  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
443  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
444  /// after the successor is removed.
445  /// Return the iterator to the element after the one removed.
446  succ_iterator removeSuccessor(succ_iterator I,
447                                bool NormalizeSuccProbs = false);
448
449  /// Replace successor OLD with NEW and update probability info.
450  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
451
452  /// Copy a successor (and any probability info) from original block to this
453  /// block's. Uses an iterator into the original blocks successors.
454  ///
455  /// This is useful when doing a partial clone of successors. Afterward, the
456  /// probabilities may need to be normalized.
457  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
458
459  /// Transfers all the successors from MBB to this machine basic block (i.e.,
460  /// copies all the successors FromMBB and remove all the successors from
461  /// FromMBB).
462  void transferSuccessors(MachineBasicBlock *FromMBB);
463
464  /// Transfers all the successors, as in transferSuccessors, and update PHI
465  /// operands in the successor blocks which refer to FromMBB to refer to this.
466  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
467
468  /// Return true if any of the successors have probabilities attached to them.
469  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
470
471  /// Return true if the specified MBB is a predecessor of this block.
472  bool isPredecessor(const MachineBasicBlock *MBB) const;
473
474  /// Return true if the specified MBB is a successor of this block.
475  bool isSuccessor(const MachineBasicBlock *MBB) const;
476
477  /// Return true if the specified MBB will be emitted immediately after this
478  /// block, such that if this block exits by falling through, control will
479  /// transfer to the specified MBB. Note that MBB need not be a successor at
480  /// all, for example if this block ends with an unconditional branch to some
481  /// other block.
482  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
483
484  /// Return the fallthrough block if the block can implicitly
485  /// transfer control to the block after it by falling off the end of
486  /// it.  This should return null if it can reach the block after
487  /// it, but it uses an explicit branch to do so (e.g., a table
488  /// jump).  Non-null return  is a conservative answer.
489  MachineBasicBlock *getFallThrough();
490
491  /// Return true if the block can implicitly transfer control to the
492  /// block after it by falling off the end of it.  This should return
493  /// false if it can reach the block after it, but it uses an
494  /// explicit branch to do so (e.g., a table jump).  True is a
495  /// conservative answer.
496  bool canFallThrough();
497
498  /// Returns a pointer to the first instruction in this block that is not a
499  /// PHINode instruction. When adding instructions to the beginning of the
500  /// basic block, they should be added before the returned value, not before
501  /// the first instruction, which might be PHI.
502  /// Returns end() is there's no non-PHI instruction.
503  iterator getFirstNonPHI();
504
505  /// Return the first instruction in MBB after I that is not a PHI or a label.
506  /// This is the correct point to insert lowered copies at the beginning of a
507  /// basic block that must be before any debugging information.
508  iterator SkipPHIsAndLabels(iterator I);
509
510  /// Return the first instruction in MBB after I that is not a PHI, label or
511  /// debug.  This is the correct point to insert copies at the beginning of a
512  /// basic block.
513  iterator SkipPHIsLabelsAndDebug(iterator I);
514
515  /// Returns an iterator to the first terminator instruction of this basic
516  /// block. If a terminator does not exist, it returns end().
517  iterator getFirstTerminator();
518  const_iterator getFirstTerminator() const {
519    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
520  }
521
522  /// Same getFirstTerminator but it ignores bundles and return an
523  /// instr_iterator instead.
524  instr_iterator getFirstInstrTerminator();
525
526  /// Returns an iterator to the first non-debug instruction in the basic block,
527  /// or end().
528  iterator getFirstNonDebugInstr();
529  const_iterator getFirstNonDebugInstr() const {
530    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
531  }
532
533  /// Returns an iterator to the last non-debug instruction in the basic block,
534  /// or end().
535  iterator getLastNonDebugInstr();
536  const_iterator getLastNonDebugInstr() const {
537    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
538  }
539
540  /// Convenience function that returns true if the block ends in a return
541  /// instruction.
542  bool isReturnBlock() const {
543    return !empty() && back().isReturn();
544  }
545
546  /// Split the critical edge from this block to the given successor block, and
547  /// return the newly created block, or null if splitting is not possible.
548  ///
549  /// This function updates LiveVariables, MachineDominatorTree, and
550  /// MachineLoopInfo, as applicable.
551  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
552
553  /// Check if the edge between this block and the given successor \p
554  /// Succ, can be split. If this returns true a subsequent call to
555  /// SplitCriticalEdge is guaranteed to return a valid basic block if
556  /// no changes occured in the meantime.
557  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
558
559  void pop_front() { Insts.pop_front(); }
560  void pop_back() { Insts.pop_back(); }
561  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
562
563  /// Insert MI into the instruction list before I, possibly inside a bundle.
564  ///
565  /// If the insertion point is inside a bundle, MI will be added to the bundle,
566  /// otherwise MI will not be added to any bundle. That means this function
567  /// alone can't be used to prepend or append instructions to bundles. See
568  /// MIBundleBuilder::insert() for a more reliable way of doing that.
569  instr_iterator insert(instr_iterator I, MachineInstr *M);
570
571  /// Insert a range of instructions into the instruction list before I.
572  template<typename IT>
573  void insert(iterator I, IT S, IT E) {
574    assert((I == end() || I->getParent() == this) &&
575           "iterator points outside of basic block");
576    Insts.insert(I.getInstrIterator(), S, E);
577  }
578
579  /// Insert MI into the instruction list before I.
580  iterator insert(iterator I, MachineInstr *MI) {
581    assert((I == end() || I->getParent() == this) &&
582           "iterator points outside of basic block");
583    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
584           "Cannot insert instruction with bundle flags");
585    return Insts.insert(I.getInstrIterator(), MI);
586  }
587
588  /// Insert MI into the instruction list after I.
589  iterator insertAfter(iterator I, MachineInstr *MI) {
590    assert((I == end() || I->getParent() == this) &&
591           "iterator points outside of basic block");
592    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
593           "Cannot insert instruction with bundle flags");
594    return Insts.insertAfter(I.getInstrIterator(), MI);
595  }
596
597  /// Remove an instruction from the instruction list and delete it.
598  ///
599  /// If the instruction is part of a bundle, the other instructions in the
600  /// bundle will still be bundled after removing the single instruction.
601  instr_iterator erase(instr_iterator I);
602
603  /// Remove an instruction from the instruction list and delete it.
604  ///
605  /// If the instruction is part of a bundle, the other instructions in the
606  /// bundle will still be bundled after removing the single instruction.
607  instr_iterator erase_instr(MachineInstr *I) {
608    return erase(instr_iterator(I));
609  }
610
611  /// Remove a range of instructions from the instruction list and delete them.
612  iterator erase(iterator I, iterator E) {
613    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
614  }
615
616  /// Remove an instruction or bundle from the instruction list and delete it.
617  ///
618  /// If I points to a bundle of instructions, they are all erased.
619  iterator erase(iterator I) {
620    return erase(I, std::next(I));
621  }
622
623  /// Remove an instruction from the instruction list and delete it.
624  ///
625  /// If I is the head of a bundle of instructions, the whole bundle will be
626  /// erased.
627  iterator erase(MachineInstr *I) {
628    return erase(iterator(I));
629  }
630
631  /// Remove the unbundled instruction from the instruction list without
632  /// deleting it.
633  ///
634  /// This function can not be used to remove bundled instructions, use
635  /// remove_instr to remove individual instructions from a bundle.
636  MachineInstr *remove(MachineInstr *I) {
637    assert(!I->isBundled() && "Cannot remove bundled instructions");
638    return Insts.remove(instr_iterator(I));
639  }
640
641  /// Remove the possibly bundled instruction from the instruction list
642  /// without deleting it.
643  ///
644  /// If the instruction is part of a bundle, the other instructions in the
645  /// bundle will still be bundled after removing the single instruction.
646  MachineInstr *remove_instr(MachineInstr *I);
647
648  void clear() {
649    Insts.clear();
650  }
651
652  /// Take an instruction from MBB 'Other' at the position From, and insert it
653  /// into this MBB right before 'Where'.
654  ///
655  /// If From points to a bundle of instructions, the whole bundle is moved.
656  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
657    // The range splice() doesn't allow noop moves, but this one does.
658    if (Where != From)
659      splice(Where, Other, From, std::next(From));
660  }
661
662  /// Take a block of instructions from MBB 'Other' in the range [From, To),
663  /// and insert them into this MBB right before 'Where'.
664  ///
665  /// The instruction at 'Where' must not be included in the range of
666  /// instructions to move.
667  void splice(iterator Where, MachineBasicBlock *Other,
668              iterator From, iterator To) {
669    Insts.splice(Where.getInstrIterator(), Other->Insts,
670                 From.getInstrIterator(), To.getInstrIterator());
671  }
672
673  /// This method unlinks 'this' from the containing function, and returns it,
674  /// but does not delete it.
675  MachineBasicBlock *removeFromParent();
676
677  /// This method unlinks 'this' from the containing function and deletes it.
678  void eraseFromParent();
679
680  /// Given a machine basic block that branched to 'Old', change the code and
681  /// CFG so that it branches to 'New' instead.
682  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
683
684  /// Various pieces of code can cause excess edges in the CFG to be inserted.
685  /// If we have proven that MBB can only branch to DestA and DestB, remove any
686  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
687  /// DestA and DestB, retain other edges leading to LandingPads (currently
688  /// there can be only one; we don't check or require that here). Note it is
689  /// possible that DestA and/or DestB are LandingPads.
690  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
691                            MachineBasicBlock *DestB,
692                            bool IsCond);
693
694  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
695  /// instructions.  Return UnknownLoc if there is none.
696  DebugLoc findDebugLoc(instr_iterator MBBI);
697  DebugLoc findDebugLoc(iterator MBBI) {
698    return findDebugLoc(MBBI.getInstrIterator());
699  }
700
701  /// Find and return the merged DebugLoc of the branch instructions of the
702  /// block. Return UnknownLoc if there is none.
703  DebugLoc findBranchDebugLoc();
704
705  /// Possible outcome of a register liveness query to computeRegisterLiveness()
706  enum LivenessQueryResult {
707    LQR_Live,   ///< Register is known to be (at least partially) live.
708    LQR_Dead,   ///< Register is known to be fully dead.
709    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
710  };
711
712  /// Return whether (physical) register \p Reg has been defined and not
713  /// killed as of just before \p Before.
714  ///
715  /// Search is localised to a neighborhood of \p Neighborhood instructions
716  /// before (searching for defs or kills) and \p Neighborhood instructions
717  /// after (searching just for defs) \p Before.
718  ///
719  /// \p Reg must be a physical register.
720  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
721                                              unsigned Reg,
722                                              const_iterator Before,
723                                              unsigned Neighborhood = 10) const;
724
725  // Debugging methods.
726  void dump() const;
727  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
728  void print(raw_ostream &OS, ModuleSlotTracker &MST,
729             const SlotIndexes* = nullptr) const;
730
731  // Printing method used by LoopInfo.
732  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
733
734  /// MachineBasicBlocks are uniquely numbered at the function level, unless
735  /// they're not in a MachineFunction yet, in which case this will return -1.
736  int getNumber() const { return Number; }
737  void setNumber(int N) { Number = N; }
738
739  /// Return the MCSymbol for this basic block.
740  MCSymbol *getSymbol() const;
741
742  Optional<uint64_t> getIrrLoopHeaderWeight() const {
743    return IrrLoopHeaderWeight;
744  }
745
746  void setIrrLoopHeaderWeight(uint64_t Weight) {
747    IrrLoopHeaderWeight = Weight;
748  }
749
750private:
751  /// Return probability iterator corresponding to the I successor iterator.
752  probability_iterator getProbabilityIterator(succ_iterator I);
753  const_probability_iterator
754  getProbabilityIterator(const_succ_iterator I) const;
755
756  friend class MachineBranchProbabilityInfo;
757  friend class MIPrinter;
758
759  /// Return probability of the edge from this block to MBB. This method should
760  /// NOT be called directly, but by using getEdgeProbability method from
761  /// MachineBranchProbabilityInfo class.
762  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
763
764  // Methods used to maintain doubly linked list of blocks...
765  friend struct ilist_callback_traits<MachineBasicBlock>;
766
767  // Machine-CFG mutators
768
769  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
770  /// unless you know what you're doing, because it doesn't update Pred's
771  /// successors list. Use Pred->addSuccessor instead.
772  void addPredecessor(MachineBasicBlock *Pred);
773
774  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
775  /// unless you know what you're doing, because it doesn't update Pred's
776  /// successors list. Use Pred->removeSuccessor instead.
777  void removePredecessor(MachineBasicBlock *Pred);
778};
779
780raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
781
782/// Prints a machine basic block reference.
783///
784/// The format is:
785///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
786///
787/// Usage: OS << printMBBReference(MBB) << '\n';
788Printable printMBBReference(const MachineBasicBlock &MBB);
789
790// This is useful when building IndexedMaps keyed on basic block pointers.
791struct MBB2NumberFunctor {
792  using argument_type = const MachineBasicBlock *;
793  unsigned operator()(const MachineBasicBlock *MBB) const {
794    return MBB->getNumber();
795  }
796};
797
798//===--------------------------------------------------------------------===//
799// GraphTraits specializations for machine basic block graphs (machine-CFGs)
800//===--------------------------------------------------------------------===//
801
802// Provide specializations of GraphTraits to be able to treat a
803// MachineFunction as a graph of MachineBasicBlocks.
804//
805
806template <> struct GraphTraits<MachineBasicBlock *> {
807  using NodeRef = MachineBasicBlock *;
808  using ChildIteratorType = MachineBasicBlock::succ_iterator;
809
810  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
811  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
812  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
813};
814
815template <> struct GraphTraits<const MachineBasicBlock *> {
816  using NodeRef = const MachineBasicBlock *;
817  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
818
819  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
820  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
821  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
822};
823
824// Provide specializations of GraphTraits to be able to treat a
825// MachineFunction as a graph of MachineBasicBlocks and to walk it
826// in inverse order.  Inverse order for a function is considered
827// to be when traversing the predecessor edges of a MBB
828// instead of the successor edges.
829//
830template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
831  using NodeRef = MachineBasicBlock *;
832  using ChildIteratorType = MachineBasicBlock::pred_iterator;
833
834  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
835    return G.Graph;
836  }
837
838  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
839  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
840};
841
842template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
843  using NodeRef = const MachineBasicBlock *;
844  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
845
846  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
847    return G.Graph;
848  }
849
850  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
851  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
852};
853
854/// MachineInstrSpan provides an interface to get an iteration range
855/// containing the instruction it was initialized with, along with all
856/// those instructions inserted prior to or following that instruction
857/// at some point after the MachineInstrSpan is constructed.
858class MachineInstrSpan {
859  MachineBasicBlock &MBB;
860  MachineBasicBlock::iterator I, B, E;
861
862public:
863  MachineInstrSpan(MachineBasicBlock::iterator I)
864    : MBB(*I->getParent()),
865      I(I),
866      B(I == MBB.begin() ? MBB.end() : std::prev(I)),
867      E(std::next(I)) {}
868
869  MachineBasicBlock::iterator begin() {
870    return B == MBB.end() ? MBB.begin() : std::next(B);
871  }
872  MachineBasicBlock::iterator end() { return E; }
873  bool empty() { return begin() == end(); }
874
875  MachineBasicBlock::iterator getInitial() { return I; }
876};
877
878/// Increment \p It until it points to a non-debug instruction or to \p End
879/// and return the resulting iterator. This function should only be used
880/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
881/// const_instr_iterator} and the respective reverse iterators.
882template<typename IterT>
883inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
884  while (It != End && It->isDebugValue())
885    It++;
886  return It;
887}
888
889/// Decrement \p It until it points to a non-debug instruction or to \p Begin
890/// and return the resulting iterator. This function should only be used
891/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
892/// const_instr_iterator} and the respective reverse iterators.
893template<class IterT>
894inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
895  while (It != Begin && It->isDebugValue())
896    It--;
897  return It;
898}
899
900} // end namespace llvm
901
902#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
903