MachineBasicBlock.h revision 321369
196925Sgrog//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
296925Sgrog//
396925Sgrog//                     The LLVM Compiler Infrastructure
496925Sgrog//
596925Sgrog// This file is distributed under the University of Illinois Open Source
696925Sgrog// License. See LICENSE.TXT for details.
796925Sgrog//
896925Sgrog//===----------------------------------------------------------------------===//
996925Sgrog//
1096925Sgrog// Collect the sequence of machine instructions for a basic block.
1196925Sgrog//
1296925Sgrog//===----------------------------------------------------------------------===//
1396925Sgrog
1496925Sgrog#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
1596925Sgrog#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
1696925Sgrog
1796925Sgrog#include "llvm/ADT/GraphTraits.h"
1896925Sgrog#include "llvm/ADT/ilist.h"
1996925Sgrog#include "llvm/ADT/ilist_node.h"
2096925Sgrog#include "llvm/ADT/iterator_range.h"
2196925Sgrog#include "llvm/ADT/simple_ilist.h"
2296925Sgrog#include "llvm/CodeGen/MachineInstr.h"
2396925Sgrog#include "llvm/CodeGen/MachineInstrBundleIterator.h"
2496925Sgrog#include "llvm/IR/DebugLoc.h"
2596925Sgrog#include "llvm/MC/LaneBitmask.h"
2696925Sgrog#include "llvm/MC/MCRegisterInfo.h"
2796925Sgrog#include "llvm/Support/BranchProbability.h"
2896925Sgrog#include <cassert>
2996925Sgrog#include <cstdint>
3096925Sgrog#include <functional>
3196925Sgrog#include <iterator>
3296925Sgrog#include <string>
3396925Sgrog#include <vector>
3496925Sgrog
3596925Sgrognamespace llvm {
3696925Sgrog
3796925Sgrogclass BasicBlock;
3896924Sgrogclass MachineFunction;
3996924Sgrogclass MCSymbol;
4096924Sgrogclass ModuleSlotTracker;
4196924Sgrogclass Pass;
4296924Sgrogclass SlotIndexes;
4396924Sgrogclass StringRef;
4496924Sgrogclass raw_ostream;
4596924Sgrogclass TargetRegisterClass;
4696924Sgrogclass TargetRegisterInfo;
4796924Sgrog
4896924Sgrogtemplate <> struct ilist_traits<MachineInstr> {
4996924Sgrogprivate:
5096924Sgrog  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
5196924Sgrog
5296924Sgrog  MachineBasicBlock *Parent;
5396924Sgrog
5496924Sgrog  using instr_iterator =
5596924Sgrog      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
5696924Sgrog
5796924Sgrogpublic:
5896924Sgrog  void addNodeToList(MachineInstr *N);
5996924Sgrog  void removeNodeFromList(MachineInstr *N);
6096924Sgrog  void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
6196924Sgrog                             instr_iterator Last);
6296924Sgrog  void deleteNode(MachineInstr *MI);
6396924Sgrog};
6496924Sgrog
6596924Sgrogclass MachineBasicBlock
6696924Sgrog    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
6796924Sgrogpublic:
6896924Sgrog  /// Pair of physical register and lane mask.
6996924Sgrog  /// This is not simply a std::pair typedef because the members should be named
7096924Sgrog  /// clearly as they both have an integer type.
7196924Sgrog  struct RegisterMaskPair {
7296924Sgrog  public:
7396924Sgrog    MCPhysReg PhysReg;
7496924Sgrog    LaneBitmask LaneMask;
7596924Sgrog
7696924Sgrog    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
7796924Sgrog        : PhysReg(PhysReg), LaneMask(LaneMask) {}
7896924Sgrog  };
7996924Sgrog
8096924Sgrogprivate:
8196924Sgrog  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
8296924Sgrog
8396924Sgrog  Instructions Insts;
8496924Sgrog  const BasicBlock *BB;
8596924Sgrog  int Number;
8696924Sgrog  MachineFunction *xParent;
8796924Sgrog
8896924Sgrog  /// Keep track of the predecessor / successor basic blocks.
89  std::vector<MachineBasicBlock *> Predecessors;
90  std::vector<MachineBasicBlock *> Successors;
91
92  /// Keep track of the probabilities to the successors. This vector has the
93  /// same order as Successors, or it is empty if we don't use it (disable
94  /// optimization).
95  std::vector<BranchProbability> Probs;
96  using probability_iterator = std::vector<BranchProbability>::iterator;
97  using const_probability_iterator =
98      std::vector<BranchProbability>::const_iterator;
99
100  /// Keep track of the physical registers that are livein of the basicblock.
101  using LiveInVector = std::vector<RegisterMaskPair>;
102  LiveInVector LiveIns;
103
104  /// Alignment of the basic block. Zero if the basic block does not need to be
105  /// aligned. The alignment is specified as log2(bytes).
106  unsigned Alignment = 0;
107
108  /// Indicate that this basic block is entered via an exception handler.
109  bool IsEHPad = false;
110
111  /// Indicate that this basic block is potentially the target of an indirect
112  /// branch.
113  bool AddressTaken = false;
114
115  /// Indicate that this basic block is the entry block of an EH funclet.
116  bool IsEHFuncletEntry = false;
117
118  /// Indicate that this basic block is the entry block of a cleanup funclet.
119  bool IsCleanupFuncletEntry = false;
120
121  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
122  /// is only computed once and is cached.
123  mutable MCSymbol *CachedMCSymbol = nullptr;
124
125  // Intrusive list support
126  MachineBasicBlock() = default;
127
128  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
129
130  ~MachineBasicBlock();
131
132  // MachineBasicBlocks are allocated and owned by MachineFunction.
133  friend class MachineFunction;
134
135public:
136  /// Return the LLVM basic block that this instance corresponded to originally.
137  /// Note that this may be NULL if this instance does not correspond directly
138  /// to an LLVM basic block.
139  const BasicBlock *getBasicBlock() const { return BB; }
140
141  /// Return the name of the corresponding LLVM basic block, or an empty string.
142  StringRef getName() const;
143
144  /// Return a formatted string to identify this block and its parent function.
145  std::string getFullName() const;
146
147  /// Test whether this block is potentially the target of an indirect branch.
148  bool hasAddressTaken() const { return AddressTaken; }
149
150  /// Set this block to reflect that it potentially is the target of an indirect
151  /// branch.
152  void setHasAddressTaken() { AddressTaken = true; }
153
154  /// Return the MachineFunction containing this basic block.
155  const MachineFunction *getParent() const { return xParent; }
156  MachineFunction *getParent() { return xParent; }
157
158  using instr_iterator = Instructions::iterator;
159  using const_instr_iterator = Instructions::const_iterator;
160  using reverse_instr_iterator = Instructions::reverse_iterator;
161  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
162
163  using iterator = MachineInstrBundleIterator<MachineInstr>;
164  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
165  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
166  using const_reverse_iterator =
167      MachineInstrBundleIterator<const MachineInstr, true>;
168
169  unsigned size() const { return (unsigned)Insts.size(); }
170  bool empty() const { return Insts.empty(); }
171
172  MachineInstr       &instr_front()       { return Insts.front(); }
173  MachineInstr       &instr_back()        { return Insts.back();  }
174  const MachineInstr &instr_front() const { return Insts.front(); }
175  const MachineInstr &instr_back()  const { return Insts.back();  }
176
177  MachineInstr       &front()             { return Insts.front(); }
178  MachineInstr       &back()              { return *--end();      }
179  const MachineInstr &front()       const { return Insts.front(); }
180  const MachineInstr &back()        const { return *--end();      }
181
182  instr_iterator                instr_begin()       { return Insts.begin();  }
183  const_instr_iterator          instr_begin() const { return Insts.begin();  }
184  instr_iterator                  instr_end()       { return Insts.end();    }
185  const_instr_iterator            instr_end() const { return Insts.end();    }
186  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
187  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
188  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
189  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
190
191  using instr_range = iterator_range<instr_iterator>;
192  using const_instr_range = iterator_range<const_instr_iterator>;
193  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
194  const_instr_range instrs() const {
195    return const_instr_range(instr_begin(), instr_end());
196  }
197
198  iterator                begin()       { return instr_begin();  }
199  const_iterator          begin() const { return instr_begin();  }
200  iterator                end  ()       { return instr_end();    }
201  const_iterator          end  () const { return instr_end();    }
202  reverse_iterator rbegin() {
203    return reverse_iterator::getAtBundleBegin(instr_rbegin());
204  }
205  const_reverse_iterator rbegin() const {
206    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
207  }
208  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
209  const_reverse_iterator rend() const {
210    return const_reverse_iterator(instr_rend());
211  }
212
213  /// Support for MachineInstr::getNextNode().
214  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
215    return &MachineBasicBlock::Insts;
216  }
217
218  inline iterator_range<iterator> terminators() {
219    return make_range(getFirstTerminator(), end());
220  }
221  inline iterator_range<const_iterator> terminators() const {
222    return make_range(getFirstTerminator(), end());
223  }
224
225  // Machine-CFG iterators
226  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
227  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
228  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
229  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
230  using pred_reverse_iterator =
231      std::vector<MachineBasicBlock *>::reverse_iterator;
232  using const_pred_reverse_iterator =
233      std::vector<MachineBasicBlock *>::const_reverse_iterator;
234  using succ_reverse_iterator =
235      std::vector<MachineBasicBlock *>::reverse_iterator;
236  using const_succ_reverse_iterator =
237      std::vector<MachineBasicBlock *>::const_reverse_iterator;
238  pred_iterator        pred_begin()       { return Predecessors.begin(); }
239  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
240  pred_iterator        pred_end()         { return Predecessors.end();   }
241  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
242  pred_reverse_iterator        pred_rbegin()
243                                          { return Predecessors.rbegin();}
244  const_pred_reverse_iterator  pred_rbegin() const
245                                          { return Predecessors.rbegin();}
246  pred_reverse_iterator        pred_rend()
247                                          { return Predecessors.rend();  }
248  const_pred_reverse_iterator  pred_rend()   const
249                                          { return Predecessors.rend();  }
250  unsigned             pred_size()  const {
251    return (unsigned)Predecessors.size();
252  }
253  bool                 pred_empty() const { return Predecessors.empty(); }
254  succ_iterator        succ_begin()       { return Successors.begin();   }
255  const_succ_iterator  succ_begin() const { return Successors.begin();   }
256  succ_iterator        succ_end()         { return Successors.end();     }
257  const_succ_iterator  succ_end()   const { return Successors.end();     }
258  succ_reverse_iterator        succ_rbegin()
259                                          { return Successors.rbegin();  }
260  const_succ_reverse_iterator  succ_rbegin() const
261                                          { return Successors.rbegin();  }
262  succ_reverse_iterator        succ_rend()
263                                          { return Successors.rend();    }
264  const_succ_reverse_iterator  succ_rend()   const
265                                          { return Successors.rend();    }
266  unsigned             succ_size()  const {
267    return (unsigned)Successors.size();
268  }
269  bool                 succ_empty() const { return Successors.empty();   }
270
271  inline iterator_range<pred_iterator> predecessors() {
272    return make_range(pred_begin(), pred_end());
273  }
274  inline iterator_range<const_pred_iterator> predecessors() const {
275    return make_range(pred_begin(), pred_end());
276  }
277  inline iterator_range<succ_iterator> successors() {
278    return make_range(succ_begin(), succ_end());
279  }
280  inline iterator_range<const_succ_iterator> successors() const {
281    return make_range(succ_begin(), succ_end());
282  }
283
284  // LiveIn management methods.
285
286  /// Adds the specified register as a live in. Note that it is an error to add
287  /// the same register to the same set more than once unless the intention is
288  /// to call sortUniqueLiveIns after all registers are added.
289  void addLiveIn(MCPhysReg PhysReg,
290                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
291    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
292  }
293  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
294    LiveIns.push_back(RegMaskPair);
295  }
296
297  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
298  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
299  /// LiveIn insertion.
300  void sortUniqueLiveIns();
301
302  /// Clear live in list.
303  void clearLiveIns();
304
305  /// Add PhysReg as live in to this block, and ensure that there is a copy of
306  /// PhysReg to a virtual register of class RC. Return the virtual register
307  /// that is a copy of the live in PhysReg.
308  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
309
310  /// Remove the specified register from the live in set.
311  void removeLiveIn(MCPhysReg Reg,
312                    LaneBitmask LaneMask = LaneBitmask::getAll());
313
314  /// Return true if the specified register is in the live in set.
315  bool isLiveIn(MCPhysReg Reg,
316                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
317
318  // Iteration support for live in sets.  These sets are kept in sorted
319  // order by their register number.
320  using livein_iterator = LiveInVector::const_iterator;
321#ifndef NDEBUG
322  /// Unlike livein_begin, this method does not check that the liveness
323  /// information is accurate. Still for debug purposes it may be useful
324  /// to have iterators that won't assert if the liveness information
325  /// is not current.
326  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
327  iterator_range<livein_iterator> liveins_dbg() const {
328    return make_range(livein_begin_dbg(), livein_end());
329  }
330#endif
331  livein_iterator livein_begin() const;
332  livein_iterator livein_end()   const { return LiveIns.end(); }
333  bool            livein_empty() const { return LiveIns.empty(); }
334  iterator_range<livein_iterator> liveins() const {
335    return make_range(livein_begin(), livein_end());
336  }
337
338  /// Remove entry from the livein set and return iterator to the next.
339  livein_iterator removeLiveIn(livein_iterator I);
340
341  /// Get the clobber mask for the start of this basic block. Funclets use this
342  /// to prevent register allocation across funclet transitions.
343  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
344
345  /// Get the clobber mask for the end of the basic block.
346  /// \see getBeginClobberMask()
347  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
348
349  /// Return alignment of the basic block. The alignment is specified as
350  /// log2(bytes).
351  unsigned getAlignment() const { return Alignment; }
352
353  /// Set alignment of the basic block. The alignment is specified as
354  /// log2(bytes).
355  void setAlignment(unsigned Align) { Alignment = Align; }
356
357  /// Returns true if the block is a landing pad. That is this basic block is
358  /// entered via an exception handler.
359  bool isEHPad() const { return IsEHPad; }
360
361  /// Indicates the block is a landing pad.  That is this basic block is entered
362  /// via an exception handler.
363  void setIsEHPad(bool V = true) { IsEHPad = V; }
364
365  bool hasEHPadSuccessor() const;
366
367  /// Returns true if this is the entry block of an EH funclet.
368  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
369
370  /// Indicates if this is the entry block of an EH funclet.
371  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
372
373  /// Returns true if this is the entry block of a cleanup funclet.
374  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
375
376  /// Indicates if this is the entry block of a cleanup funclet.
377  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
378
379  /// Returns true if it is legal to hoist instructions into this block.
380  bool isLegalToHoistInto() const;
381
382  // Code Layout methods.
383
384  /// Move 'this' block before or after the specified block.  This only moves
385  /// the block, it does not modify the CFG or adjust potential fall-throughs at
386  /// the end of the block.
387  void moveBefore(MachineBasicBlock *NewAfter);
388  void moveAfter(MachineBasicBlock *NewBefore);
389
390  /// Update the terminator instructions in block to account for changes to the
391  /// layout. If the block previously used a fallthrough, it may now need a
392  /// branch, and if it previously used branching it may now be able to use a
393  /// fallthrough.
394  void updateTerminator();
395
396  // Machine-CFG mutators
397
398  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
399  /// of Succ is automatically updated. PROB parameter is stored in
400  /// Probabilities list. The default probability is set as unknown. Mixing
401  /// known and unknown probabilities in successor list is not allowed. When all
402  /// successors have unknown probabilities, 1 / N is returned as the
403  /// probability for each successor, where N is the number of successors.
404  ///
405  /// Note that duplicate Machine CFG edges are not allowed.
406  void addSuccessor(MachineBasicBlock *Succ,
407                    BranchProbability Prob = BranchProbability::getUnknown());
408
409  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
410  /// of Succ is automatically updated. The probability is not provided because
411  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
412  /// won't be used. Using this interface can save some space.
413  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
414
415  /// Set successor probability of a given iterator.
416  void setSuccProbability(succ_iterator I, BranchProbability Prob);
417
418  /// Normalize probabilities of all successors so that the sum of them becomes
419  /// one. This is usually done when the current update on this MBB is done, and
420  /// the sum of its successors' probabilities is not guaranteed to be one. The
421  /// user is responsible for the correct use of this function.
422  /// MBB::removeSuccessor() has an option to do this automatically.
423  void normalizeSuccProbs() {
424    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
425  }
426
427  /// Validate successors' probabilities and check if the sum of them is
428  /// approximate one. This only works in DEBUG mode.
429  void validateSuccProbs() const;
430
431  /// Remove successor from the successors list of this MachineBasicBlock. The
432  /// Predecessors list of Succ is automatically updated.
433  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
434  /// after the successor is removed.
435  void removeSuccessor(MachineBasicBlock *Succ,
436                       bool NormalizeSuccProbs = false);
437
438  /// Remove specified successor from the successors list of this
439  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
440  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
441  /// after the successor is removed.
442  /// Return the iterator to the element after the one removed.
443  succ_iterator removeSuccessor(succ_iterator I,
444                                bool NormalizeSuccProbs = false);
445
446  /// Replace successor OLD with NEW and update probability info.
447  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
448
449  /// Transfers all the successors from MBB to this machine basic block (i.e.,
450  /// copies all the successors FromMBB and remove all the successors from
451  /// FromMBB).
452  void transferSuccessors(MachineBasicBlock *FromMBB);
453
454  /// Transfers all the successors, as in transferSuccessors, and update PHI
455  /// operands in the successor blocks which refer to FromMBB to refer to this.
456  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
457
458  /// Return true if any of the successors have probabilities attached to them.
459  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
460
461  /// Return true if the specified MBB is a predecessor of this block.
462  bool isPredecessor(const MachineBasicBlock *MBB) const;
463
464  /// Return true if the specified MBB is a successor of this block.
465  bool isSuccessor(const MachineBasicBlock *MBB) const;
466
467  /// Return true if the specified MBB will be emitted immediately after this
468  /// block, such that if this block exits by falling through, control will
469  /// transfer to the specified MBB. Note that MBB need not be a successor at
470  /// all, for example if this block ends with an unconditional branch to some
471  /// other block.
472  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
473
474  /// Return the fallthrough block if the block can implicitly
475  /// transfer control to the block after it by falling off the end of
476  /// it.  This should return null if it can reach the block after
477  /// it, but it uses an explicit branch to do so (e.g., a table
478  /// jump).  Non-null return  is a conservative answer.
479  MachineBasicBlock *getFallThrough();
480
481  /// Return true if the block can implicitly transfer control to the
482  /// block after it by falling off the end of it.  This should return
483  /// false if it can reach the block after it, but it uses an
484  /// explicit branch to do so (e.g., a table jump).  True is a
485  /// conservative answer.
486  bool canFallThrough();
487
488  /// Returns a pointer to the first instruction in this block that is not a
489  /// PHINode instruction. When adding instructions to the beginning of the
490  /// basic block, they should be added before the returned value, not before
491  /// the first instruction, which might be PHI.
492  /// Returns end() is there's no non-PHI instruction.
493  iterator getFirstNonPHI();
494
495  /// Return the first instruction in MBB after I that is not a PHI or a label.
496  /// This is the correct point to insert lowered copies at the beginning of a
497  /// basic block that must be before any debugging information.
498  iterator SkipPHIsAndLabels(iterator I);
499
500  /// Return the first instruction in MBB after I that is not a PHI, label or
501  /// debug.  This is the correct point to insert copies at the beginning of a
502  /// basic block.
503  iterator SkipPHIsLabelsAndDebug(iterator I);
504
505  /// Returns an iterator to the first terminator instruction of this basic
506  /// block. If a terminator does not exist, it returns end().
507  iterator getFirstTerminator();
508  const_iterator getFirstTerminator() const {
509    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
510  }
511
512  /// Same getFirstTerminator but it ignores bundles and return an
513  /// instr_iterator instead.
514  instr_iterator getFirstInstrTerminator();
515
516  /// Returns an iterator to the first non-debug instruction in the basic block,
517  /// or end().
518  iterator getFirstNonDebugInstr();
519  const_iterator getFirstNonDebugInstr() const {
520    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
521  }
522
523  /// Returns an iterator to the last non-debug instruction in the basic block,
524  /// or end().
525  iterator getLastNonDebugInstr();
526  const_iterator getLastNonDebugInstr() const {
527    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
528  }
529
530  /// Convenience function that returns true if the block ends in a return
531  /// instruction.
532  bool isReturnBlock() const {
533    return !empty() && back().isReturn();
534  }
535
536  /// Split the critical edge from this block to the given successor block, and
537  /// return the newly created block, or null if splitting is not possible.
538  ///
539  /// This function updates LiveVariables, MachineDominatorTree, and
540  /// MachineLoopInfo, as applicable.
541  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
542
543  /// Check if the edge between this block and the given successor \p
544  /// Succ, can be split. If this returns true a subsequent call to
545  /// SplitCriticalEdge is guaranteed to return a valid basic block if
546  /// no changes occured in the meantime.
547  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
548
549  void pop_front() { Insts.pop_front(); }
550  void pop_back() { Insts.pop_back(); }
551  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
552
553  /// Insert MI into the instruction list before I, possibly inside a bundle.
554  ///
555  /// If the insertion point is inside a bundle, MI will be added to the bundle,
556  /// otherwise MI will not be added to any bundle. That means this function
557  /// alone can't be used to prepend or append instructions to bundles. See
558  /// MIBundleBuilder::insert() for a more reliable way of doing that.
559  instr_iterator insert(instr_iterator I, MachineInstr *M);
560
561  /// Insert a range of instructions into the instruction list before I.
562  template<typename IT>
563  void insert(iterator I, IT S, IT E) {
564    assert((I == end() || I->getParent() == this) &&
565           "iterator points outside of basic block");
566    Insts.insert(I.getInstrIterator(), S, E);
567  }
568
569  /// Insert MI into the instruction list before I.
570  iterator insert(iterator I, MachineInstr *MI) {
571    assert((I == end() || I->getParent() == this) &&
572           "iterator points outside of basic block");
573    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
574           "Cannot insert instruction with bundle flags");
575    return Insts.insert(I.getInstrIterator(), MI);
576  }
577
578  /// Insert MI into the instruction list after I.
579  iterator insertAfter(iterator I, MachineInstr *MI) {
580    assert((I == end() || I->getParent() == this) &&
581           "iterator points outside of basic block");
582    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
583           "Cannot insert instruction with bundle flags");
584    return Insts.insertAfter(I.getInstrIterator(), MI);
585  }
586
587  /// Remove an instruction from the instruction list and delete it.
588  ///
589  /// If the instruction is part of a bundle, the other instructions in the
590  /// bundle will still be bundled after removing the single instruction.
591  instr_iterator erase(instr_iterator I);
592
593  /// Remove an instruction from the instruction list and delete it.
594  ///
595  /// If the instruction is part of a bundle, the other instructions in the
596  /// bundle will still be bundled after removing the single instruction.
597  instr_iterator erase_instr(MachineInstr *I) {
598    return erase(instr_iterator(I));
599  }
600
601  /// Remove a range of instructions from the instruction list and delete them.
602  iterator erase(iterator I, iterator E) {
603    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
604  }
605
606  /// Remove an instruction or bundle from the instruction list and delete it.
607  ///
608  /// If I points to a bundle of instructions, they are all erased.
609  iterator erase(iterator I) {
610    return erase(I, std::next(I));
611  }
612
613  /// Remove an instruction from the instruction list and delete it.
614  ///
615  /// If I is the head of a bundle of instructions, the whole bundle will be
616  /// erased.
617  iterator erase(MachineInstr *I) {
618    return erase(iterator(I));
619  }
620
621  /// Remove the unbundled instruction from the instruction list without
622  /// deleting it.
623  ///
624  /// This function can not be used to remove bundled instructions, use
625  /// remove_instr to remove individual instructions from a bundle.
626  MachineInstr *remove(MachineInstr *I) {
627    assert(!I->isBundled() && "Cannot remove bundled instructions");
628    return Insts.remove(instr_iterator(I));
629  }
630
631  /// Remove the possibly bundled instruction from the instruction list
632  /// without deleting it.
633  ///
634  /// If the instruction is part of a bundle, the other instructions in the
635  /// bundle will still be bundled after removing the single instruction.
636  MachineInstr *remove_instr(MachineInstr *I);
637
638  void clear() {
639    Insts.clear();
640  }
641
642  /// Take an instruction from MBB 'Other' at the position From, and insert it
643  /// into this MBB right before 'Where'.
644  ///
645  /// If From points to a bundle of instructions, the whole bundle is moved.
646  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
647    // The range splice() doesn't allow noop moves, but this one does.
648    if (Where != From)
649      splice(Where, Other, From, std::next(From));
650  }
651
652  /// Take a block of instructions from MBB 'Other' in the range [From, To),
653  /// and insert them into this MBB right before 'Where'.
654  ///
655  /// The instruction at 'Where' must not be included in the range of
656  /// instructions to move.
657  void splice(iterator Where, MachineBasicBlock *Other,
658              iterator From, iterator To) {
659    Insts.splice(Where.getInstrIterator(), Other->Insts,
660                 From.getInstrIterator(), To.getInstrIterator());
661  }
662
663  /// This method unlinks 'this' from the containing function, and returns it,
664  /// but does not delete it.
665  MachineBasicBlock *removeFromParent();
666
667  /// This method unlinks 'this' from the containing function and deletes it.
668  void eraseFromParent();
669
670  /// Given a machine basic block that branched to 'Old', change the code and
671  /// CFG so that it branches to 'New' instead.
672  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
673
674  /// Various pieces of code can cause excess edges in the CFG to be inserted.
675  /// If we have proven that MBB can only branch to DestA and DestB, remove any
676  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
677  /// DestA and DestB, retain other edges leading to LandingPads (currently
678  /// there can be only one; we don't check or require that here). Note it is
679  /// possible that DestA and/or DestB are LandingPads.
680  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
681                            MachineBasicBlock *DestB,
682                            bool IsCond);
683
684  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
685  /// instructions.  Return UnknownLoc if there is none.
686  DebugLoc findDebugLoc(instr_iterator MBBI);
687  DebugLoc findDebugLoc(iterator MBBI) {
688    return findDebugLoc(MBBI.getInstrIterator());
689  }
690
691  /// Find and return the merged DebugLoc of the branch instructions of the
692  /// block. Return UnknownLoc if there is none.
693  DebugLoc findBranchDebugLoc();
694
695  /// Possible outcome of a register liveness query to computeRegisterLiveness()
696  enum LivenessQueryResult {
697    LQR_Live,   ///< Register is known to be (at least partially) live.
698    LQR_Dead,   ///< Register is known to be fully dead.
699    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
700  };
701
702  /// Return whether (physical) register \p Reg has been <def>ined and not
703  /// <kill>ed as of just before \p Before.
704  ///
705  /// Search is localised to a neighborhood of \p Neighborhood instructions
706  /// before (searching for defs or kills) and \p Neighborhood instructions
707  /// after (searching just for defs) \p Before.
708  ///
709  /// \p Reg must be a physical register.
710  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
711                                              unsigned Reg,
712                                              const_iterator Before,
713                                              unsigned Neighborhood = 10) const;
714
715  // Debugging methods.
716  void dump() const;
717  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
718  void print(raw_ostream &OS, ModuleSlotTracker &MST,
719             const SlotIndexes* = nullptr) const;
720
721  // Printing method used by LoopInfo.
722  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
723
724  /// MachineBasicBlocks are uniquely numbered at the function level, unless
725  /// they're not in a MachineFunction yet, in which case this will return -1.
726  int getNumber() const { return Number; }
727  void setNumber(int N) { Number = N; }
728
729  /// Return the MCSymbol for this basic block.
730  MCSymbol *getSymbol() const;
731
732private:
733  /// Return probability iterator corresponding to the I successor iterator.
734  probability_iterator getProbabilityIterator(succ_iterator I);
735  const_probability_iterator
736  getProbabilityIterator(const_succ_iterator I) const;
737
738  friend class MachineBranchProbabilityInfo;
739  friend class MIPrinter;
740
741  /// Return probability of the edge from this block to MBB. This method should
742  /// NOT be called directly, but by using getEdgeProbability method from
743  /// MachineBranchProbabilityInfo class.
744  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
745
746  // Methods used to maintain doubly linked list of blocks...
747  friend struct ilist_callback_traits<MachineBasicBlock>;
748
749  // Machine-CFG mutators
750
751  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
752  /// unless you know what you're doing, because it doesn't update Pred's
753  /// successors list. Use Pred->addSuccessor instead.
754  void addPredecessor(MachineBasicBlock *Pred);
755
756  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
757  /// unless you know what you're doing, because it doesn't update Pred's
758  /// successors list. Use Pred->removeSuccessor instead.
759  void removePredecessor(MachineBasicBlock *Pred);
760};
761
762raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
763
764// This is useful when building IndexedMaps keyed on basic block pointers.
765struct MBB2NumberFunctor :
766  public std::unary_function<const MachineBasicBlock*, unsigned> {
767  unsigned operator()(const MachineBasicBlock *MBB) const {
768    return MBB->getNumber();
769  }
770};
771
772//===--------------------------------------------------------------------===//
773// GraphTraits specializations for machine basic block graphs (machine-CFGs)
774//===--------------------------------------------------------------------===//
775
776// Provide specializations of GraphTraits to be able to treat a
777// MachineFunction as a graph of MachineBasicBlocks.
778//
779
780template <> struct GraphTraits<MachineBasicBlock *> {
781  using NodeRef = MachineBasicBlock *;
782  using ChildIteratorType = MachineBasicBlock::succ_iterator;
783
784  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
785  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
786  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
787};
788
789template <> struct GraphTraits<const MachineBasicBlock *> {
790  using NodeRef = const MachineBasicBlock *;
791  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
792
793  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
794  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
795  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
796};
797
798// Provide specializations of GraphTraits to be able to treat a
799// MachineFunction as a graph of MachineBasicBlocks and to walk it
800// in inverse order.  Inverse order for a function is considered
801// to be when traversing the predecessor edges of a MBB
802// instead of the successor edges.
803//
804template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
805  using NodeRef = MachineBasicBlock *;
806  using ChildIteratorType = MachineBasicBlock::pred_iterator;
807
808  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
809    return G.Graph;
810  }
811
812  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
813  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
814};
815
816template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
817  using NodeRef = const MachineBasicBlock *;
818  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
819
820  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
821    return G.Graph;
822  }
823
824  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
825  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
826};
827
828/// MachineInstrSpan provides an interface to get an iteration range
829/// containing the instruction it was initialized with, along with all
830/// those instructions inserted prior to or following that instruction
831/// at some point after the MachineInstrSpan is constructed.
832class MachineInstrSpan {
833  MachineBasicBlock &MBB;
834  MachineBasicBlock::iterator I, B, E;
835
836public:
837  MachineInstrSpan(MachineBasicBlock::iterator I)
838    : MBB(*I->getParent()),
839      I(I),
840      B(I == MBB.begin() ? MBB.end() : std::prev(I)),
841      E(std::next(I)) {}
842
843  MachineBasicBlock::iterator begin() {
844    return B == MBB.end() ? MBB.begin() : std::next(B);
845  }
846  MachineBasicBlock::iterator end() { return E; }
847  bool empty() { return begin() == end(); }
848
849  MachineBasicBlock::iterator getInitial() { return I; }
850};
851
852/// Increment \p It until it points to a non-debug instruction or to \p End
853/// and return the resulting iterator. This function should only be used
854/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
855/// const_instr_iterator} and the respective reverse iterators.
856template<typename IterT>
857inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
858  while (It != End && It->isDebugValue())
859    It++;
860  return It;
861}
862
863/// Decrement \p It until it points to a non-debug instruction or to \p Begin
864/// and return the resulting iterator. This function should only be used
865/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
866/// const_instr_iterator} and the respective reverse iterators.
867template<class IterT>
868inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
869  while (It != Begin && It->isDebugValue())
870    It--;
871  return It;
872}
873
874} // end namespace llvm
875
876#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
877