ISDOpcodes.h revision 212904
1//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares codegen opcodes and related utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_ISDOPCODES_H
15#define LLVM_CODEGEN_ISDOPCODES_H
16
17namespace llvm {
18
19/// ISD namespace - This namespace contains an enum which represents all of the
20/// SelectionDAG node types and value types.
21///
22namespace ISD {
23
24  //===--------------------------------------------------------------------===//
25  /// ISD::NodeType enum - This enum defines the target-independent operators
26  /// for a SelectionDAG.
27  ///
28  /// Targets may also define target-dependent operator codes for SDNodes. For
29  /// example, on x86, these are the enum values in the X86ISD namespace.
30  /// Targets should aim to use target-independent operators to model their
31  /// instruction sets as much as possible, and only use target-dependent
32  /// operators when they have special requirements.
33  ///
34  /// Finally, during and after selection proper, SNodes may use special
35  /// operator codes that correspond directly with MachineInstr opcodes. These
36  /// are used to represent selected instructions. See the isMachineOpcode()
37  /// and getMachineOpcode() member functions of SDNode.
38  ///
39  enum NodeType {
40    // DELETED_NODE - This is an illegal value that is used to catch
41    // errors.  This opcode is not a legal opcode for any node.
42    DELETED_NODE,
43
44    // EntryToken - This is the marker used to indicate the start of the region.
45    EntryToken,
46
47    // TokenFactor - This node takes multiple tokens as input and produces a
48    // single token result.  This is used to represent the fact that the operand
49    // operators are independent of each other.
50    TokenFactor,
51
52    // AssertSext, AssertZext - These nodes record if a register contains a
53    // value that has already been zero or sign extended from a narrower type.
54    // These nodes take two operands.  The first is the node that has already
55    // been extended, and the second is a value type node indicating the width
56    // of the extension
57    AssertSext, AssertZext,
58
59    // Various leaf nodes.
60    BasicBlock, VALUETYPE, CONDCODE, Register,
61    Constant, ConstantFP,
62    GlobalAddress, GlobalTLSAddress, FrameIndex,
63    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64
65    // The address of the GOT
66    GLOBAL_OFFSET_TABLE,
67
68    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
70    // of the frame or return address to return.  An index of zero corresponds
71    // to the current function's frame or return address, an index of one to the
72    // parent's frame or return address, and so on.
73    FRAMEADDR, RETURNADDR,
74
75    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76    // first (possible) on-stack argument. This is needed for correct stack
77    // adjustment during unwind.
78    FRAME_TO_ARGS_OFFSET,
79
80    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81    // address of the exception block on entry to an landing pad block.
82    EXCEPTIONADDR,
83
84    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85    // address of the Language Specific Data Area for the enclosing function.
86    LSDAADDR,
87
88    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
89    // the selection index of the exception thrown.
90    EHSELECTION,
91
92    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93    // 'eh_return' gcc dwarf builtin, which is used to return from
94    // exception. The general meaning is: adjust stack by OFFSET and pass
95    // execution to HANDLER. Many platform-related details also :)
96    EH_RETURN,
97
98    // OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99    // This corresponds to the eh.sjlj.setjmp intrinsic.
100    // It takes an input chain and a pointer to the jump buffer as inputs
101    // and returns an outchain.
102    EH_SJLJ_SETJMP,
103
104    // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105    // This corresponds to the eh.sjlj.longjmp intrinsic.
106    // It takes an input chain and a pointer to the jump buffer as inputs
107    // and returns an outchain.
108    EH_SJLJ_LONGJMP,
109
110    // TargetConstant* - Like Constant*, but the DAG does not do any folding,
111    // simplification, or lowering of the constant. They are used for constants
112    // which are known to fit in the immediate fields of their users, or for
113    // carrying magic numbers which are not values which need to be materialized
114    // in registers.
115    TargetConstant,
116    TargetConstantFP,
117
118    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
119    // anything else with this node, and this is valid in the target-specific
120    // dag, turning into a GlobalAddress operand.
121    TargetGlobalAddress,
122    TargetGlobalTLSAddress,
123    TargetFrameIndex,
124    TargetJumpTable,
125    TargetConstantPool,
126    TargetExternalSymbol,
127    TargetBlockAddress,
128
129    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
130    /// This node represents a target intrinsic function with no side effects.
131    /// The first operand is the ID number of the intrinsic from the
132    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
133    /// node returns the result of the intrinsic.
134    INTRINSIC_WO_CHAIN,
135
136    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
137    /// This node represents a target intrinsic function with side effects that
138    /// returns a result.  The first operand is a chain pointer.  The second is
139    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
140    /// operands to the intrinsic follow.  The node has two results, the result
141    /// of the intrinsic and an output chain.
142    INTRINSIC_W_CHAIN,
143
144    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
145    /// This node represents a target intrinsic function with side effects that
146    /// does not return a result.  The first operand is a chain pointer.  The
147    /// second is the ID number of the intrinsic from the llvm::Intrinsic
148    /// namespace.  The operands to the intrinsic follow.
149    INTRINSIC_VOID,
150
151    // CopyToReg - This node has three operands: a chain, a register number to
152    // set to this value, and a value.
153    CopyToReg,
154
155    // CopyFromReg - This node indicates that the input value is a virtual or
156    // physical register that is defined outside of the scope of this
157    // SelectionDAG.  The register is available from the RegisterSDNode object.
158    CopyFromReg,
159
160    // UNDEF - An undefined node
161    UNDEF,
162
163    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
164    // a Constant, which is required to be operand #1) half of the integer or
165    // float value specified as operand #0.  This is only for use before
166    // legalization, for values that will be broken into multiple registers.
167    EXTRACT_ELEMENT,
168
169    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
170    // two values of the same integer value type, this produces a value twice as
171    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
172    BUILD_PAIR,
173
174    // MERGE_VALUES - This node takes multiple discrete operands and returns
175    // them all as its individual results.  This nodes has exactly the same
176    // number of inputs and outputs. This node is useful for some pieces of the
177    // code generator that want to think about a single node with multiple
178    // results, not multiple nodes.
179    MERGE_VALUES,
180
181    // Simple integer binary arithmetic operators.
182    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
183
184    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
185    // a signed/unsigned value of type i[2*N], and return the full value as
186    // two results, each of type iN.
187    SMUL_LOHI, UMUL_LOHI,
188
189    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
190    // remainder result.
191    SDIVREM, UDIVREM,
192
193    // CARRY_FALSE - This node is used when folding other nodes,
194    // like ADDC/SUBC, which indicate the carry result is always false.
195    CARRY_FALSE,
196
197    // Carry-setting nodes for multiple precision addition and subtraction.
198    // These nodes take two operands of the same value type, and produce two
199    // results.  The first result is the normal add or sub result, the second
200    // result is the carry flag result.
201    ADDC, SUBC,
202
203    // Carry-using nodes for multiple precision addition and subtraction.  These
204    // nodes take three operands: The first two are the normal lhs and rhs to
205    // the add or sub, and the third is the input carry flag.  These nodes
206    // produce two results; the normal result of the add or sub, and the output
207    // carry flag.  These nodes both read and write a carry flag to allow them
208    // to them to be chained together for add and sub of arbitrarily large
209    // values.
210    ADDE, SUBE,
211
212    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
213    // These nodes take two operands: the normal LHS and RHS to the add. They
214    // produce two results: the normal result of the add, and a boolean that
215    // indicates if an overflow occured (*not* a flag, because it may be stored
216    // to memory, etc.).  If the type of the boolean is not i1 then the high
217    // bits conform to getBooleanContents.
218    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
219    SADDO, UADDO,
220
221    // Same for subtraction
222    SSUBO, USUBO,
223
224    // Same for multiplication
225    SMULO, UMULO,
226
227    // Simple binary floating point operators.
228    FADD, FSUB, FMUL, FDIV, FREM,
229
230    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
231    // DAG node does not require that X and Y have the same type, just that they
232    // are both floating point.  X and the result must have the same type.
233    // FCOPYSIGN(f32, f64) is allowed.
234    FCOPYSIGN,
235
236    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
237    // value as an integer 0/1 value.
238    FGETSIGN,
239
240    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
241    /// specified, possibly variable, elements.  The number of elements is
242    /// required to be a power of two.  The types of the operands must all be
243    /// the same and must match the vector element type, except that integer
244    /// types are allowed to be larger than the element type, in which case
245    /// the operands are implicitly truncated.
246    BUILD_VECTOR,
247
248    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
249    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
250    /// element type then VAL is truncated before replacement.
251    INSERT_VECTOR_ELT,
252
253    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
254    /// identified by the (potentially variable) element number IDX.  If the
255    /// return type is an integer type larger than the element type of the
256    /// vector, the result is extended to the width of the return type.
257    EXTRACT_VECTOR_ELT,
258
259    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
260    /// vector type with the same length and element type, this produces a
261    /// concatenated vector result value, with length equal to the sum of the
262    /// lengths of the input vectors.
263    CONCAT_VECTORS,
264
265    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
266    /// vector value) starting with the (potentially variable) element number
267    /// IDX, which must be a multiple of the result vector length.
268    EXTRACT_SUBVECTOR,
269
270    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
271    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
272    /// values that indicate which value (or undef) each result element will
273    /// get.  These constant ints are accessible through the
274    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
275    /// 'vperm' instruction, except that the indices must be constants and are
276    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
277    VECTOR_SHUFFLE,
278
279    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
280    /// scalar value into element 0 of the resultant vector type.  The top
281    /// elements 1 to N-1 of the N-element vector are undefined.  The type
282    /// of the operand must match the vector element type, except when they
283    /// are integer types.  In this case the operand is allowed to be wider
284    /// than the vector element type, and is implicitly truncated to it.
285    SCALAR_TO_VECTOR,
286
287    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
288    // an unsigned/signed value of type i[2*N], then return the top part.
289    MULHU, MULHS,
290
291    // Bitwise operators - logical and, logical or, logical xor, shift left,
292    // shift right algebraic (shift in sign bits), shift right logical (shift in
293    // zeroes), rotate left, rotate right, and byteswap.
294    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
295
296    // Counting operators
297    CTTZ, CTLZ, CTPOP,
298
299    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
300    // i1 then the high bits must conform to getBooleanContents.
301    SELECT,
302
303    // Select with condition operator - This selects between a true value and
304    // a false value (ops #2 and #3) based on the boolean result of comparing
305    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
306    // condition code in op #4, a CondCodeSDNode.
307    SELECT_CC,
308
309    // SetCC operator - This evaluates to a true value iff the condition is
310    // true.  If the result value type is not i1 then the high bits conform
311    // to getBooleanContents.  The operands to this are the left and right
312    // operands to compare (ops #0, and #1) and the condition code to compare
313    // them with (op #2) as a CondCodeSDNode.
314    SETCC,
315
316    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
317    // integer elements with all bits of the result elements set to true if the
318    // comparison is true or all cleared if the comparison is false.  The
319    // operands to this are the left and right operands to compare (LHS/RHS) and
320    // the condition code to compare them with (COND) as a CondCodeSDNode.
321    VSETCC,
322
323    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
324    // integer shift operations, just like ADD/SUB_PARTS.  The operation
325    // ordering is:
326    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
327    SHL_PARTS, SRA_PARTS, SRL_PARTS,
328
329    // Conversion operators.  These are all single input single output
330    // operations.  For all of these, the result type must be strictly
331    // wider or narrower (depending on the operation) than the source
332    // type.
333
334    // SIGN_EXTEND - Used for integer types, replicating the sign bit
335    // into new bits.
336    SIGN_EXTEND,
337
338    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
339    ZERO_EXTEND,
340
341    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
342    ANY_EXTEND,
343
344    // TRUNCATE - Completely drop the high bits.
345    TRUNCATE,
346
347    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
348    // depends on the first letter) to floating point.
349    SINT_TO_FP,
350    UINT_TO_FP,
351
352    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
353    // sign extend a small value in a large integer register (e.g. sign
354    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
355    // with the 7th bit).  The size of the smaller type is indicated by the 1th
356    // operand, a ValueType node.
357    SIGN_EXTEND_INREG,
358
359    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
360    /// integer.
361    FP_TO_SINT,
362    FP_TO_UINT,
363
364    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
365    /// down to the precision of the destination VT.  TRUNC is a flag, which is
366    /// always an integer that is zero or one.  If TRUNC is 0, this is a
367    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
368    /// value of Y.
369    ///
370    /// The TRUNC = 1 case is used in cases where we know that the value will
371    /// not be modified by the node, because Y is not using any of the extra
372    /// precision of source type.  This allows certain transformations like
373    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
374    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
375    FP_ROUND,
376
377    // FLT_ROUNDS_ - Returns current rounding mode:
378    // -1 Undefined
379    //  0 Round to 0
380    //  1 Round to nearest
381    //  2 Round to +inf
382    //  3 Round to -inf
383    FLT_ROUNDS_,
384
385    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
386    /// rounds it to a floating point value.  It then promotes it and returns it
387    /// in a register of the same size.  This operation effectively just
388    /// discards excess precision.  The type to round down to is specified by
389    /// the VT operand, a VTSDNode.
390    FP_ROUND_INREG,
391
392    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
393    FP_EXTEND,
394
395    // BIT_CONVERT - This operator converts between integer, vector and FP
396    // values, as if the value was stored to memory with one type and loaded
397    // from the same address with the other type (or equivalently for vector
398    // format conversions, etc).  The source and result are required to have
399    // the same bit size (e.g.  f32 <-> i32).  This can also be used for
400    // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
401    // getNode().
402    BIT_CONVERT,
403
404    // CONVERT_RNDSAT - This operator is used to support various conversions
405    // between various types (float, signed, unsigned and vectors of those
406    // types) with rounding and saturation. NOTE: Avoid using this operator as
407    // most target don't support it and the operator might be removed in the
408    // future. It takes the following arguments:
409    //   0) value
410    //   1) dest type (type to convert to)
411    //   2) src type (type to convert from)
412    //   3) rounding imm
413    //   4) saturation imm
414    //   5) ISD::CvtCode indicating the type of conversion to do
415    CONVERT_RNDSAT,
416
417    // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
418    // promotions and truncation for half-precision (16 bit) floating
419    // numbers. We need special nodes since FP16 is a storage-only type with
420    // special semantics of operations.
421    FP16_TO_FP32, FP32_TO_FP16,
422
423    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
424    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
425    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
426    // point operations. These are inspired by libm.
427    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
428    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
429    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
430
431    // LOAD and STORE have token chains as their first operand, then the same
432    // operands as an LLVM load/store instruction, then an offset node that
433    // is added / subtracted from the base pointer to form the address (for
434    // indexed memory ops).
435    LOAD, STORE,
436
437    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
438    // to a specified boundary.  This node always has two return values: a new
439    // stack pointer value and a chain. The first operand is the token chain,
440    // the second is the number of bytes to allocate, and the third is the
441    // alignment boundary.  The size is guaranteed to be a multiple of the stack
442    // alignment, and the alignment is guaranteed to be bigger than the stack
443    // alignment (if required) or 0 to get standard stack alignment.
444    DYNAMIC_STACKALLOC,
445
446    // Control flow instructions.  These all have token chains.
447
448    // BR - Unconditional branch.  The first operand is the chain
449    // operand, the second is the MBB to branch to.
450    BR,
451
452    // BRIND - Indirect branch.  The first operand is the chain, the second
453    // is the value to branch to, which must be of the same type as the target's
454    // pointer type.
455    BRIND,
456
457    // BR_JT - Jumptable branch. The first operand is the chain, the second
458    // is the jumptable index, the last one is the jumptable entry index.
459    BR_JT,
460
461    // BRCOND - Conditional branch.  The first operand is the chain, the
462    // second is the condition, the third is the block to branch to if the
463    // condition is true.  If the type of the condition is not i1, then the
464    // high bits must conform to getBooleanContents.
465    BRCOND,
466
467    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
468    // that the condition is represented as condition code, and two nodes to
469    // compare, rather than as a combined SetCC node.  The operands in order are
470    // chain, cc, lhs, rhs, block to branch to if condition is true.
471    BR_CC,
472
473    // INLINEASM - Represents an inline asm block.  This node always has two
474    // return values: a chain and a flag result.  The inputs are as follows:
475    //   Operand #0   : Input chain.
476    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
477    //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
478    //   After this, it is followed by a list of operands with this format:
479    //     ConstantSDNode: Flags that encode whether it is a mem or not, the
480    //                     of operands that follow, etc.  See InlineAsm.h.
481    //     ... however many operands ...
482    //   Operand #last: Optional, an incoming flag.
483    //
484    // The variable width operands are required to represent target addressing
485    // modes as a single "operand", even though they may have multiple
486    // SDOperands.
487    INLINEASM,
488
489    // EH_LABEL - Represents a label in mid basic block used to track
490    // locations needed for debug and exception handling tables.  These nodes
491    // take a chain as input and return a chain.
492    EH_LABEL,
493
494    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
495    // value, the same type as the pointer type for the system, and an output
496    // chain.
497    STACKSAVE,
498
499    // STACKRESTORE has two operands, an input chain and a pointer to restore to
500    // it returns an output chain.
501    STACKRESTORE,
502
503    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
504    // a call sequence, and carry arbitrary information that target might want
505    // to know.  The first operand is a chain, the rest are specified by the
506    // target and not touched by the DAG optimizers.
507    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
508    CALLSEQ_START,  // Beginning of a call sequence
509    CALLSEQ_END,    // End of a call sequence
510
511    // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
512    // and the alignment. It returns a pair of values: the vaarg value and a
513    // new chain.
514    VAARG,
515
516    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
517    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
518    // source.
519    VACOPY,
520
521    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
522    // pointer, and a SRCVALUE.
523    VAEND, VASTART,
524
525    // SRCVALUE - This is a node type that holds a Value* that is used to
526    // make reference to a value in the LLVM IR.
527    SRCVALUE,
528
529    // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
530    // reference metadata in the IR.
531    MDNODE_SDNODE,
532
533    // PCMARKER - This corresponds to the pcmarker intrinsic.
534    PCMARKER,
535
536    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
537    // The only operand is a chain and a value and a chain are produced.  The
538    // value is the contents of the architecture specific cycle counter like
539    // register (or other high accuracy low latency clock source)
540    READCYCLECOUNTER,
541
542    // HANDLENODE node - Used as a handle for various purposes.
543    HANDLENODE,
544
545    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
546    // It takes as input a token chain, the pointer to the trampoline,
547    // the pointer to the nested function, the pointer to pass for the
548    // 'nest' parameter, a SRCVALUE for the trampoline and another for
549    // the nested function (allowing targets to access the original
550    // Function*).  It produces the result of the intrinsic and a token
551    // chain as output.
552    TRAMPOLINE,
553
554    // TRAP - Trapping instruction
555    TRAP,
556
557    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
558    // their first operand. The other operands are the address to prefetch,
559    // read / write specifier, and locality specifier.
560    PREFETCH,
561
562    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
563    //                       store-store, device)
564    // This corresponds to the memory.barrier intrinsic.
565    // it takes an input chain, 4 operands to specify the type of barrier, an
566    // operand specifying if the barrier applies to device and uncached memory
567    // and produces an output chain.
568    MEMBARRIER,
569
570    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
571    // this corresponds to the atomic.lcs intrinsic.
572    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
573    // the return is always the original value in *ptr
574    ATOMIC_CMP_SWAP,
575
576    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
577    // this corresponds to the atomic.swap intrinsic.
578    // amt is stored to *ptr atomically.
579    // the return is always the original value in *ptr
580    ATOMIC_SWAP,
581
582    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
583    // this corresponds to the atomic.load.[OpName] intrinsic.
584    // op(*ptr, amt) is stored to *ptr atomically.
585    // the return is always the original value in *ptr
586    ATOMIC_LOAD_ADD,
587    ATOMIC_LOAD_SUB,
588    ATOMIC_LOAD_AND,
589    ATOMIC_LOAD_OR,
590    ATOMIC_LOAD_XOR,
591    ATOMIC_LOAD_NAND,
592    ATOMIC_LOAD_MIN,
593    ATOMIC_LOAD_MAX,
594    ATOMIC_LOAD_UMIN,
595    ATOMIC_LOAD_UMAX,
596
597    /// BUILTIN_OP_END - This must be the last enum value in this list.
598    /// The target-specific pre-isel opcode values start here.
599    BUILTIN_OP_END
600  };
601
602  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
603  /// which do not reference a specific memory location should be less than
604  /// this value. Those that do must not be less than this value, and can
605  /// be used with SelectionDAG::getMemIntrinsicNode.
606  static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
607
608  //===--------------------------------------------------------------------===//
609  /// MemIndexedMode enum - This enum defines the load / store indexed
610  /// addressing modes.
611  ///
612  /// UNINDEXED    "Normal" load / store. The effective address is already
613  ///              computed and is available in the base pointer. The offset
614  ///              operand is always undefined. In addition to producing a
615  ///              chain, an unindexed load produces one value (result of the
616  ///              load); an unindexed store does not produce a value.
617  ///
618  /// PRE_INC      Similar to the unindexed mode where the effective address is
619  /// PRE_DEC      the value of the base pointer add / subtract the offset.
620  ///              It considers the computation as being folded into the load /
621  ///              store operation (i.e. the load / store does the address
622  ///              computation as well as performing the memory transaction).
623  ///              The base operand is always undefined. In addition to
624  ///              producing a chain, pre-indexed load produces two values
625  ///              (result of the load and the result of the address
626  ///              computation); a pre-indexed store produces one value (result
627  ///              of the address computation).
628  ///
629  /// POST_INC     The effective address is the value of the base pointer. The
630  /// POST_DEC     value of the offset operand is then added to / subtracted
631  ///              from the base after memory transaction. In addition to
632  ///              producing a chain, post-indexed load produces two values
633  ///              (the result of the load and the result of the base +/- offset
634  ///              computation); a post-indexed store produces one value (the
635  ///              the result of the base +/- offset computation).
636  enum MemIndexedMode {
637    UNINDEXED = 0,
638    PRE_INC,
639    PRE_DEC,
640    POST_INC,
641    POST_DEC,
642    LAST_INDEXED_MODE
643  };
644
645  //===--------------------------------------------------------------------===//
646  /// LoadExtType enum - This enum defines the three variants of LOADEXT
647  /// (load with extension).
648  ///
649  /// SEXTLOAD loads the integer operand and sign extends it to a larger
650  ///          integer result type.
651  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
652  ///          integer result type.
653  /// EXTLOAD  is used for two things: floating point extending loads and
654  ///          integer extending loads [the top bits are undefined].
655  enum LoadExtType {
656    NON_EXTLOAD = 0,
657    EXTLOAD,
658    SEXTLOAD,
659    ZEXTLOAD,
660    LAST_LOADEXT_TYPE
661  };
662
663  //===--------------------------------------------------------------------===//
664  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
665  /// below work out, when considering SETFALSE (something that never exists
666  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
667  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
668  /// to.  If the "N" column is 1, the result of the comparison is undefined if
669  /// the input is a NAN.
670  ///
671  /// All of these (except for the 'always folded ops') should be handled for
672  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
673  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
674  ///
675  /// Note that these are laid out in a specific order to allow bit-twiddling
676  /// to transform conditions.
677  enum CondCode {
678    // Opcode          N U L G E       Intuitive operation
679    SETFALSE,      //    0 0 0 0       Always false (always folded)
680    SETOEQ,        //    0 0 0 1       True if ordered and equal
681    SETOGT,        //    0 0 1 0       True if ordered and greater than
682    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
683    SETOLT,        //    0 1 0 0       True if ordered and less than
684    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
685    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
686    SETO,          //    0 1 1 1       True if ordered (no nans)
687    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
688    SETUEQ,        //    1 0 0 1       True if unordered or equal
689    SETUGT,        //    1 0 1 0       True if unordered or greater than
690    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
691    SETULT,        //    1 1 0 0       True if unordered or less than
692    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
693    SETUNE,        //    1 1 1 0       True if unordered or not equal
694    SETTRUE,       //    1 1 1 1       Always true (always folded)
695    // Don't care operations: undefined if the input is a nan.
696    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
697    SETEQ,         //  1 X 0 0 1       True if equal
698    SETGT,         //  1 X 0 1 0       True if greater than
699    SETGE,         //  1 X 0 1 1       True if greater than or equal
700    SETLT,         //  1 X 1 0 0       True if less than
701    SETLE,         //  1 X 1 0 1       True if less than or equal
702    SETNE,         //  1 X 1 1 0       True if not equal
703    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
704
705    SETCC_INVALID       // Marker value.
706  };
707
708  /// isSignedIntSetCC - Return true if this is a setcc instruction that
709  /// performs a signed comparison when used with integer operands.
710  inline bool isSignedIntSetCC(CondCode Code) {
711    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
712  }
713
714  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
715  /// performs an unsigned comparison when used with integer operands.
716  inline bool isUnsignedIntSetCC(CondCode Code) {
717    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
718  }
719
720  /// isTrueWhenEqual - Return true if the specified condition returns true if
721  /// the two operands to the condition are equal.  Note that if one of the two
722  /// operands is a NaN, this value is meaningless.
723  inline bool isTrueWhenEqual(CondCode Cond) {
724    return ((int)Cond & 1) != 0;
725  }
726
727  /// getUnorderedFlavor - This function returns 0 if the condition is always
728  /// false if an operand is a NaN, 1 if the condition is always true if the
729  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
730  /// NaN.
731  inline unsigned getUnorderedFlavor(CondCode Cond) {
732    return ((int)Cond >> 3) & 3;
733  }
734
735  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
736  /// 'op' is a valid SetCC operation.
737  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
738
739  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
740  /// when given the operation for (X op Y).
741  CondCode getSetCCSwappedOperands(CondCode Operation);
742
743  /// getSetCCOrOperation - Return the result of a logical OR between different
744  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
745  /// function returns SETCC_INVALID if it is not possible to represent the
746  /// resultant comparison.
747  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
748
749  /// getSetCCAndOperation - Return the result of a logical AND between
750  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
751  /// function returns SETCC_INVALID if it is not possible to represent the
752  /// resultant comparison.
753  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
754
755  //===--------------------------------------------------------------------===//
756  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
757  /// supports.
758  enum CvtCode {
759    CVT_FF,     // Float from Float
760    CVT_FS,     // Float from Signed
761    CVT_FU,     // Float from Unsigned
762    CVT_SF,     // Signed from Float
763    CVT_UF,     // Unsigned from Float
764    CVT_SS,     // Signed from Signed
765    CVT_SU,     // Signed from Unsigned
766    CVT_US,     // Unsigned from Signed
767    CVT_UU,     // Unsigned from Unsigned
768    CVT_INVALID // Marker - Invalid opcode
769  };
770
771} // end llvm::ISD namespace
772
773} // end llvm namespace
774
775#endif
776