ISDOpcodes.h revision 234353
1//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares codegen opcodes and related utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_ISDOPCODES_H
15#define LLVM_CODEGEN_ISDOPCODES_H
16
17namespace llvm {
18
19/// ISD namespace - This namespace contains an enum which represents all of the
20/// SelectionDAG node types and value types.
21///
22namespace ISD {
23
24  //===--------------------------------------------------------------------===//
25  /// ISD::NodeType enum - This enum defines the target-independent operators
26  /// for a SelectionDAG.
27  ///
28  /// Targets may also define target-dependent operator codes for SDNodes. For
29  /// example, on x86, these are the enum values in the X86ISD namespace.
30  /// Targets should aim to use target-independent operators to model their
31  /// instruction sets as much as possible, and only use target-dependent
32  /// operators when they have special requirements.
33  ///
34  /// Finally, during and after selection proper, SNodes may use special
35  /// operator codes that correspond directly with MachineInstr opcodes. These
36  /// are used to represent selected instructions. See the isMachineOpcode()
37  /// and getMachineOpcode() member functions of SDNode.
38  ///
39  enum NodeType {
40    // DELETED_NODE - This is an illegal value that is used to catch
41    // errors.  This opcode is not a legal opcode for any node.
42    DELETED_NODE,
43
44    // EntryToken - This is the marker used to indicate the start of the region.
45    EntryToken,
46
47    // TokenFactor - This node takes multiple tokens as input and produces a
48    // single token result.  This is used to represent the fact that the operand
49    // operators are independent of each other.
50    TokenFactor,
51
52    // AssertSext, AssertZext - These nodes record if a register contains a
53    // value that has already been zero or sign extended from a narrower type.
54    // These nodes take two operands.  The first is the node that has already
55    // been extended, and the second is a value type node indicating the width
56    // of the extension
57    AssertSext, AssertZext,
58
59    // Various leaf nodes.
60    BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61    Constant, ConstantFP,
62    GlobalAddress, GlobalTLSAddress, FrameIndex,
63    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64
65    // The address of the GOT
66    GLOBAL_OFFSET_TABLE,
67
68    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
70    // of the frame or return address to return.  An index of zero corresponds
71    // to the current function's frame or return address, an index of one to the
72    // parent's frame or return address, and so on.
73    FRAMEADDR, RETURNADDR,
74
75    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76    // first (possible) on-stack argument. This is needed for correct stack
77    // adjustment during unwind.
78    FRAME_TO_ARGS_OFFSET,
79
80    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81    // address of the exception block on entry to an landing pad block.
82    EXCEPTIONADDR,
83
84    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85    // address of the Language Specific Data Area for the enclosing function.
86    LSDAADDR,
87
88    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
89    // the selection index of the exception thrown.
90    EHSELECTION,
91
92    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93    // 'eh_return' gcc dwarf builtin, which is used to return from
94    // exception. The general meaning is: adjust stack by OFFSET and pass
95    // execution to HANDLER. Many platform-related details also :)
96    EH_RETURN,
97
98    // RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99    // This corresponds to the eh.sjlj.setjmp intrinsic.
100    // It takes an input chain and a pointer to the jump buffer as inputs
101    // and returns an outchain.
102    EH_SJLJ_SETJMP,
103
104    // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105    // This corresponds to the eh.sjlj.longjmp intrinsic.
106    // It takes an input chain and a pointer to the jump buffer as inputs
107    // and returns an outchain.
108    EH_SJLJ_LONGJMP,
109
110    // TargetConstant* - Like Constant*, but the DAG does not do any folding,
111    // simplification, or lowering of the constant. They are used for constants
112    // which are known to fit in the immediate fields of their users, or for
113    // carrying magic numbers which are not values which need to be materialized
114    // in registers.
115    TargetConstant,
116    TargetConstantFP,
117
118    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
119    // anything else with this node, and this is valid in the target-specific
120    // dag, turning into a GlobalAddress operand.
121    TargetGlobalAddress,
122    TargetGlobalTLSAddress,
123    TargetFrameIndex,
124    TargetJumpTable,
125    TargetConstantPool,
126    TargetExternalSymbol,
127    TargetBlockAddress,
128
129    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
130    /// This node represents a target intrinsic function with no side effects.
131    /// The first operand is the ID number of the intrinsic from the
132    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
133    /// node returns the result of the intrinsic.
134    INTRINSIC_WO_CHAIN,
135
136    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
137    /// This node represents a target intrinsic function with side effects that
138    /// returns a result.  The first operand is a chain pointer.  The second is
139    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
140    /// operands to the intrinsic follow.  The node has two results, the result
141    /// of the intrinsic and an output chain.
142    INTRINSIC_W_CHAIN,
143
144    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
145    /// This node represents a target intrinsic function with side effects that
146    /// does not return a result.  The first operand is a chain pointer.  The
147    /// second is the ID number of the intrinsic from the llvm::Intrinsic
148    /// namespace.  The operands to the intrinsic follow.
149    INTRINSIC_VOID,
150
151    // CopyToReg - This node has three operands: a chain, a register number to
152    // set to this value, and a value.
153    CopyToReg,
154
155    // CopyFromReg - This node indicates that the input value is a virtual or
156    // physical register that is defined outside of the scope of this
157    // SelectionDAG.  The register is available from the RegisterSDNode object.
158    CopyFromReg,
159
160    // UNDEF - An undefined node
161    UNDEF,
162
163    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
164    // a Constant, which is required to be operand #1) half of the integer or
165    // float value specified as operand #0.  This is only for use before
166    // legalization, for values that will be broken into multiple registers.
167    EXTRACT_ELEMENT,
168
169    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
170    // two values of the same integer value type, this produces a value twice as
171    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
172    BUILD_PAIR,
173
174    // MERGE_VALUES - This node takes multiple discrete operands and returns
175    // them all as its individual results.  This nodes has exactly the same
176    // number of inputs and outputs. This node is useful for some pieces of the
177    // code generator that want to think about a single node with multiple
178    // results, not multiple nodes.
179    MERGE_VALUES,
180
181    // Simple integer binary arithmetic operators.
182    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
183
184    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
185    // a signed/unsigned value of type i[2*N], and return the full value as
186    // two results, each of type iN.
187    SMUL_LOHI, UMUL_LOHI,
188
189    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
190    // remainder result.
191    SDIVREM, UDIVREM,
192
193    // CARRY_FALSE - This node is used when folding other nodes,
194    // like ADDC/SUBC, which indicate the carry result is always false.
195    CARRY_FALSE,
196
197    // Carry-setting nodes for multiple precision addition and subtraction.
198    // These nodes take two operands of the same value type, and produce two
199    // results.  The first result is the normal add or sub result, the second
200    // result is the carry flag result.
201    ADDC, SUBC,
202
203    // Carry-using nodes for multiple precision addition and subtraction.  These
204    // nodes take three operands: The first two are the normal lhs and rhs to
205    // the add or sub, and the third is the input carry flag.  These nodes
206    // produce two results; the normal result of the add or sub, and the output
207    // carry flag.  These nodes both read and write a carry flag to allow them
208    // to them to be chained together for add and sub of arbitrarily large
209    // values.
210    ADDE, SUBE,
211
212    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
213    // These nodes take two operands: the normal LHS and RHS to the add. They
214    // produce two results: the normal result of the add, and a boolean that
215    // indicates if an overflow occurred (*not* a flag, because it may be stored
216    // to memory, etc.).  If the type of the boolean is not i1 then the high
217    // bits conform to getBooleanContents.
218    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
219    SADDO, UADDO,
220
221    // Same for subtraction
222    SSUBO, USUBO,
223
224    // Same for multiplication
225    SMULO, UMULO,
226
227    // Simple binary floating point operators.
228    FADD, FSUB, FMUL, FMA, FDIV, FREM,
229
230    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
231    // DAG node does not require that X and Y have the same type, just that they
232    // are both floating point.  X and the result must have the same type.
233    // FCOPYSIGN(f32, f64) is allowed.
234    FCOPYSIGN,
235
236    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
237    // value as an integer 0/1 value.
238    FGETSIGN,
239
240    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
241    /// specified, possibly variable, elements.  The number of elements is
242    /// required to be a power of two.  The types of the operands must all be
243    /// the same and must match the vector element type, except that integer
244    /// types are allowed to be larger than the element type, in which case
245    /// the operands are implicitly truncated.
246    BUILD_VECTOR,
247
248    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
249    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
250    /// element type then VAL is truncated before replacement.
251    INSERT_VECTOR_ELT,
252
253    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
254    /// identified by the (potentially variable) element number IDX.  If the
255    /// return type is an integer type larger than the element type of the
256    /// vector, the result is extended to the width of the return type.
257    EXTRACT_VECTOR_ELT,
258
259    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
260    /// vector type with the same length and element type, this produces a
261    /// concatenated vector result value, with length equal to the sum of the
262    /// lengths of the input vectors.
263    CONCAT_VECTORS,
264
265    /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
266    /// with VECTOR2 inserted into VECTOR1 at the (potentially
267    /// variable) element number IDX, which must be a multiple of the
268    /// VECTOR2 vector length.  The elements of VECTOR1 starting at
269    /// IDX are overwritten with VECTOR2.  Elements IDX through
270    /// vector_length(VECTOR2) must be valid VECTOR1 indices.
271    INSERT_SUBVECTOR,
272
273    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
274    /// vector value) starting with the element number IDX, which must be a
275    /// constant multiple of the result vector length.
276    EXTRACT_SUBVECTOR,
277
278    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
279    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
280    /// values that indicate which value (or undef) each result element will
281    /// get.  These constant ints are accessible through the
282    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
283    /// 'vperm' instruction, except that the indices must be constants and are
284    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
285    VECTOR_SHUFFLE,
286
287    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
288    /// scalar value into element 0 of the resultant vector type.  The top
289    /// elements 1 to N-1 of the N-element vector are undefined.  The type
290    /// of the operand must match the vector element type, except when they
291    /// are integer types.  In this case the operand is allowed to be wider
292    /// than the vector element type, and is implicitly truncated to it.
293    SCALAR_TO_VECTOR,
294
295    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
296    // an unsigned/signed value of type i[2*N], then return the top part.
297    MULHU, MULHS,
298
299    /// Bitwise operators - logical and, logical or, logical xor.
300    AND, OR, XOR,
301
302    /// Shift and rotation operations.  After legalization, the type of the
303    /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
304    /// the shift amount can be any type, but care must be taken to ensure it is
305    /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
306    /// legalization, types like i1024 can occur and i8 doesn't have enough bits
307    /// to represent the shift amount.  By convention, DAGCombine and
308    /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
309    ///
310    SHL, SRA, SRL, ROTL, ROTR,
311
312    /// Byte Swap and Counting operators.
313    BSWAP, CTTZ, CTLZ, CTPOP,
314
315    /// Bit counting operators with an undefined result for zero inputs.
316    CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
317
318    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
319    // i1 then the high bits must conform to getBooleanContents.
320    SELECT,
321
322    // Select with a vector condition (op #0) and two vector operands (ops #1
323    // and #2), returning a vector result.  All vectors have the same length.
324    // Much like the scalar select and setcc, each bit in the condition selects
325    // whether the corresponding result element is taken from op #1 or op #2.
326    // At first, the VSELECT condition is of vXi1 type. Later, targets may change
327    // the condition type in order to match the VSELECT node using a a pattern.
328    // The condition follows the BooleanContent format of the target.
329    VSELECT,
330
331    // Select with condition operator - This selects between a true value and
332    // a false value (ops #2 and #3) based on the boolean result of comparing
333    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
334    // condition code in op #4, a CondCodeSDNode.
335    SELECT_CC,
336
337    // SetCC operator - This evaluates to a true value iff the condition is
338    // true.  If the result value type is not i1 then the high bits conform
339    // to getBooleanContents.  The operands to this are the left and right
340    // operands to compare (ops #0, and #1) and the condition code to compare
341    // them with (op #2) as a CondCodeSDNode. If the operands are vector types
342    // then the result type must also be a vector type.
343    SETCC,
344
345    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
346    // integer shift operations, just like ADD/SUB_PARTS.  The operation
347    // ordering is:
348    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
349    SHL_PARTS, SRA_PARTS, SRL_PARTS,
350
351    // Conversion operators.  These are all single input single output
352    // operations.  For all of these, the result type must be strictly
353    // wider or narrower (depending on the operation) than the source
354    // type.
355
356    // SIGN_EXTEND - Used for integer types, replicating the sign bit
357    // into new bits.
358    SIGN_EXTEND,
359
360    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
361    ZERO_EXTEND,
362
363    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
364    ANY_EXTEND,
365
366    // TRUNCATE - Completely drop the high bits.
367    TRUNCATE,
368
369    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
370    // depends on the first letter) to floating point.
371    SINT_TO_FP,
372    UINT_TO_FP,
373
374    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
375    // sign extend a small value in a large integer register (e.g. sign
376    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
377    // with the 7th bit).  The size of the smaller type is indicated by the 1th
378    // operand, a ValueType node.
379    SIGN_EXTEND_INREG,
380
381    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
382    /// integer.
383    FP_TO_SINT,
384    FP_TO_UINT,
385
386    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
387    /// down to the precision of the destination VT.  TRUNC is a flag, which is
388    /// always an integer that is zero or one.  If TRUNC is 0, this is a
389    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
390    /// value of Y.
391    ///
392    /// The TRUNC = 1 case is used in cases where we know that the value will
393    /// not be modified by the node, because Y is not using any of the extra
394    /// precision of source type.  This allows certain transformations like
395    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
396    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
397    FP_ROUND,
398
399    // FLT_ROUNDS_ - Returns current rounding mode:
400    // -1 Undefined
401    //  0 Round to 0
402    //  1 Round to nearest
403    //  2 Round to +inf
404    //  3 Round to -inf
405    FLT_ROUNDS_,
406
407    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
408    /// rounds it to a floating point value.  It then promotes it and returns it
409    /// in a register of the same size.  This operation effectively just
410    /// discards excess precision.  The type to round down to is specified by
411    /// the VT operand, a VTSDNode.
412    FP_ROUND_INREG,
413
414    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
415    FP_EXTEND,
416
417    // BITCAST - This operator converts between integer, vector and FP
418    // values, as if the value was stored to memory with one type and loaded
419    // from the same address with the other type (or equivalently for vector
420    // format conversions, etc).  The source and result are required to have
421    // the same bit size (e.g.  f32 <-> i32).  This can also be used for
422    // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
423    // getNode().
424    BITCAST,
425
426    // CONVERT_RNDSAT - This operator is used to support various conversions
427    // between various types (float, signed, unsigned and vectors of those
428    // types) with rounding and saturation. NOTE: Avoid using this operator as
429    // most target don't support it and the operator might be removed in the
430    // future. It takes the following arguments:
431    //   0) value
432    //   1) dest type (type to convert to)
433    //   2) src type (type to convert from)
434    //   3) rounding imm
435    //   4) saturation imm
436    //   5) ISD::CvtCode indicating the type of conversion to do
437    CONVERT_RNDSAT,
438
439    // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
440    // promotions and truncation for half-precision (16 bit) floating
441    // numbers. We need special nodes since FP16 is a storage-only type with
442    // special semantics of operations.
443    FP16_TO_FP32, FP32_TO_FP16,
444
445    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
446    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
447    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
448    // point operations. These are inspired by libm.
449    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
450    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
451    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
452
453    // LOAD and STORE have token chains as their first operand, then the same
454    // operands as an LLVM load/store instruction, then an offset node that
455    // is added / subtracted from the base pointer to form the address (for
456    // indexed memory ops).
457    LOAD, STORE,
458
459    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
460    // to a specified boundary.  This node always has two return values: a new
461    // stack pointer value and a chain. The first operand is the token chain,
462    // the second is the number of bytes to allocate, and the third is the
463    // alignment boundary.  The size is guaranteed to be a multiple of the stack
464    // alignment, and the alignment is guaranteed to be bigger than the stack
465    // alignment (if required) or 0 to get standard stack alignment.
466    DYNAMIC_STACKALLOC,
467
468    // Control flow instructions.  These all have token chains.
469
470    // BR - Unconditional branch.  The first operand is the chain
471    // operand, the second is the MBB to branch to.
472    BR,
473
474    // BRIND - Indirect branch.  The first operand is the chain, the second
475    // is the value to branch to, which must be of the same type as the target's
476    // pointer type.
477    BRIND,
478
479    // BR_JT - Jumptable branch. The first operand is the chain, the second
480    // is the jumptable index, the last one is the jumptable entry index.
481    BR_JT,
482
483    // BRCOND - Conditional branch.  The first operand is the chain, the
484    // second is the condition, the third is the block to branch to if the
485    // condition is true.  If the type of the condition is not i1, then the
486    // high bits must conform to getBooleanContents.
487    BRCOND,
488
489    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
490    // that the condition is represented as condition code, and two nodes to
491    // compare, rather than as a combined SetCC node.  The operands in order are
492    // chain, cc, lhs, rhs, block to branch to if condition is true.
493    BR_CC,
494
495    // INLINEASM - Represents an inline asm block.  This node always has two
496    // return values: a chain and a flag result.  The inputs are as follows:
497    //   Operand #0   : Input chain.
498    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
499    //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
500    //   Operand #3   : HasSideEffect, IsAlignStack bits.
501    //   After this, it is followed by a list of operands with this format:
502    //     ConstantSDNode: Flags that encode whether it is a mem or not, the
503    //                     of operands that follow, etc.  See InlineAsm.h.
504    //     ... however many operands ...
505    //   Operand #last: Optional, an incoming flag.
506    //
507    // The variable width operands are required to represent target addressing
508    // modes as a single "operand", even though they may have multiple
509    // SDOperands.
510    INLINEASM,
511
512    // EH_LABEL - Represents a label in mid basic block used to track
513    // locations needed for debug and exception handling tables.  These nodes
514    // take a chain as input and return a chain.
515    EH_LABEL,
516
517    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
518    // value, the same type as the pointer type for the system, and an output
519    // chain.
520    STACKSAVE,
521
522    // STACKRESTORE has two operands, an input chain and a pointer to restore to
523    // it returns an output chain.
524    STACKRESTORE,
525
526    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
527    // a call sequence, and carry arbitrary information that target might want
528    // to know.  The first operand is a chain, the rest are specified by the
529    // target and not touched by the DAG optimizers.
530    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
531    CALLSEQ_START,  // Beginning of a call sequence
532    CALLSEQ_END,    // End of a call sequence
533
534    // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
535    // and the alignment. It returns a pair of values: the vaarg value and a
536    // new chain.
537    VAARG,
538
539    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
540    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
541    // source.
542    VACOPY,
543
544    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
545    // pointer, and a SRCVALUE.
546    VAEND, VASTART,
547
548    // SRCVALUE - This is a node type that holds a Value* that is used to
549    // make reference to a value in the LLVM IR.
550    SRCVALUE,
551
552    // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
553    // reference metadata in the IR.
554    MDNODE_SDNODE,
555
556    // PCMARKER - This corresponds to the pcmarker intrinsic.
557    PCMARKER,
558
559    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
560    // The only operand is a chain and a value and a chain are produced.  The
561    // value is the contents of the architecture specific cycle counter like
562    // register (or other high accuracy low latency clock source)
563    READCYCLECOUNTER,
564
565    // HANDLENODE node - Used as a handle for various purposes.
566    HANDLENODE,
567
568    // INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
569    // takes as input a token chain, the pointer to the trampoline, the pointer
570    // to the nested function, the pointer to pass for the 'nest' parameter, a
571    // SRCVALUE for the trampoline and another for the nested function (allowing
572    // targets to access the original Function*).  It produces a token chain as
573    // output.
574    INIT_TRAMPOLINE,
575
576    // ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
577    // It takes a pointer to the trampoline and produces a (possibly) new
578    // pointer to the same trampoline with platform-specific adjustments
579    // applied.  The pointer it returns points to an executable block of code.
580    ADJUST_TRAMPOLINE,
581
582    // TRAP - Trapping instruction
583    TRAP,
584
585    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
586    // their first operand. The other operands are the address to prefetch,
587    // read / write specifier, locality specifier and instruction / data cache
588    // specifier.
589    PREFETCH,
590
591    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
592    //                       store-store, device)
593    // This corresponds to the memory.barrier intrinsic.
594    // it takes an input chain, 4 operands to specify the type of barrier, an
595    // operand specifying if the barrier applies to device and uncached memory
596    // and produces an output chain.
597    MEMBARRIER,
598
599    // OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
600    // This corresponds to the fence instruction. It takes an input chain, and
601    // two integer constants: an AtomicOrdering and a SynchronizationScope.
602    ATOMIC_FENCE,
603
604    // Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
605    // This corresponds to "load atomic" instruction.
606    ATOMIC_LOAD,
607
608    // OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
609    // This corresponds to "store atomic" instruction.
610    ATOMIC_STORE,
611
612    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
613    // This corresponds to the cmpxchg instruction.
614    ATOMIC_CMP_SWAP,
615
616    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
617    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
618    // These correspond to the atomicrmw instruction.
619    ATOMIC_SWAP,
620    ATOMIC_LOAD_ADD,
621    ATOMIC_LOAD_SUB,
622    ATOMIC_LOAD_AND,
623    ATOMIC_LOAD_OR,
624    ATOMIC_LOAD_XOR,
625    ATOMIC_LOAD_NAND,
626    ATOMIC_LOAD_MIN,
627    ATOMIC_LOAD_MAX,
628    ATOMIC_LOAD_UMIN,
629    ATOMIC_LOAD_UMAX,
630
631    /// BUILTIN_OP_END - This must be the last enum value in this list.
632    /// The target-specific pre-isel opcode values start here.
633    BUILTIN_OP_END
634  };
635
636  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
637  /// which do not reference a specific memory location should be less than
638  /// this value. Those that do must not be less than this value, and can
639  /// be used with SelectionDAG::getMemIntrinsicNode.
640  static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
641
642  //===--------------------------------------------------------------------===//
643  /// MemIndexedMode enum - This enum defines the load / store indexed
644  /// addressing modes.
645  ///
646  /// UNINDEXED    "Normal" load / store. The effective address is already
647  ///              computed and is available in the base pointer. The offset
648  ///              operand is always undefined. In addition to producing a
649  ///              chain, an unindexed load produces one value (result of the
650  ///              load); an unindexed store does not produce a value.
651  ///
652  /// PRE_INC      Similar to the unindexed mode where the effective address is
653  /// PRE_DEC      the value of the base pointer add / subtract the offset.
654  ///              It considers the computation as being folded into the load /
655  ///              store operation (i.e. the load / store does the address
656  ///              computation as well as performing the memory transaction).
657  ///              The base operand is always undefined. In addition to
658  ///              producing a chain, pre-indexed load produces two values
659  ///              (result of the load and the result of the address
660  ///              computation); a pre-indexed store produces one value (result
661  ///              of the address computation).
662  ///
663  /// POST_INC     The effective address is the value of the base pointer. The
664  /// POST_DEC     value of the offset operand is then added to / subtracted
665  ///              from the base after memory transaction. In addition to
666  ///              producing a chain, post-indexed load produces two values
667  ///              (the result of the load and the result of the base +/- offset
668  ///              computation); a post-indexed store produces one value (the
669  ///              the result of the base +/- offset computation).
670  enum MemIndexedMode {
671    UNINDEXED = 0,
672    PRE_INC,
673    PRE_DEC,
674    POST_INC,
675    POST_DEC,
676    LAST_INDEXED_MODE
677  };
678
679  //===--------------------------------------------------------------------===//
680  /// LoadExtType enum - This enum defines the three variants of LOADEXT
681  /// (load with extension).
682  ///
683  /// SEXTLOAD loads the integer operand and sign extends it to a larger
684  ///          integer result type.
685  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
686  ///          integer result type.
687  /// EXTLOAD  is used for two things: floating point extending loads and
688  ///          integer extending loads [the top bits are undefined].
689  enum LoadExtType {
690    NON_EXTLOAD = 0,
691    EXTLOAD,
692    SEXTLOAD,
693    ZEXTLOAD,
694    LAST_LOADEXT_TYPE
695  };
696
697  //===--------------------------------------------------------------------===//
698  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
699  /// below work out, when considering SETFALSE (something that never exists
700  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
701  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
702  /// to.  If the "N" column is 1, the result of the comparison is undefined if
703  /// the input is a NAN.
704  ///
705  /// All of these (except for the 'always folded ops') should be handled for
706  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
707  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
708  ///
709  /// Note that these are laid out in a specific order to allow bit-twiddling
710  /// to transform conditions.
711  enum CondCode {
712    // Opcode          N U L G E       Intuitive operation
713    SETFALSE,      //    0 0 0 0       Always false (always folded)
714    SETOEQ,        //    0 0 0 1       True if ordered and equal
715    SETOGT,        //    0 0 1 0       True if ordered and greater than
716    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
717    SETOLT,        //    0 1 0 0       True if ordered and less than
718    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
719    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
720    SETO,          //    0 1 1 1       True if ordered (no nans)
721    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
722    SETUEQ,        //    1 0 0 1       True if unordered or equal
723    SETUGT,        //    1 0 1 0       True if unordered or greater than
724    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
725    SETULT,        //    1 1 0 0       True if unordered or less than
726    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
727    SETUNE,        //    1 1 1 0       True if unordered or not equal
728    SETTRUE,       //    1 1 1 1       Always true (always folded)
729    // Don't care operations: undefined if the input is a nan.
730    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
731    SETEQ,         //  1 X 0 0 1       True if equal
732    SETGT,         //  1 X 0 1 0       True if greater than
733    SETGE,         //  1 X 0 1 1       True if greater than or equal
734    SETLT,         //  1 X 1 0 0       True if less than
735    SETLE,         //  1 X 1 0 1       True if less than or equal
736    SETNE,         //  1 X 1 1 0       True if not equal
737    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
738
739    SETCC_INVALID       // Marker value.
740  };
741
742  /// isSignedIntSetCC - Return true if this is a setcc instruction that
743  /// performs a signed comparison when used with integer operands.
744  inline bool isSignedIntSetCC(CondCode Code) {
745    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
746  }
747
748  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
749  /// performs an unsigned comparison when used with integer operands.
750  inline bool isUnsignedIntSetCC(CondCode Code) {
751    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
752  }
753
754  /// isTrueWhenEqual - Return true if the specified condition returns true if
755  /// the two operands to the condition are equal.  Note that if one of the two
756  /// operands is a NaN, this value is meaningless.
757  inline bool isTrueWhenEqual(CondCode Cond) {
758    return ((int)Cond & 1) != 0;
759  }
760
761  /// getUnorderedFlavor - This function returns 0 if the condition is always
762  /// false if an operand is a NaN, 1 if the condition is always true if the
763  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
764  /// NaN.
765  inline unsigned getUnorderedFlavor(CondCode Cond) {
766    return ((int)Cond >> 3) & 3;
767  }
768
769  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
770  /// 'op' is a valid SetCC operation.
771  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
772
773  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
774  /// when given the operation for (X op Y).
775  CondCode getSetCCSwappedOperands(CondCode Operation);
776
777  /// getSetCCOrOperation - Return the result of a logical OR between different
778  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
779  /// function returns SETCC_INVALID if it is not possible to represent the
780  /// resultant comparison.
781  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
782
783  /// getSetCCAndOperation - Return the result of a logical AND between
784  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
785  /// function returns SETCC_INVALID if it is not possible to represent the
786  /// resultant comparison.
787  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
788
789  //===--------------------------------------------------------------------===//
790  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
791  /// supports.
792  enum CvtCode {
793    CVT_FF,     // Float from Float
794    CVT_FS,     // Float from Signed
795    CVT_FU,     // Float from Unsigned
796    CVT_SF,     // Signed from Float
797    CVT_UF,     // Unsigned from Float
798    CVT_SS,     // Signed from Signed
799    CVT_SU,     // Signed from Unsigned
800    CVT_US,     // Unsigned from Signed
801    CVT_UU,     // Unsigned from Unsigned
802    CVT_INVALID // Marker - Invalid opcode
803  };
804
805} // end llvm::ISD namespace
806
807} // end llvm namespace
808
809#endif
810