MachineBasicBlock.h revision 327952
1//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/ilist.h"
19#include "llvm/ADT/ilist_node.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/ADT/simple_ilist.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineInstrBundleIterator.h"
24#include "llvm/IR/DebugLoc.h"
25#include "llvm/MC/LaneBitmask.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/Support/BranchProbability.h"
28#include "llvm/Support/Printable.h"
29#include <cassert>
30#include <cstdint>
31#include <functional>
32#include <iterator>
33#include <string>
34#include <vector>
35
36namespace llvm {
37
38class BasicBlock;
39class MachineFunction;
40class MCSymbol;
41class ModuleSlotTracker;
42class Pass;
43class SlotIndexes;
44class StringRef;
45class raw_ostream;
46class TargetRegisterClass;
47class TargetRegisterInfo;
48
49template <> struct ilist_traits<MachineInstr> {
50private:
51  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
52
53  MachineBasicBlock *Parent;
54
55  using instr_iterator =
56      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
57
58public:
59  void addNodeToList(MachineInstr *N);
60  void removeNodeFromList(MachineInstr *N);
61  void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
62                             instr_iterator Last);
63  void deleteNode(MachineInstr *MI);
64};
65
66class MachineBasicBlock
67    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
68public:
69  /// Pair of physical register and lane mask.
70  /// This is not simply a std::pair typedef because the members should be named
71  /// clearly as they both have an integer type.
72  struct RegisterMaskPair {
73  public:
74    MCPhysReg PhysReg;
75    LaneBitmask LaneMask;
76
77    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
78        : PhysReg(PhysReg), LaneMask(LaneMask) {}
79  };
80
81private:
82  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
83
84  Instructions Insts;
85  const BasicBlock *BB;
86  int Number;
87  MachineFunction *xParent;
88
89  /// Keep track of the predecessor / successor basic blocks.
90  std::vector<MachineBasicBlock *> Predecessors;
91  std::vector<MachineBasicBlock *> Successors;
92
93  /// Keep track of the probabilities to the successors. This vector has the
94  /// same order as Successors, or it is empty if we don't use it (disable
95  /// optimization).
96  std::vector<BranchProbability> Probs;
97  using probability_iterator = std::vector<BranchProbability>::iterator;
98  using const_probability_iterator =
99      std::vector<BranchProbability>::const_iterator;
100
101  Optional<uint64_t> IrrLoopHeaderWeight;
102
103  /// Keep track of the physical registers that are livein of the basicblock.
104  using LiveInVector = std::vector<RegisterMaskPair>;
105  LiveInVector LiveIns;
106
107  /// Alignment of the basic block. Zero if the basic block does not need to be
108  /// aligned. The alignment is specified as log2(bytes).
109  unsigned Alignment = 0;
110
111  /// Indicate that this basic block is entered via an exception handler.
112  bool IsEHPad = false;
113
114  /// Indicate that this basic block is potentially the target of an indirect
115  /// branch.
116  bool AddressTaken = false;
117
118  /// Indicate that this basic block is the entry block of an EH funclet.
119  bool IsEHFuncletEntry = false;
120
121  /// Indicate that this basic block is the entry block of a cleanup funclet.
122  bool IsCleanupFuncletEntry = false;
123
124  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
125  /// is only computed once and is cached.
126  mutable MCSymbol *CachedMCSymbol = nullptr;
127
128  // Intrusive list support
129  MachineBasicBlock() = default;
130
131  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
132
133  ~MachineBasicBlock();
134
135  // MachineBasicBlocks are allocated and owned by MachineFunction.
136  friend class MachineFunction;
137
138public:
139  /// Return the LLVM basic block that this instance corresponded to originally.
140  /// Note that this may be NULL if this instance does not correspond directly
141  /// to an LLVM basic block.
142  const BasicBlock *getBasicBlock() const { return BB; }
143
144  /// Return the name of the corresponding LLVM basic block, or an empty string.
145  StringRef getName() const;
146
147  /// Return a formatted string to identify this block and its parent function.
148  std::string getFullName() const;
149
150  /// Test whether this block is potentially the target of an indirect branch.
151  bool hasAddressTaken() const { return AddressTaken; }
152
153  /// Set this block to reflect that it potentially is the target of an indirect
154  /// branch.
155  void setHasAddressTaken() { AddressTaken = true; }
156
157  /// Return the MachineFunction containing this basic block.
158  const MachineFunction *getParent() const { return xParent; }
159  MachineFunction *getParent() { return xParent; }
160
161  using instr_iterator = Instructions::iterator;
162  using const_instr_iterator = Instructions::const_iterator;
163  using reverse_instr_iterator = Instructions::reverse_iterator;
164  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
165
166  using iterator = MachineInstrBundleIterator<MachineInstr>;
167  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
168  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
169  using const_reverse_iterator =
170      MachineInstrBundleIterator<const MachineInstr, true>;
171
172  unsigned size() const { return (unsigned)Insts.size(); }
173  bool empty() const { return Insts.empty(); }
174
175  MachineInstr       &instr_front()       { return Insts.front(); }
176  MachineInstr       &instr_back()        { return Insts.back();  }
177  const MachineInstr &instr_front() const { return Insts.front(); }
178  const MachineInstr &instr_back()  const { return Insts.back();  }
179
180  MachineInstr       &front()             { return Insts.front(); }
181  MachineInstr       &back()              { return *--end();      }
182  const MachineInstr &front()       const { return Insts.front(); }
183  const MachineInstr &back()        const { return *--end();      }
184
185  instr_iterator                instr_begin()       { return Insts.begin();  }
186  const_instr_iterator          instr_begin() const { return Insts.begin();  }
187  instr_iterator                  instr_end()       { return Insts.end();    }
188  const_instr_iterator            instr_end() const { return Insts.end();    }
189  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
190  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
191  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
192  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
193
194  using instr_range = iterator_range<instr_iterator>;
195  using const_instr_range = iterator_range<const_instr_iterator>;
196  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
197  const_instr_range instrs() const {
198    return const_instr_range(instr_begin(), instr_end());
199  }
200
201  iterator                begin()       { return instr_begin();  }
202  const_iterator          begin() const { return instr_begin();  }
203  iterator                end  ()       { return instr_end();    }
204  const_iterator          end  () const { return instr_end();    }
205  reverse_iterator rbegin() {
206    return reverse_iterator::getAtBundleBegin(instr_rbegin());
207  }
208  const_reverse_iterator rbegin() const {
209    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
210  }
211  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
212  const_reverse_iterator rend() const {
213    return const_reverse_iterator(instr_rend());
214  }
215
216  /// Support for MachineInstr::getNextNode().
217  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
218    return &MachineBasicBlock::Insts;
219  }
220
221  inline iterator_range<iterator> terminators() {
222    return make_range(getFirstTerminator(), end());
223  }
224  inline iterator_range<const_iterator> terminators() const {
225    return make_range(getFirstTerminator(), end());
226  }
227
228  // Machine-CFG iterators
229  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
230  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
231  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
232  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
233  using pred_reverse_iterator =
234      std::vector<MachineBasicBlock *>::reverse_iterator;
235  using const_pred_reverse_iterator =
236      std::vector<MachineBasicBlock *>::const_reverse_iterator;
237  using succ_reverse_iterator =
238      std::vector<MachineBasicBlock *>::reverse_iterator;
239  using const_succ_reverse_iterator =
240      std::vector<MachineBasicBlock *>::const_reverse_iterator;
241  pred_iterator        pred_begin()       { return Predecessors.begin(); }
242  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
243  pred_iterator        pred_end()         { return Predecessors.end();   }
244  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
245  pred_reverse_iterator        pred_rbegin()
246                                          { return Predecessors.rbegin();}
247  const_pred_reverse_iterator  pred_rbegin() const
248                                          { return Predecessors.rbegin();}
249  pred_reverse_iterator        pred_rend()
250                                          { return Predecessors.rend();  }
251  const_pred_reverse_iterator  pred_rend()   const
252                                          { return Predecessors.rend();  }
253  unsigned             pred_size()  const {
254    return (unsigned)Predecessors.size();
255  }
256  bool                 pred_empty() const { return Predecessors.empty(); }
257  succ_iterator        succ_begin()       { return Successors.begin();   }
258  const_succ_iterator  succ_begin() const { return Successors.begin();   }
259  succ_iterator        succ_end()         { return Successors.end();     }
260  const_succ_iterator  succ_end()   const { return Successors.end();     }
261  succ_reverse_iterator        succ_rbegin()
262                                          { return Successors.rbegin();  }
263  const_succ_reverse_iterator  succ_rbegin() const
264                                          { return Successors.rbegin();  }
265  succ_reverse_iterator        succ_rend()
266                                          { return Successors.rend();    }
267  const_succ_reverse_iterator  succ_rend()   const
268                                          { return Successors.rend();    }
269  unsigned             succ_size()  const {
270    return (unsigned)Successors.size();
271  }
272  bool                 succ_empty() const { return Successors.empty();   }
273
274  inline iterator_range<pred_iterator> predecessors() {
275    return make_range(pred_begin(), pred_end());
276  }
277  inline iterator_range<const_pred_iterator> predecessors() const {
278    return make_range(pred_begin(), pred_end());
279  }
280  inline iterator_range<succ_iterator> successors() {
281    return make_range(succ_begin(), succ_end());
282  }
283  inline iterator_range<const_succ_iterator> successors() const {
284    return make_range(succ_begin(), succ_end());
285  }
286
287  // LiveIn management methods.
288
289  /// Adds the specified register as a live in. Note that it is an error to add
290  /// the same register to the same set more than once unless the intention is
291  /// to call sortUniqueLiveIns after all registers are added.
292  void addLiveIn(MCPhysReg PhysReg,
293                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
294    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
295  }
296  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
297    LiveIns.push_back(RegMaskPair);
298  }
299
300  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
301  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
302  /// LiveIn insertion.
303  void sortUniqueLiveIns();
304
305  /// Clear live in list.
306  void clearLiveIns();
307
308  /// Add PhysReg as live in to this block, and ensure that there is a copy of
309  /// PhysReg to a virtual register of class RC. Return the virtual register
310  /// that is a copy of the live in PhysReg.
311  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
312
313  /// Remove the specified register from the live in set.
314  void removeLiveIn(MCPhysReg Reg,
315                    LaneBitmask LaneMask = LaneBitmask::getAll());
316
317  /// Return true if the specified register is in the live in set.
318  bool isLiveIn(MCPhysReg Reg,
319                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
320
321  // Iteration support for live in sets.  These sets are kept in sorted
322  // order by their register number.
323  using livein_iterator = LiveInVector::const_iterator;
324#ifndef NDEBUG
325  /// Unlike livein_begin, this method does not check that the liveness
326  /// information is accurate. Still for debug purposes it may be useful
327  /// to have iterators that won't assert if the liveness information
328  /// is not current.
329  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
330  iterator_range<livein_iterator> liveins_dbg() const {
331    return make_range(livein_begin_dbg(), livein_end());
332  }
333#endif
334  livein_iterator livein_begin() const;
335  livein_iterator livein_end()   const { return LiveIns.end(); }
336  bool            livein_empty() const { return LiveIns.empty(); }
337  iterator_range<livein_iterator> liveins() const {
338    return make_range(livein_begin(), livein_end());
339  }
340
341  /// Remove entry from the livein set and return iterator to the next.
342  livein_iterator removeLiveIn(livein_iterator I);
343
344  /// Get the clobber mask for the start of this basic block. Funclets use this
345  /// to prevent register allocation across funclet transitions.
346  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
347
348  /// Get the clobber mask for the end of the basic block.
349  /// \see getBeginClobberMask()
350  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
351
352  /// Return alignment of the basic block. The alignment is specified as
353  /// log2(bytes).
354  unsigned getAlignment() const { return Alignment; }
355
356  /// Set alignment of the basic block. The alignment is specified as
357  /// log2(bytes).
358  void setAlignment(unsigned Align) { Alignment = Align; }
359
360  /// Returns true if the block is a landing pad. That is this basic block is
361  /// entered via an exception handler.
362  bool isEHPad() const { return IsEHPad; }
363
364  /// Indicates the block is a landing pad.  That is this basic block is entered
365  /// via an exception handler.
366  void setIsEHPad(bool V = true) { IsEHPad = V; }
367
368  bool hasEHPadSuccessor() const;
369
370  /// Returns true if this is the entry block of an EH funclet.
371  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
372
373  /// Indicates if this is the entry block of an EH funclet.
374  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
375
376  /// Returns true if this is the entry block of a cleanup funclet.
377  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
378
379  /// Indicates if this is the entry block of a cleanup funclet.
380  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
381
382  /// Returns true if it is legal to hoist instructions into this block.
383  bool isLegalToHoistInto() const;
384
385  // Code Layout methods.
386
387  /// Move 'this' block before or after the specified block.  This only moves
388  /// the block, it does not modify the CFG or adjust potential fall-throughs at
389  /// the end of the block.
390  void moveBefore(MachineBasicBlock *NewAfter);
391  void moveAfter(MachineBasicBlock *NewBefore);
392
393  /// Update the terminator instructions in block to account for changes to the
394  /// layout. If the block previously used a fallthrough, it may now need a
395  /// branch, and if it previously used branching it may now be able to use a
396  /// fallthrough.
397  void updateTerminator();
398
399  // Machine-CFG mutators
400
401  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
402  /// of Succ is automatically updated. PROB parameter is stored in
403  /// Probabilities list. The default probability is set as unknown. Mixing
404  /// known and unknown probabilities in successor list is not allowed. When all
405  /// successors have unknown probabilities, 1 / N is returned as the
406  /// probability for each successor, where N is the number of successors.
407  ///
408  /// Note that duplicate Machine CFG edges are not allowed.
409  void addSuccessor(MachineBasicBlock *Succ,
410                    BranchProbability Prob = BranchProbability::getUnknown());
411
412  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
413  /// of Succ is automatically updated. The probability is not provided because
414  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
415  /// won't be used. Using this interface can save some space.
416  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
417
418  /// Set successor probability of a given iterator.
419  void setSuccProbability(succ_iterator I, BranchProbability Prob);
420
421  /// Normalize probabilities of all successors so that the sum of them becomes
422  /// one. This is usually done when the current update on this MBB is done, and
423  /// the sum of its successors' probabilities is not guaranteed to be one. The
424  /// user is responsible for the correct use of this function.
425  /// MBB::removeSuccessor() has an option to do this automatically.
426  void normalizeSuccProbs() {
427    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
428  }
429
430  /// Validate successors' probabilities and check if the sum of them is
431  /// approximate one. This only works in DEBUG mode.
432  void validateSuccProbs() const;
433
434  /// Remove successor from the successors list of this MachineBasicBlock. The
435  /// Predecessors list of Succ is automatically updated.
436  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
437  /// after the successor is removed.
438  void removeSuccessor(MachineBasicBlock *Succ,
439                       bool NormalizeSuccProbs = false);
440
441  /// Remove specified successor from the successors list of this
442  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
443  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
444  /// after the successor is removed.
445  /// Return the iterator to the element after the one removed.
446  succ_iterator removeSuccessor(succ_iterator I,
447                                bool NormalizeSuccProbs = false);
448
449  /// Replace successor OLD with NEW and update probability info.
450  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
451
452  /// Transfers all the successors from MBB to this machine basic block (i.e.,
453  /// copies all the successors FromMBB and remove all the successors from
454  /// FromMBB).
455  void transferSuccessors(MachineBasicBlock *FromMBB);
456
457  /// Transfers all the successors, as in transferSuccessors, and update PHI
458  /// operands in the successor blocks which refer to FromMBB to refer to this.
459  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
460
461  /// Return true if any of the successors have probabilities attached to them.
462  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
463
464  /// Return true if the specified MBB is a predecessor of this block.
465  bool isPredecessor(const MachineBasicBlock *MBB) const;
466
467  /// Return true if the specified MBB is a successor of this block.
468  bool isSuccessor(const MachineBasicBlock *MBB) const;
469
470  /// Return true if the specified MBB will be emitted immediately after this
471  /// block, such that if this block exits by falling through, control will
472  /// transfer to the specified MBB. Note that MBB need not be a successor at
473  /// all, for example if this block ends with an unconditional branch to some
474  /// other block.
475  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
476
477  /// Return the fallthrough block if the block can implicitly
478  /// transfer control to the block after it by falling off the end of
479  /// it.  This should return null if it can reach the block after
480  /// it, but it uses an explicit branch to do so (e.g., a table
481  /// jump).  Non-null return  is a conservative answer.
482  MachineBasicBlock *getFallThrough();
483
484  /// Return true if the block can implicitly transfer control to the
485  /// block after it by falling off the end of it.  This should return
486  /// false if it can reach the block after it, but it uses an
487  /// explicit branch to do so (e.g., a table jump).  True is a
488  /// conservative answer.
489  bool canFallThrough();
490
491  /// Returns a pointer to the first instruction in this block that is not a
492  /// PHINode instruction. When adding instructions to the beginning of the
493  /// basic block, they should be added before the returned value, not before
494  /// the first instruction, which might be PHI.
495  /// Returns end() is there's no non-PHI instruction.
496  iterator getFirstNonPHI();
497
498  /// Return the first instruction in MBB after I that is not a PHI or a label.
499  /// This is the correct point to insert lowered copies at the beginning of a
500  /// basic block that must be before any debugging information.
501  iterator SkipPHIsAndLabels(iterator I);
502
503  /// Return the first instruction in MBB after I that is not a PHI, label or
504  /// debug.  This is the correct point to insert copies at the beginning of a
505  /// basic block.
506  iterator SkipPHIsLabelsAndDebug(iterator I);
507
508  /// Returns an iterator to the first terminator instruction of this basic
509  /// block. If a terminator does not exist, it returns end().
510  iterator getFirstTerminator();
511  const_iterator getFirstTerminator() const {
512    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
513  }
514
515  /// Same getFirstTerminator but it ignores bundles and return an
516  /// instr_iterator instead.
517  instr_iterator getFirstInstrTerminator();
518
519  /// Returns an iterator to the first non-debug instruction in the basic block,
520  /// or end().
521  iterator getFirstNonDebugInstr();
522  const_iterator getFirstNonDebugInstr() const {
523    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
524  }
525
526  /// Returns an iterator to the last non-debug instruction in the basic block,
527  /// or end().
528  iterator getLastNonDebugInstr();
529  const_iterator getLastNonDebugInstr() const {
530    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
531  }
532
533  /// Convenience function that returns true if the block ends in a return
534  /// instruction.
535  bool isReturnBlock() const {
536    return !empty() && back().isReturn();
537  }
538
539  /// Split the critical edge from this block to the given successor block, and
540  /// return the newly created block, or null if splitting is not possible.
541  ///
542  /// This function updates LiveVariables, MachineDominatorTree, and
543  /// MachineLoopInfo, as applicable.
544  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
545
546  /// Check if the edge between this block and the given successor \p
547  /// Succ, can be split. If this returns true a subsequent call to
548  /// SplitCriticalEdge is guaranteed to return a valid basic block if
549  /// no changes occured in the meantime.
550  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
551
552  void pop_front() { Insts.pop_front(); }
553  void pop_back() { Insts.pop_back(); }
554  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
555
556  /// Insert MI into the instruction list before I, possibly inside a bundle.
557  ///
558  /// If the insertion point is inside a bundle, MI will be added to the bundle,
559  /// otherwise MI will not be added to any bundle. That means this function
560  /// alone can't be used to prepend or append instructions to bundles. See
561  /// MIBundleBuilder::insert() for a more reliable way of doing that.
562  instr_iterator insert(instr_iterator I, MachineInstr *M);
563
564  /// Insert a range of instructions into the instruction list before I.
565  template<typename IT>
566  void insert(iterator I, IT S, IT E) {
567    assert((I == end() || I->getParent() == this) &&
568           "iterator points outside of basic block");
569    Insts.insert(I.getInstrIterator(), S, E);
570  }
571
572  /// Insert MI into the instruction list before I.
573  iterator insert(iterator I, MachineInstr *MI) {
574    assert((I == end() || I->getParent() == this) &&
575           "iterator points outside of basic block");
576    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
577           "Cannot insert instruction with bundle flags");
578    return Insts.insert(I.getInstrIterator(), MI);
579  }
580
581  /// Insert MI into the instruction list after I.
582  iterator insertAfter(iterator I, MachineInstr *MI) {
583    assert((I == end() || I->getParent() == this) &&
584           "iterator points outside of basic block");
585    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
586           "Cannot insert instruction with bundle flags");
587    return Insts.insertAfter(I.getInstrIterator(), MI);
588  }
589
590  /// Remove an instruction from the instruction list and delete it.
591  ///
592  /// If the instruction is part of a bundle, the other instructions in the
593  /// bundle will still be bundled after removing the single instruction.
594  instr_iterator erase(instr_iterator I);
595
596  /// Remove an instruction from the instruction list and delete it.
597  ///
598  /// If the instruction is part of a bundle, the other instructions in the
599  /// bundle will still be bundled after removing the single instruction.
600  instr_iterator erase_instr(MachineInstr *I) {
601    return erase(instr_iterator(I));
602  }
603
604  /// Remove a range of instructions from the instruction list and delete them.
605  iterator erase(iterator I, iterator E) {
606    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
607  }
608
609  /// Remove an instruction or bundle from the instruction list and delete it.
610  ///
611  /// If I points to a bundle of instructions, they are all erased.
612  iterator erase(iterator I) {
613    return erase(I, std::next(I));
614  }
615
616  /// Remove an instruction from the instruction list and delete it.
617  ///
618  /// If I is the head of a bundle of instructions, the whole bundle will be
619  /// erased.
620  iterator erase(MachineInstr *I) {
621    return erase(iterator(I));
622  }
623
624  /// Remove the unbundled instruction from the instruction list without
625  /// deleting it.
626  ///
627  /// This function can not be used to remove bundled instructions, use
628  /// remove_instr to remove individual instructions from a bundle.
629  MachineInstr *remove(MachineInstr *I) {
630    assert(!I->isBundled() && "Cannot remove bundled instructions");
631    return Insts.remove(instr_iterator(I));
632  }
633
634  /// Remove the possibly bundled instruction from the instruction list
635  /// without deleting it.
636  ///
637  /// If the instruction is part of a bundle, the other instructions in the
638  /// bundle will still be bundled after removing the single instruction.
639  MachineInstr *remove_instr(MachineInstr *I);
640
641  void clear() {
642    Insts.clear();
643  }
644
645  /// Take an instruction from MBB 'Other' at the position From, and insert it
646  /// into this MBB right before 'Where'.
647  ///
648  /// If From points to a bundle of instructions, the whole bundle is moved.
649  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
650    // The range splice() doesn't allow noop moves, but this one does.
651    if (Where != From)
652      splice(Where, Other, From, std::next(From));
653  }
654
655  /// Take a block of instructions from MBB 'Other' in the range [From, To),
656  /// and insert them into this MBB right before 'Where'.
657  ///
658  /// The instruction at 'Where' must not be included in the range of
659  /// instructions to move.
660  void splice(iterator Where, MachineBasicBlock *Other,
661              iterator From, iterator To) {
662    Insts.splice(Where.getInstrIterator(), Other->Insts,
663                 From.getInstrIterator(), To.getInstrIterator());
664  }
665
666  /// This method unlinks 'this' from the containing function, and returns it,
667  /// but does not delete it.
668  MachineBasicBlock *removeFromParent();
669
670  /// This method unlinks 'this' from the containing function and deletes it.
671  void eraseFromParent();
672
673  /// Given a machine basic block that branched to 'Old', change the code and
674  /// CFG so that it branches to 'New' instead.
675  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
676
677  /// Various pieces of code can cause excess edges in the CFG to be inserted.
678  /// If we have proven that MBB can only branch to DestA and DestB, remove any
679  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
680  /// DestA and DestB, retain other edges leading to LandingPads (currently
681  /// there can be only one; we don't check or require that here). Note it is
682  /// possible that DestA and/or DestB are LandingPads.
683  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
684                            MachineBasicBlock *DestB,
685                            bool IsCond);
686
687  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
688  /// instructions.  Return UnknownLoc if there is none.
689  DebugLoc findDebugLoc(instr_iterator MBBI);
690  DebugLoc findDebugLoc(iterator MBBI) {
691    return findDebugLoc(MBBI.getInstrIterator());
692  }
693
694  /// Find and return the merged DebugLoc of the branch instructions of the
695  /// block. Return UnknownLoc if there is none.
696  DebugLoc findBranchDebugLoc();
697
698  /// Possible outcome of a register liveness query to computeRegisterLiveness()
699  enum LivenessQueryResult {
700    LQR_Live,   ///< Register is known to be (at least partially) live.
701    LQR_Dead,   ///< Register is known to be fully dead.
702    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
703  };
704
705  /// Return whether (physical) register \p Reg has been defined and not
706  /// killed as of just before \p Before.
707  ///
708  /// Search is localised to a neighborhood of \p Neighborhood instructions
709  /// before (searching for defs or kills) and \p Neighborhood instructions
710  /// after (searching just for defs) \p Before.
711  ///
712  /// \p Reg must be a physical register.
713  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
714                                              unsigned Reg,
715                                              const_iterator Before,
716                                              unsigned Neighborhood = 10) const;
717
718  // Debugging methods.
719  void dump() const;
720  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
721  void print(raw_ostream &OS, ModuleSlotTracker &MST,
722             const SlotIndexes* = nullptr) const;
723
724  // Printing method used by LoopInfo.
725  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
726
727  /// MachineBasicBlocks are uniquely numbered at the function level, unless
728  /// they're not in a MachineFunction yet, in which case this will return -1.
729  int getNumber() const { return Number; }
730  void setNumber(int N) { Number = N; }
731
732  /// Return the MCSymbol for this basic block.
733  MCSymbol *getSymbol() const;
734
735  Optional<uint64_t> getIrrLoopHeaderWeight() const {
736    return IrrLoopHeaderWeight;
737  }
738
739  void setIrrLoopHeaderWeight(uint64_t Weight) {
740    IrrLoopHeaderWeight = Weight;
741  }
742
743private:
744  /// Return probability iterator corresponding to the I successor iterator.
745  probability_iterator getProbabilityIterator(succ_iterator I);
746  const_probability_iterator
747  getProbabilityIterator(const_succ_iterator I) const;
748
749  friend class MachineBranchProbabilityInfo;
750  friend class MIPrinter;
751
752  /// Return probability of the edge from this block to MBB. This method should
753  /// NOT be called directly, but by using getEdgeProbability method from
754  /// MachineBranchProbabilityInfo class.
755  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
756
757  // Methods used to maintain doubly linked list of blocks...
758  friend struct ilist_callback_traits<MachineBasicBlock>;
759
760  // Machine-CFG mutators
761
762  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
763  /// unless you know what you're doing, because it doesn't update Pred's
764  /// successors list. Use Pred->addSuccessor instead.
765  void addPredecessor(MachineBasicBlock *Pred);
766
767  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
768  /// unless you know what you're doing, because it doesn't update Pred's
769  /// successors list. Use Pred->removeSuccessor instead.
770  void removePredecessor(MachineBasicBlock *Pred);
771};
772
773raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
774
775/// Prints a machine basic block reference.
776///
777/// The format is:
778///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
779///
780/// Usage: OS << printMBBReference(MBB) << '\n';
781Printable printMBBReference(const MachineBasicBlock &MBB);
782
783// This is useful when building IndexedMaps keyed on basic block pointers.
784struct MBB2NumberFunctor {
785  using argument_type = const MachineBasicBlock *;
786  unsigned operator()(const MachineBasicBlock *MBB) const {
787    return MBB->getNumber();
788  }
789};
790
791//===--------------------------------------------------------------------===//
792// GraphTraits specializations for machine basic block graphs (machine-CFGs)
793//===--------------------------------------------------------------------===//
794
795// Provide specializations of GraphTraits to be able to treat a
796// MachineFunction as a graph of MachineBasicBlocks.
797//
798
799template <> struct GraphTraits<MachineBasicBlock *> {
800  using NodeRef = MachineBasicBlock *;
801  using ChildIteratorType = MachineBasicBlock::succ_iterator;
802
803  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
804  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
805  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
806};
807
808template <> struct GraphTraits<const MachineBasicBlock *> {
809  using NodeRef = const MachineBasicBlock *;
810  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
811
812  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
813  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
814  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
815};
816
817// Provide specializations of GraphTraits to be able to treat a
818// MachineFunction as a graph of MachineBasicBlocks and to walk it
819// in inverse order.  Inverse order for a function is considered
820// to be when traversing the predecessor edges of a MBB
821// instead of the successor edges.
822//
823template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
824  using NodeRef = MachineBasicBlock *;
825  using ChildIteratorType = MachineBasicBlock::pred_iterator;
826
827  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
828    return G.Graph;
829  }
830
831  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
832  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
833};
834
835template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
836  using NodeRef = const MachineBasicBlock *;
837  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
838
839  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
840    return G.Graph;
841  }
842
843  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
844  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
845};
846
847/// MachineInstrSpan provides an interface to get an iteration range
848/// containing the instruction it was initialized with, along with all
849/// those instructions inserted prior to or following that instruction
850/// at some point after the MachineInstrSpan is constructed.
851class MachineInstrSpan {
852  MachineBasicBlock &MBB;
853  MachineBasicBlock::iterator I, B, E;
854
855public:
856  MachineInstrSpan(MachineBasicBlock::iterator I)
857    : MBB(*I->getParent()),
858      I(I),
859      B(I == MBB.begin() ? MBB.end() : std::prev(I)),
860      E(std::next(I)) {}
861
862  MachineBasicBlock::iterator begin() {
863    return B == MBB.end() ? MBB.begin() : std::next(B);
864  }
865  MachineBasicBlock::iterator end() { return E; }
866  bool empty() { return begin() == end(); }
867
868  MachineBasicBlock::iterator getInitial() { return I; }
869};
870
871/// Increment \p It until it points to a non-debug instruction or to \p End
872/// and return the resulting iterator. This function should only be used
873/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
874/// const_instr_iterator} and the respective reverse iterators.
875template<typename IterT>
876inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
877  while (It != End && It->isDebugValue())
878    It++;
879  return It;
880}
881
882/// Decrement \p It until it points to a non-debug instruction or to \p Begin
883/// and return the resulting iterator. This function should only be used
884/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
885/// const_instr_iterator} and the respective reverse iterators.
886template<class IterT>
887inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
888  while (It != Begin && It->isDebugValue())
889    It--;
890  return It;
891}
892
893} // end namespace llvm
894
895#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
896