ISDOpcodes.h revision 218893
1//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares codegen opcodes and related utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_ISDOPCODES_H
15#define LLVM_CODEGEN_ISDOPCODES_H
16
17namespace llvm {
18
19/// ISD namespace - This namespace contains an enum which represents all of the
20/// SelectionDAG node types and value types.
21///
22namespace ISD {
23
24  //===--------------------------------------------------------------------===//
25  /// ISD::NodeType enum - This enum defines the target-independent operators
26  /// for a SelectionDAG.
27  ///
28  /// Targets may also define target-dependent operator codes for SDNodes. For
29  /// example, on x86, these are the enum values in the X86ISD namespace.
30  /// Targets should aim to use target-independent operators to model their
31  /// instruction sets as much as possible, and only use target-dependent
32  /// operators when they have special requirements.
33  ///
34  /// Finally, during and after selection proper, SNodes may use special
35  /// operator codes that correspond directly with MachineInstr opcodes. These
36  /// are used to represent selected instructions. See the isMachineOpcode()
37  /// and getMachineOpcode() member functions of SDNode.
38  ///
39  enum NodeType {
40    // DELETED_NODE - This is an illegal value that is used to catch
41    // errors.  This opcode is not a legal opcode for any node.
42    DELETED_NODE,
43
44    // EntryToken - This is the marker used to indicate the start of the region.
45    EntryToken,
46
47    // TokenFactor - This node takes multiple tokens as input and produces a
48    // single token result.  This is used to represent the fact that the operand
49    // operators are independent of each other.
50    TokenFactor,
51
52    // AssertSext, AssertZext - These nodes record if a register contains a
53    // value that has already been zero or sign extended from a narrower type.
54    // These nodes take two operands.  The first is the node that has already
55    // been extended, and the second is a value type node indicating the width
56    // of the extension
57    AssertSext, AssertZext,
58
59    // Various leaf nodes.
60    BasicBlock, VALUETYPE, CONDCODE, Register,
61    Constant, ConstantFP,
62    GlobalAddress, GlobalTLSAddress, FrameIndex,
63    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64
65    // The address of the GOT
66    GLOBAL_OFFSET_TABLE,
67
68    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
70    // of the frame or return address to return.  An index of zero corresponds
71    // to the current function's frame or return address, an index of one to the
72    // parent's frame or return address, and so on.
73    FRAMEADDR, RETURNADDR,
74
75    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76    // first (possible) on-stack argument. This is needed for correct stack
77    // adjustment during unwind.
78    FRAME_TO_ARGS_OFFSET,
79
80    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81    // address of the exception block on entry to an landing pad block.
82    EXCEPTIONADDR,
83
84    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85    // address of the Language Specific Data Area for the enclosing function.
86    LSDAADDR,
87
88    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
89    // the selection index of the exception thrown.
90    EHSELECTION,
91
92    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93    // 'eh_return' gcc dwarf builtin, which is used to return from
94    // exception. The general meaning is: adjust stack by OFFSET and pass
95    // execution to HANDLER. Many platform-related details also :)
96    EH_RETURN,
97
98    // OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99    // This corresponds to the eh.sjlj.setjmp intrinsic.
100    // It takes an input chain and a pointer to the jump buffer as inputs
101    // and returns an outchain.
102    EH_SJLJ_SETJMP,
103
104    // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105    // This corresponds to the eh.sjlj.longjmp intrinsic.
106    // It takes an input chain and a pointer to the jump buffer as inputs
107    // and returns an outchain.
108    EH_SJLJ_LONGJMP,
109
110    // OUTCHAIN = EH_SJLJ_DISPATCHSETUP(INCHAIN, context)
111    // This corresponds to the eh.sjlj.dispatchsetup intrinsic. It takes an
112    // input chain and a pointer to the sjlj function context as inputs and
113    // returns an outchain. By default, this does nothing. Targets can lower
114    // this to unwind setup code if needed.
115    EH_SJLJ_DISPATCHSETUP,
116
117    // TargetConstant* - Like Constant*, but the DAG does not do any folding,
118    // simplification, or lowering of the constant. They are used for constants
119    // which are known to fit in the immediate fields of their users, or for
120    // carrying magic numbers which are not values which need to be materialized
121    // in registers.
122    TargetConstant,
123    TargetConstantFP,
124
125    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
126    // anything else with this node, and this is valid in the target-specific
127    // dag, turning into a GlobalAddress operand.
128    TargetGlobalAddress,
129    TargetGlobalTLSAddress,
130    TargetFrameIndex,
131    TargetJumpTable,
132    TargetConstantPool,
133    TargetExternalSymbol,
134    TargetBlockAddress,
135
136    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
137    /// This node represents a target intrinsic function with no side effects.
138    /// The first operand is the ID number of the intrinsic from the
139    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
140    /// node returns the result of the intrinsic.
141    INTRINSIC_WO_CHAIN,
142
143    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
144    /// This node represents a target intrinsic function with side effects that
145    /// returns a result.  The first operand is a chain pointer.  The second is
146    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
147    /// operands to the intrinsic follow.  The node has two results, the result
148    /// of the intrinsic and an output chain.
149    INTRINSIC_W_CHAIN,
150
151    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
152    /// This node represents a target intrinsic function with side effects that
153    /// does not return a result.  The first operand is a chain pointer.  The
154    /// second is the ID number of the intrinsic from the llvm::Intrinsic
155    /// namespace.  The operands to the intrinsic follow.
156    INTRINSIC_VOID,
157
158    // CopyToReg - This node has three operands: a chain, a register number to
159    // set to this value, and a value.
160    CopyToReg,
161
162    // CopyFromReg - This node indicates that the input value is a virtual or
163    // physical register that is defined outside of the scope of this
164    // SelectionDAG.  The register is available from the RegisterSDNode object.
165    CopyFromReg,
166
167    // UNDEF - An undefined node
168    UNDEF,
169
170    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
171    // a Constant, which is required to be operand #1) half of the integer or
172    // float value specified as operand #0.  This is only for use before
173    // legalization, for values that will be broken into multiple registers.
174    EXTRACT_ELEMENT,
175
176    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
177    // two values of the same integer value type, this produces a value twice as
178    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
179    BUILD_PAIR,
180
181    // MERGE_VALUES - This node takes multiple discrete operands and returns
182    // them all as its individual results.  This nodes has exactly the same
183    // number of inputs and outputs. This node is useful for some pieces of the
184    // code generator that want to think about a single node with multiple
185    // results, not multiple nodes.
186    MERGE_VALUES,
187
188    // Simple integer binary arithmetic operators.
189    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
190
191    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
192    // a signed/unsigned value of type i[2*N], and return the full value as
193    // two results, each of type iN.
194    SMUL_LOHI, UMUL_LOHI,
195
196    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
197    // remainder result.
198    SDIVREM, UDIVREM,
199
200    // CARRY_FALSE - This node is used when folding other nodes,
201    // like ADDC/SUBC, which indicate the carry result is always false.
202    CARRY_FALSE,
203
204    // Carry-setting nodes for multiple precision addition and subtraction.
205    // These nodes take two operands of the same value type, and produce two
206    // results.  The first result is the normal add or sub result, the second
207    // result is the carry flag result.
208    ADDC, SUBC,
209
210    // Carry-using nodes for multiple precision addition and subtraction.  These
211    // nodes take three operands: The first two are the normal lhs and rhs to
212    // the add or sub, and the third is the input carry flag.  These nodes
213    // produce two results; the normal result of the add or sub, and the output
214    // carry flag.  These nodes both read and write a carry flag to allow them
215    // to them to be chained together for add and sub of arbitrarily large
216    // values.
217    ADDE, SUBE,
218
219    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
220    // These nodes take two operands: the normal LHS and RHS to the add. They
221    // produce two results: the normal result of the add, and a boolean that
222    // indicates if an overflow occured (*not* a flag, because it may be stored
223    // to memory, etc.).  If the type of the boolean is not i1 then the high
224    // bits conform to getBooleanContents.
225    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
226    SADDO, UADDO,
227
228    // Same for subtraction
229    SSUBO, USUBO,
230
231    // Same for multiplication
232    SMULO, UMULO,
233
234    // Simple binary floating point operators.
235    FADD, FSUB, FMUL, FDIV, FREM,
236
237    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
238    // DAG node does not require that X and Y have the same type, just that they
239    // are both floating point.  X and the result must have the same type.
240    // FCOPYSIGN(f32, f64) is allowed.
241    FCOPYSIGN,
242
243    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
244    // value as an integer 0/1 value.
245    FGETSIGN,
246
247    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
248    /// specified, possibly variable, elements.  The number of elements is
249    /// required to be a power of two.  The types of the operands must all be
250    /// the same and must match the vector element type, except that integer
251    /// types are allowed to be larger than the element type, in which case
252    /// the operands are implicitly truncated.
253    BUILD_VECTOR,
254
255    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
256    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
257    /// element type then VAL is truncated before replacement.
258    INSERT_VECTOR_ELT,
259
260    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
261    /// identified by the (potentially variable) element number IDX.  If the
262    /// return type is an integer type larger than the element type of the
263    /// vector, the result is extended to the width of the return type.
264    EXTRACT_VECTOR_ELT,
265
266    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
267    /// vector type with the same length and element type, this produces a
268    /// concatenated vector result value, with length equal to the sum of the
269    /// lengths of the input vectors.
270    CONCAT_VECTORS,
271
272    /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
273    /// with VECTOR2 inserted into VECTOR1 at the (potentially
274    /// variable) element number IDX, which must be a multiple of the
275    /// VECTOR2 vector length.  The elements of VECTOR1 starting at
276    /// IDX are overwritten with VECTOR2.  Elements IDX through
277    /// vector_length(VECTOR2) must be valid VECTOR1 indices.
278    INSERT_SUBVECTOR,
279
280    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
281    /// vector value) starting with the element number IDX, which must be a
282    /// constant multiple of the result vector length.
283    EXTRACT_SUBVECTOR,
284
285    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
286    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
287    /// values that indicate which value (or undef) each result element will
288    /// get.  These constant ints are accessible through the
289    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
290    /// 'vperm' instruction, except that the indices must be constants and are
291    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
292    VECTOR_SHUFFLE,
293
294    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
295    /// scalar value into element 0 of the resultant vector type.  The top
296    /// elements 1 to N-1 of the N-element vector are undefined.  The type
297    /// of the operand must match the vector element type, except when they
298    /// are integer types.  In this case the operand is allowed to be wider
299    /// than the vector element type, and is implicitly truncated to it.
300    SCALAR_TO_VECTOR,
301
302    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
303    // an unsigned/signed value of type i[2*N], then return the top part.
304    MULHU, MULHS,
305
306    /// Bitwise operators - logical and, logical or, logical xor.
307    AND, OR, XOR,
308
309    /// Shift and rotation operations.  After legalization, the type of the
310    /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
311    /// the shift amount can be any type, but care must be taken to ensure it is
312    /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
313    /// legalization, types like i1024 can occur and i8 doesn't have enough bits
314    /// to represent the shift amount.  By convention, DAGCombine and
315    /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
316    ///
317    SHL, SRA, SRL, ROTL, ROTR,
318
319    /// Byte Swap and Counting operators.
320    BSWAP, CTTZ, CTLZ, CTPOP,
321
322    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
323    // i1 then the high bits must conform to getBooleanContents.
324    SELECT,
325
326    // Select with condition operator - This selects between a true value and
327    // a false value (ops #2 and #3) based on the boolean result of comparing
328    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
329    // condition code in op #4, a CondCodeSDNode.
330    SELECT_CC,
331
332    // SetCC operator - This evaluates to a true value iff the condition is
333    // true.  If the result value type is not i1 then the high bits conform
334    // to getBooleanContents.  The operands to this are the left and right
335    // operands to compare (ops #0, and #1) and the condition code to compare
336    // them with (op #2) as a CondCodeSDNode.
337    SETCC,
338
339    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
340    // integer elements with all bits of the result elements set to true if the
341    // comparison is true or all cleared if the comparison is false.  The
342    // operands to this are the left and right operands to compare (LHS/RHS) and
343    // the condition code to compare them with (COND) as a CondCodeSDNode.
344    VSETCC,
345
346    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
347    // integer shift operations, just like ADD/SUB_PARTS.  The operation
348    // ordering is:
349    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
350    SHL_PARTS, SRA_PARTS, SRL_PARTS,
351
352    // Conversion operators.  These are all single input single output
353    // operations.  For all of these, the result type must be strictly
354    // wider or narrower (depending on the operation) than the source
355    // type.
356
357    // SIGN_EXTEND - Used for integer types, replicating the sign bit
358    // into new bits.
359    SIGN_EXTEND,
360
361    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
362    ZERO_EXTEND,
363
364    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
365    ANY_EXTEND,
366
367    // TRUNCATE - Completely drop the high bits.
368    TRUNCATE,
369
370    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
371    // depends on the first letter) to floating point.
372    SINT_TO_FP,
373    UINT_TO_FP,
374
375    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
376    // sign extend a small value in a large integer register (e.g. sign
377    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
378    // with the 7th bit).  The size of the smaller type is indicated by the 1th
379    // operand, a ValueType node.
380    SIGN_EXTEND_INREG,
381
382    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
383    /// integer.
384    FP_TO_SINT,
385    FP_TO_UINT,
386
387    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
388    /// down to the precision of the destination VT.  TRUNC is a flag, which is
389    /// always an integer that is zero or one.  If TRUNC is 0, this is a
390    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
391    /// value of Y.
392    ///
393    /// The TRUNC = 1 case is used in cases where we know that the value will
394    /// not be modified by the node, because Y is not using any of the extra
395    /// precision of source type.  This allows certain transformations like
396    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
397    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
398    FP_ROUND,
399
400    // FLT_ROUNDS_ - Returns current rounding mode:
401    // -1 Undefined
402    //  0 Round to 0
403    //  1 Round to nearest
404    //  2 Round to +inf
405    //  3 Round to -inf
406    FLT_ROUNDS_,
407
408    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
409    /// rounds it to a floating point value.  It then promotes it and returns it
410    /// in a register of the same size.  This operation effectively just
411    /// discards excess precision.  The type to round down to is specified by
412    /// the VT operand, a VTSDNode.
413    FP_ROUND_INREG,
414
415    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
416    FP_EXTEND,
417
418    // BITCAST - This operator converts between integer, vector and FP
419    // values, as if the value was stored to memory with one type and loaded
420    // from the same address with the other type (or equivalently for vector
421    // format conversions, etc).  The source and result are required to have
422    // the same bit size (e.g.  f32 <-> i32).  This can also be used for
423    // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
424    // getNode().
425    BITCAST,
426
427    // CONVERT_RNDSAT - This operator is used to support various conversions
428    // between various types (float, signed, unsigned and vectors of those
429    // types) with rounding and saturation. NOTE: Avoid using this operator as
430    // most target don't support it and the operator might be removed in the
431    // future. It takes the following arguments:
432    //   0) value
433    //   1) dest type (type to convert to)
434    //   2) src type (type to convert from)
435    //   3) rounding imm
436    //   4) saturation imm
437    //   5) ISD::CvtCode indicating the type of conversion to do
438    CONVERT_RNDSAT,
439
440    // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
441    // promotions and truncation for half-precision (16 bit) floating
442    // numbers. We need special nodes since FP16 is a storage-only type with
443    // special semantics of operations.
444    FP16_TO_FP32, FP32_TO_FP16,
445
446    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
447    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
448    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
449    // point operations. These are inspired by libm.
450    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
451    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
452    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
453
454    // LOAD and STORE have token chains as their first operand, then the same
455    // operands as an LLVM load/store instruction, then an offset node that
456    // is added / subtracted from the base pointer to form the address (for
457    // indexed memory ops).
458    LOAD, STORE,
459
460    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
461    // to a specified boundary.  This node always has two return values: a new
462    // stack pointer value and a chain. The first operand is the token chain,
463    // the second is the number of bytes to allocate, and the third is the
464    // alignment boundary.  The size is guaranteed to be a multiple of the stack
465    // alignment, and the alignment is guaranteed to be bigger than the stack
466    // alignment (if required) or 0 to get standard stack alignment.
467    DYNAMIC_STACKALLOC,
468
469    // Control flow instructions.  These all have token chains.
470
471    // BR - Unconditional branch.  The first operand is the chain
472    // operand, the second is the MBB to branch to.
473    BR,
474
475    // BRIND - Indirect branch.  The first operand is the chain, the second
476    // is the value to branch to, which must be of the same type as the target's
477    // pointer type.
478    BRIND,
479
480    // BR_JT - Jumptable branch. The first operand is the chain, the second
481    // is the jumptable index, the last one is the jumptable entry index.
482    BR_JT,
483
484    // BRCOND - Conditional branch.  The first operand is the chain, the
485    // second is the condition, the third is the block to branch to if the
486    // condition is true.  If the type of the condition is not i1, then the
487    // high bits must conform to getBooleanContents.
488    BRCOND,
489
490    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
491    // that the condition is represented as condition code, and two nodes to
492    // compare, rather than as a combined SetCC node.  The operands in order are
493    // chain, cc, lhs, rhs, block to branch to if condition is true.
494    BR_CC,
495
496    // INLINEASM - Represents an inline asm block.  This node always has two
497    // return values: a chain and a flag result.  The inputs are as follows:
498    //   Operand #0   : Input chain.
499    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
500    //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
501    //   Operand #3   : HasSideEffect, IsAlignStack bits.
502    //   After this, it is followed by a list of operands with this format:
503    //     ConstantSDNode: Flags that encode whether it is a mem or not, the
504    //                     of operands that follow, etc.  See InlineAsm.h.
505    //     ... however many operands ...
506    //   Operand #last: Optional, an incoming flag.
507    //
508    // The variable width operands are required to represent target addressing
509    // modes as a single "operand", even though they may have multiple
510    // SDOperands.
511    INLINEASM,
512
513    // EH_LABEL - Represents a label in mid basic block used to track
514    // locations needed for debug and exception handling tables.  These nodes
515    // take a chain as input and return a chain.
516    EH_LABEL,
517
518    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
519    // value, the same type as the pointer type for the system, and an output
520    // chain.
521    STACKSAVE,
522
523    // STACKRESTORE has two operands, an input chain and a pointer to restore to
524    // it returns an output chain.
525    STACKRESTORE,
526
527    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
528    // a call sequence, and carry arbitrary information that target might want
529    // to know.  The first operand is a chain, the rest are specified by the
530    // target and not touched by the DAG optimizers.
531    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
532    CALLSEQ_START,  // Beginning of a call sequence
533    CALLSEQ_END,    // End of a call sequence
534
535    // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
536    // and the alignment. It returns a pair of values: the vaarg value and a
537    // new chain.
538    VAARG,
539
540    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
541    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
542    // source.
543    VACOPY,
544
545    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
546    // pointer, and a SRCVALUE.
547    VAEND, VASTART,
548
549    // SRCVALUE - This is a node type that holds a Value* that is used to
550    // make reference to a value in the LLVM IR.
551    SRCVALUE,
552
553    // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
554    // reference metadata in the IR.
555    MDNODE_SDNODE,
556
557    // PCMARKER - This corresponds to the pcmarker intrinsic.
558    PCMARKER,
559
560    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
561    // The only operand is a chain and a value and a chain are produced.  The
562    // value is the contents of the architecture specific cycle counter like
563    // register (or other high accuracy low latency clock source)
564    READCYCLECOUNTER,
565
566    // HANDLENODE node - Used as a handle for various purposes.
567    HANDLENODE,
568
569    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
570    // It takes as input a token chain, the pointer to the trampoline,
571    // the pointer to the nested function, the pointer to pass for the
572    // 'nest' parameter, a SRCVALUE for the trampoline and another for
573    // the nested function (allowing targets to access the original
574    // Function*).  It produces the result of the intrinsic and a token
575    // chain as output.
576    TRAMPOLINE,
577
578    // TRAP - Trapping instruction
579    TRAP,
580
581    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
582    // their first operand. The other operands are the address to prefetch,
583    // read / write specifier, and locality specifier.
584    PREFETCH,
585
586    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
587    //                       store-store, device)
588    // This corresponds to the memory.barrier intrinsic.
589    // it takes an input chain, 4 operands to specify the type of barrier, an
590    // operand specifying if the barrier applies to device and uncached memory
591    // and produces an output chain.
592    MEMBARRIER,
593
594    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
595    // this corresponds to the atomic.lcs intrinsic.
596    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
597    // the return is always the original value in *ptr
598    ATOMIC_CMP_SWAP,
599
600    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
601    // this corresponds to the atomic.swap intrinsic.
602    // amt is stored to *ptr atomically.
603    // the return is always the original value in *ptr
604    ATOMIC_SWAP,
605
606    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
607    // this corresponds to the atomic.load.[OpName] intrinsic.
608    // op(*ptr, amt) is stored to *ptr atomically.
609    // the return is always the original value in *ptr
610    ATOMIC_LOAD_ADD,
611    ATOMIC_LOAD_SUB,
612    ATOMIC_LOAD_AND,
613    ATOMIC_LOAD_OR,
614    ATOMIC_LOAD_XOR,
615    ATOMIC_LOAD_NAND,
616    ATOMIC_LOAD_MIN,
617    ATOMIC_LOAD_MAX,
618    ATOMIC_LOAD_UMIN,
619    ATOMIC_LOAD_UMAX,
620
621    /// BUILTIN_OP_END - This must be the last enum value in this list.
622    /// The target-specific pre-isel opcode values start here.
623    BUILTIN_OP_END
624  };
625
626  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
627  /// which do not reference a specific memory location should be less than
628  /// this value. Those that do must not be less than this value, and can
629  /// be used with SelectionDAG::getMemIntrinsicNode.
630  static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
631
632  //===--------------------------------------------------------------------===//
633  /// MemIndexedMode enum - This enum defines the load / store indexed
634  /// addressing modes.
635  ///
636  /// UNINDEXED    "Normal" load / store. The effective address is already
637  ///              computed and is available in the base pointer. The offset
638  ///              operand is always undefined. In addition to producing a
639  ///              chain, an unindexed load produces one value (result of the
640  ///              load); an unindexed store does not produce a value.
641  ///
642  /// PRE_INC      Similar to the unindexed mode where the effective address is
643  /// PRE_DEC      the value of the base pointer add / subtract the offset.
644  ///              It considers the computation as being folded into the load /
645  ///              store operation (i.e. the load / store does the address
646  ///              computation as well as performing the memory transaction).
647  ///              The base operand is always undefined. In addition to
648  ///              producing a chain, pre-indexed load produces two values
649  ///              (result of the load and the result of the address
650  ///              computation); a pre-indexed store produces one value (result
651  ///              of the address computation).
652  ///
653  /// POST_INC     The effective address is the value of the base pointer. The
654  /// POST_DEC     value of the offset operand is then added to / subtracted
655  ///              from the base after memory transaction. In addition to
656  ///              producing a chain, post-indexed load produces two values
657  ///              (the result of the load and the result of the base +/- offset
658  ///              computation); a post-indexed store produces one value (the
659  ///              the result of the base +/- offset computation).
660  enum MemIndexedMode {
661    UNINDEXED = 0,
662    PRE_INC,
663    PRE_DEC,
664    POST_INC,
665    POST_DEC,
666    LAST_INDEXED_MODE
667  };
668
669  //===--------------------------------------------------------------------===//
670  /// LoadExtType enum - This enum defines the three variants of LOADEXT
671  /// (load with extension).
672  ///
673  /// SEXTLOAD loads the integer operand and sign extends it to a larger
674  ///          integer result type.
675  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
676  ///          integer result type.
677  /// EXTLOAD  is used for two things: floating point extending loads and
678  ///          integer extending loads [the top bits are undefined].
679  enum LoadExtType {
680    NON_EXTLOAD = 0,
681    EXTLOAD,
682    SEXTLOAD,
683    ZEXTLOAD,
684    LAST_LOADEXT_TYPE
685  };
686
687  //===--------------------------------------------------------------------===//
688  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
689  /// below work out, when considering SETFALSE (something that never exists
690  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
691  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
692  /// to.  If the "N" column is 1, the result of the comparison is undefined if
693  /// the input is a NAN.
694  ///
695  /// All of these (except for the 'always folded ops') should be handled for
696  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
697  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
698  ///
699  /// Note that these are laid out in a specific order to allow bit-twiddling
700  /// to transform conditions.
701  enum CondCode {
702    // Opcode          N U L G E       Intuitive operation
703    SETFALSE,      //    0 0 0 0       Always false (always folded)
704    SETOEQ,        //    0 0 0 1       True if ordered and equal
705    SETOGT,        //    0 0 1 0       True if ordered and greater than
706    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
707    SETOLT,        //    0 1 0 0       True if ordered and less than
708    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
709    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
710    SETO,          //    0 1 1 1       True if ordered (no nans)
711    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
712    SETUEQ,        //    1 0 0 1       True if unordered or equal
713    SETUGT,        //    1 0 1 0       True if unordered or greater than
714    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
715    SETULT,        //    1 1 0 0       True if unordered or less than
716    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
717    SETUNE,        //    1 1 1 0       True if unordered or not equal
718    SETTRUE,       //    1 1 1 1       Always true (always folded)
719    // Don't care operations: undefined if the input is a nan.
720    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
721    SETEQ,         //  1 X 0 0 1       True if equal
722    SETGT,         //  1 X 0 1 0       True if greater than
723    SETGE,         //  1 X 0 1 1       True if greater than or equal
724    SETLT,         //  1 X 1 0 0       True if less than
725    SETLE,         //  1 X 1 0 1       True if less than or equal
726    SETNE,         //  1 X 1 1 0       True if not equal
727    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
728
729    SETCC_INVALID       // Marker value.
730  };
731
732  /// isSignedIntSetCC - Return true if this is a setcc instruction that
733  /// performs a signed comparison when used with integer operands.
734  inline bool isSignedIntSetCC(CondCode Code) {
735    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
736  }
737
738  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
739  /// performs an unsigned comparison when used with integer operands.
740  inline bool isUnsignedIntSetCC(CondCode Code) {
741    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
742  }
743
744  /// isTrueWhenEqual - Return true if the specified condition returns true if
745  /// the two operands to the condition are equal.  Note that if one of the two
746  /// operands is a NaN, this value is meaningless.
747  inline bool isTrueWhenEqual(CondCode Cond) {
748    return ((int)Cond & 1) != 0;
749  }
750
751  /// getUnorderedFlavor - This function returns 0 if the condition is always
752  /// false if an operand is a NaN, 1 if the condition is always true if the
753  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
754  /// NaN.
755  inline unsigned getUnorderedFlavor(CondCode Cond) {
756    return ((int)Cond >> 3) & 3;
757  }
758
759  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
760  /// 'op' is a valid SetCC operation.
761  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
762
763  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
764  /// when given the operation for (X op Y).
765  CondCode getSetCCSwappedOperands(CondCode Operation);
766
767  /// getSetCCOrOperation - Return the result of a logical OR between different
768  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
769  /// function returns SETCC_INVALID if it is not possible to represent the
770  /// resultant comparison.
771  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
772
773  /// getSetCCAndOperation - Return the result of a logical AND between
774  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
775  /// function returns SETCC_INVALID if it is not possible to represent the
776  /// resultant comparison.
777  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
778
779  //===--------------------------------------------------------------------===//
780  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
781  /// supports.
782  enum CvtCode {
783    CVT_FF,     // Float from Float
784    CVT_FS,     // Float from Signed
785    CVT_FU,     // Float from Unsigned
786    CVT_SF,     // Signed from Float
787    CVT_UF,     // Unsigned from Float
788    CVT_SS,     // Signed from Signed
789    CVT_SU,     // Signed from Unsigned
790    CVT_US,     // Unsigned from Signed
791    CVT_UU,     // Unsigned from Unsigned
792    CVT_INVALID // Marker - Invalid opcode
793  };
794
795} // end llvm::ISD namespace
796
797} // end llvm namespace
798
799#endif
800