ValueTracking.h revision 360784
1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Intrinsics.h"
25#include <cassert>
26#include <cstdint>
27
28namespace llvm {
29
30class AddOperator;
31class APInt;
32class AssumptionCache;
33class DominatorTree;
34class GEPOperator;
35class IntrinsicInst;
36class WithOverflowInst;
37struct KnownBits;
38class Loop;
39class LoopInfo;
40class MDNode;
41class OptimizationRemarkEmitter;
42class StringRef;
43class TargetLibraryInfo;
44class Value;
45
46  /// Determine which bits of V are known to be either zero or one and return
47  /// them in the KnownZero/KnownOne bit sets.
48  ///
49  /// This function is defined on values with integer type, values with pointer
50  /// type, and vectors of integers.  In the case
51  /// where V is a vector, the known zero and known one values are the
52  /// same width as the vector element, and the bit is set only if it is true
53  /// for all of the elements in the vector.
54  void computeKnownBits(const Value *V, KnownBits &Known,
55                        const DataLayout &DL, unsigned Depth = 0,
56                        AssumptionCache *AC = nullptr,
57                        const Instruction *CxtI = nullptr,
58                        const DominatorTree *DT = nullptr,
59                        OptimizationRemarkEmitter *ORE = nullptr,
60                        bool UseInstrInfo = true);
61
62  /// Returns the known bits rather than passing by reference.
63  KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
64                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
65                             const Instruction *CxtI = nullptr,
66                             const DominatorTree *DT = nullptr,
67                             OptimizationRemarkEmitter *ORE = nullptr,
68                             bool UseInstrInfo = true);
69
70  /// Compute known bits from the range metadata.
71  /// \p KnownZero the set of bits that are known to be zero
72  /// \p KnownOne the set of bits that are known to be one
73  void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
74                                         KnownBits &Known);
75
76  /// Return true if LHS and RHS have no common bits set.
77  bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
78                           const DataLayout &DL,
79                           AssumptionCache *AC = nullptr,
80                           const Instruction *CxtI = nullptr,
81                           const DominatorTree *DT = nullptr,
82                           bool UseInstrInfo = true);
83
84  /// Return true if the given value is known to have exactly one bit set when
85  /// defined. For vectors return true if every element is known to be a power
86  /// of two when defined. Supports values with integer or pointer type and
87  /// vectors of integers. If 'OrZero' is set, then return true if the given
88  /// value is either a power of two or zero.
89  bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
90                              bool OrZero = false, unsigned Depth = 0,
91                              AssumptionCache *AC = nullptr,
92                              const Instruction *CxtI = nullptr,
93                              const DominatorTree *DT = nullptr,
94                              bool UseInstrInfo = true);
95
96  bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
97
98  /// Return true if the given value is known to be non-zero when defined. For
99  /// vectors, return true if every element is known to be non-zero when
100  /// defined. For pointers, if the context instruction and dominator tree are
101  /// specified, perform context-sensitive analysis and return true if the
102  /// pointer couldn't possibly be null at the specified instruction.
103  /// Supports values with integer or pointer type and vectors of integers.
104  bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
105                      AssumptionCache *AC = nullptr,
106                      const Instruction *CxtI = nullptr,
107                      const DominatorTree *DT = nullptr,
108                      bool UseInstrInfo = true);
109
110  /// Return true if the two given values are negation.
111  /// Currently can recoginze Value pair:
112  /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
113  /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
114  bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
115
116  /// Returns true if the give value is known to be non-negative.
117  bool isKnownNonNegative(const Value *V, const DataLayout &DL,
118                          unsigned Depth = 0,
119                          AssumptionCache *AC = nullptr,
120                          const Instruction *CxtI = nullptr,
121                          const DominatorTree *DT = nullptr,
122                          bool UseInstrInfo = true);
123
124  /// Returns true if the given value is known be positive (i.e. non-negative
125  /// and non-zero).
126  bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
127                       AssumptionCache *AC = nullptr,
128                       const Instruction *CxtI = nullptr,
129                       const DominatorTree *DT = nullptr,
130                       bool UseInstrInfo = true);
131
132  /// Returns true if the given value is known be negative (i.e. non-positive
133  /// and non-zero).
134  bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
135                       AssumptionCache *AC = nullptr,
136                       const Instruction *CxtI = nullptr,
137                       const DominatorTree *DT = nullptr,
138                       bool UseInstrInfo = true);
139
140  /// Return true if the given values are known to be non-equal when defined.
141  /// Supports scalar integer types only.
142  bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
143                       AssumptionCache *AC = nullptr,
144                       const Instruction *CxtI = nullptr,
145                       const DominatorTree *DT = nullptr,
146                       bool UseInstrInfo = true);
147
148  /// Return true if 'V & Mask' is known to be zero. We use this predicate to
149  /// simplify operations downstream. Mask is known to be zero for bits that V
150  /// cannot have.
151  ///
152  /// This function is defined on values with integer type, values with pointer
153  /// type, and vectors of integers.  In the case
154  /// where V is a vector, the mask, known zero, and known one values are the
155  /// same width as the vector element, and the bit is set only if it is true
156  /// for all of the elements in the vector.
157  bool MaskedValueIsZero(const Value *V, const APInt &Mask,
158                         const DataLayout &DL,
159                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
160                         const Instruction *CxtI = nullptr,
161                         const DominatorTree *DT = nullptr,
162                         bool UseInstrInfo = true);
163
164  /// Return the number of times the sign bit of the register is replicated into
165  /// the other bits. We know that at least 1 bit is always equal to the sign
166  /// bit (itself), but other cases can give us information. For example,
167  /// immediately after an "ashr X, 2", we know that the top 3 bits are all
168  /// equal to each other, so we return 3. For vectors, return the number of
169  /// sign bits for the vector element with the mininum number of known sign
170  /// bits.
171  unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
172                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
173                              const Instruction *CxtI = nullptr,
174                              const DominatorTree *DT = nullptr,
175                              bool UseInstrInfo = true);
176
177  /// This function computes the integer multiple of Base that equals V. If
178  /// successful, it returns true and returns the multiple in Multiple. If
179  /// unsuccessful, it returns false. Also, if V can be simplified to an
180  /// integer, then the simplified V is returned in Val. Look through sext only
181  /// if LookThroughSExt=true.
182  bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
183                       bool LookThroughSExt = false,
184                       unsigned Depth = 0);
185
186  /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
187  /// intrinsics are treated as-if they were intrinsics.
188  Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
189                                        const TargetLibraryInfo *TLI);
190
191  /// Return true if we can prove that the specified FP value is never equal to
192  /// -0.0.
193  bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
194                            unsigned Depth = 0);
195
196  /// Return true if we can prove that the specified FP value is either NaN or
197  /// never less than -0.0.
198  ///
199  ///      NaN --> true
200  ///       +0 --> true
201  ///       -0 --> true
202  ///   x > +0 --> true
203  ///   x < -0 --> false
204  bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
205
206  /// Return true if the floating-point scalar value is not an infinity or if
207  /// the floating-point vector value has no infinities. Return false if a value
208  /// could ever be infinity.
209  bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
210                            unsigned Depth = 0);
211
212  /// Return true if the floating-point scalar value is not a NaN or if the
213  /// floating-point vector value has no NaN elements. Return false if a value
214  /// could ever be NaN.
215  bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
216                       unsigned Depth = 0);
217
218  /// Return true if we can prove that the specified FP value's sign bit is 0.
219  ///
220  ///      NaN --> true/false (depending on the NaN's sign bit)
221  ///       +0 --> true
222  ///       -0 --> false
223  ///   x > +0 --> true
224  ///   x < -0 --> false
225  bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
226
227  /// If the specified value can be set by repeating the same byte in memory,
228  /// return the i8 value that it is represented with. This is true for all i8
229  /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
230  /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
231  /// i16 0x1234), return null. If the value is entirely undef and padding,
232  /// return undef.
233  Value *isBytewiseValue(Value *V, const DataLayout &DL);
234
235  /// Given an aggregate and an sequence of indices, see if the scalar value
236  /// indexed is already around as a register, for example if it were inserted
237  /// directly into the aggregate.
238  ///
239  /// If InsertBefore is not null, this function will duplicate (modified)
240  /// insertvalues when a part of a nested struct is extracted.
241  Value *FindInsertedValue(Value *V,
242                           ArrayRef<unsigned> idx_range,
243                           Instruction *InsertBefore = nullptr);
244
245  /// Analyze the specified pointer to see if it can be expressed as a base
246  /// pointer plus a constant offset. Return the base and offset to the caller.
247  ///
248  /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
249  /// creates and later unpacks the required APInt.
250  inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
251                                                 const DataLayout &DL,
252                                                 bool AllowNonInbounds = true) {
253    APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
254    Value *Base =
255        Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
256
257    Offset = OffsetAPInt.getSExtValue();
258    return Base;
259  }
260  inline const Value *
261  GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
262                                   const DataLayout &DL,
263                                   bool AllowNonInbounds = true) {
264    return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
265                                            AllowNonInbounds);
266  }
267
268  /// Returns true if the GEP is based on a pointer to a string (array of
269  // \p CharSize integers) and is indexing into this string.
270  bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
271                                   unsigned CharSize = 8);
272
273  /// Represents offset+length into a ConstantDataArray.
274  struct ConstantDataArraySlice {
275    /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
276    /// initializer, it just doesn't fit the ConstantDataArray interface).
277    const ConstantDataArray *Array;
278
279    /// Slice starts at this Offset.
280    uint64_t Offset;
281
282    /// Length of the slice.
283    uint64_t Length;
284
285    /// Moves the Offset and adjusts Length accordingly.
286    void move(uint64_t Delta) {
287      assert(Delta < Length);
288      Offset += Delta;
289      Length -= Delta;
290    }
291
292    /// Convenience accessor for elements in the slice.
293    uint64_t operator[](unsigned I) const {
294      return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
295    }
296  };
297
298  /// Returns true if the value \p V is a pointer into a ConstantDataArray.
299  /// If successful \p Slice will point to a ConstantDataArray info object
300  /// with an appropriate offset.
301  bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
302                                unsigned ElementSize, uint64_t Offset = 0);
303
304  /// This function computes the length of a null-terminated C string pointed to
305  /// by V. If successful, it returns true and returns the string in Str. If
306  /// unsuccessful, it returns false. This does not include the trailing null
307  /// character by default. If TrimAtNul is set to false, then this returns any
308  /// trailing null characters as well as any other characters that come after
309  /// it.
310  bool getConstantStringInfo(const Value *V, StringRef &Str,
311                             uint64_t Offset = 0, bool TrimAtNul = true);
312
313  /// If we can compute the length of the string pointed to by the specified
314  /// pointer, return 'len+1'.  If we can't, return 0.
315  uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
316
317  /// This function returns call pointer argument that is considered the same by
318  /// aliasing rules. You CAN'T use it to replace one value with another. If
319  /// \p MustPreserveNullness is true, the call must preserve the nullness of
320  /// the pointer.
321  const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
322                                                    bool MustPreserveNullness);
323  inline Value *
324  getArgumentAliasingToReturnedPointer(CallBase *Call,
325                                       bool MustPreserveNullness) {
326    return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
327        const_cast<const CallBase *>(Call), MustPreserveNullness));
328  }
329
330  /// {launder,strip}.invariant.group returns pointer that aliases its argument,
331  /// and it only captures pointer by returning it.
332  /// These intrinsics are not marked as nocapture, because returning is
333  /// considered as capture. The arguments are not marked as returned neither,
334  /// because it would make it useless. If \p MustPreserveNullness is true,
335  /// the intrinsic must preserve the nullness of the pointer.
336  bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
337      const CallBase *Call, bool MustPreserveNullness);
338
339  /// This method strips off any GEP address adjustments and pointer casts from
340  /// the specified value, returning the original object being addressed. Note
341  /// that the returned value has pointer type if the specified value does. If
342  /// the MaxLookup value is non-zero, it limits the number of instructions to
343  /// be stripped off.
344  Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
345                             unsigned MaxLookup = 6);
346  inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
347                                          unsigned MaxLookup = 6) {
348    return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
349  }
350
351  /// This method is similar to GetUnderlyingObject except that it can
352  /// look through phi and select instructions and return multiple objects.
353  ///
354  /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
355  /// accesses different objects in each iteration, we don't look through the
356  /// phi node. E.g. consider this loop nest:
357  ///
358  ///   int **A;
359  ///   for (i)
360  ///     for (j) {
361  ///        A[i][j] = A[i-1][j] * B[j]
362  ///     }
363  ///
364  /// This is transformed by Load-PRE to stash away A[i] for the next iteration
365  /// of the outer loop:
366  ///
367  ///   Curr = A[0];          // Prev_0
368  ///   for (i: 1..N) {
369  ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
370  ///     Curr = A[i];
371  ///     for (j: 0..N) {
372  ///        Curr[j] = Prev[j] * B[j]
373  ///     }
374  ///   }
375  ///
376  /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
377  /// should not assume that Curr and Prev share the same underlying object thus
378  /// it shouldn't look through the phi above.
379  void GetUnderlyingObjects(const Value *V,
380                            SmallVectorImpl<const Value *> &Objects,
381                            const DataLayout &DL, LoopInfo *LI = nullptr,
382                            unsigned MaxLookup = 6);
383
384  /// This is a wrapper around GetUnderlyingObjects and adds support for basic
385  /// ptrtoint+arithmetic+inttoptr sequences.
386  bool getUnderlyingObjectsForCodeGen(const Value *V,
387                            SmallVectorImpl<Value *> &Objects,
388                            const DataLayout &DL);
389
390  /// Return true if the only users of this pointer are lifetime markers.
391  bool onlyUsedByLifetimeMarkers(const Value *V);
392
393  /// Return true if speculation of the given load must be suppressed to avoid
394  /// ordering or interfering with an active sanitizer.  If not suppressed,
395  /// dereferenceability and alignment must be proven separately.  Note: This
396  /// is only needed for raw reasoning; if you use the interface below
397  /// (isSafeToSpeculativelyExecute), this is handled internally.
398  bool mustSuppressSpeculation(const LoadInst &LI);
399
400  /// Return true if the instruction does not have any effects besides
401  /// calculating the result and does not have undefined behavior.
402  ///
403  /// This method never returns true for an instruction that returns true for
404  /// mayHaveSideEffects; however, this method also does some other checks in
405  /// addition. It checks for undefined behavior, like dividing by zero or
406  /// loading from an invalid pointer (but not for undefined results, like a
407  /// shift with a shift amount larger than the width of the result). It checks
408  /// for malloc and alloca because speculatively executing them might cause a
409  /// memory leak. It also returns false for instructions related to control
410  /// flow, specifically terminators and PHI nodes.
411  ///
412  /// If the CtxI is specified this method performs context-sensitive analysis
413  /// and returns true if it is safe to execute the instruction immediately
414  /// before the CtxI.
415  ///
416  /// If the CtxI is NOT specified this method only looks at the instruction
417  /// itself and its operands, so if this method returns true, it is safe to
418  /// move the instruction as long as the correct dominance relationships for
419  /// the operands and users hold.
420  ///
421  /// This method can return true for instructions that read memory;
422  /// for such instructions, moving them may change the resulting value.
423  bool isSafeToSpeculativelyExecute(const Value *V,
424                                    const Instruction *CtxI = nullptr,
425                                    const DominatorTree *DT = nullptr);
426
427  /// Returns true if the result or effects of the given instructions \p I
428  /// depend on or influence global memory.
429  /// Memory dependence arises for example if the instruction reads from
430  /// memory or may produce effects or undefined behaviour. Memory dependent
431  /// instructions generally cannot be reorderd with respect to other memory
432  /// dependent instructions or moved into non-dominated basic blocks.
433  /// Instructions which just compute a value based on the values of their
434  /// operands are not memory dependent.
435  bool mayBeMemoryDependent(const Instruction &I);
436
437  /// Return true if it is an intrinsic that cannot be speculated but also
438  /// cannot trap.
439  bool isAssumeLikeIntrinsic(const Instruction *I);
440
441  /// Return true if it is valid to use the assumptions provided by an
442  /// assume intrinsic, I, at the point in the control-flow identified by the
443  /// context instruction, CxtI.
444  bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
445                               const DominatorTree *DT = nullptr);
446
447  enum class OverflowResult {
448    /// Always overflows in the direction of signed/unsigned min value.
449    AlwaysOverflowsLow,
450    /// Always overflows in the direction of signed/unsigned max value.
451    AlwaysOverflowsHigh,
452    /// May or may not overflow.
453    MayOverflow,
454    /// Never overflows.
455    NeverOverflows,
456  };
457
458  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
459                                               const Value *RHS,
460                                               const DataLayout &DL,
461                                               AssumptionCache *AC,
462                                               const Instruction *CxtI,
463                                               const DominatorTree *DT,
464                                               bool UseInstrInfo = true);
465  OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
466                                             const DataLayout &DL,
467                                             AssumptionCache *AC,
468                                             const Instruction *CxtI,
469                                             const DominatorTree *DT,
470                                             bool UseInstrInfo = true);
471  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
472                                               const Value *RHS,
473                                               const DataLayout &DL,
474                                               AssumptionCache *AC,
475                                               const Instruction *CxtI,
476                                               const DominatorTree *DT,
477                                               bool UseInstrInfo = true);
478  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
479                                             const DataLayout &DL,
480                                             AssumptionCache *AC = nullptr,
481                                             const Instruction *CxtI = nullptr,
482                                             const DominatorTree *DT = nullptr);
483  /// This version also leverages the sign bit of Add if known.
484  OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
485                                             const DataLayout &DL,
486                                             AssumptionCache *AC = nullptr,
487                                             const Instruction *CxtI = nullptr,
488                                             const DominatorTree *DT = nullptr);
489  OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
490                                               const DataLayout &DL,
491                                               AssumptionCache *AC,
492                                               const Instruction *CxtI,
493                                               const DominatorTree *DT);
494  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
495                                             const DataLayout &DL,
496                                             AssumptionCache *AC,
497                                             const Instruction *CxtI,
498                                             const DominatorTree *DT);
499
500  /// Returns true if the arithmetic part of the \p WO 's result is
501  /// used only along the paths control dependent on the computation
502  /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
503  bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
504                                 const DominatorTree &DT);
505
506
507  /// Determine the possible constant range of an integer or vector of integer
508  /// value. This is intended as a cheap, non-recursive check.
509  ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true);
510
511  /// Return true if this function can prove that the instruction I will
512  /// always transfer execution to one of its successors (including the next
513  /// instruction that follows within a basic block). E.g. this is not
514  /// guaranteed for function calls that could loop infinitely.
515  ///
516  /// In other words, this function returns false for instructions that may
517  /// transfer execution or fail to transfer execution in a way that is not
518  /// captured in the CFG nor in the sequence of instructions within a basic
519  /// block.
520  ///
521  /// Undefined behavior is assumed not to happen, so e.g. division is
522  /// guaranteed to transfer execution to the following instruction even
523  /// though division by zero might cause undefined behavior.
524  bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
525
526  /// Returns true if this block does not contain a potential implicit exit.
527  /// This is equivelent to saying that all instructions within the basic block
528  /// are guaranteed to transfer execution to their successor within the basic
529  /// block. This has the same assumptions w.r.t. undefined behavior as the
530  /// instruction variant of this function.
531  bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
532
533  /// Return true if this function can prove that the instruction I
534  /// is executed for every iteration of the loop L.
535  ///
536  /// Note that this currently only considers the loop header.
537  bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
538                                              const Loop *L);
539
540  /// Return true if this function can prove that I is guaranteed to yield
541  /// full-poison (all bits poison) if at least one of its operands are
542  /// full-poison (all bits poison).
543  ///
544  /// The exact rules for how poison propagates through instructions have
545  /// not been settled as of 2015-07-10, so this function is conservative
546  /// and only considers poison to be propagated in uncontroversial
547  /// cases. There is no attempt to track values that may be only partially
548  /// poison.
549  bool propagatesFullPoison(const Instruction *I);
550
551  /// Return either nullptr or an operand of I such that I will trigger
552  /// undefined behavior if I is executed and that operand has a full-poison
553  /// value (all bits poison).
554  const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
555
556  /// Return true if the given instruction must trigger undefined behavior.
557  /// when I is executed with any operands which appear in KnownPoison holding
558  /// a full-poison value at the point of execution.
559  bool mustTriggerUB(const Instruction *I,
560                     const SmallSet<const Value *, 16>& KnownPoison);
561
562  /// Return true if this function can prove that if PoisonI is executed
563  /// and yields a full-poison value (all bits poison), then that will
564  /// trigger undefined behavior.
565  ///
566  /// Note that this currently only considers the basic block that is
567  /// the parent of I.
568  bool programUndefinedIfFullPoison(const Instruction *PoisonI);
569
570  /// Return true if this function can prove that V is never undef value
571  /// or poison value.
572  bool isGuaranteedNotToBeUndefOrPoison(const Value *V);
573
574  /// Specific patterns of select instructions we can match.
575  enum SelectPatternFlavor {
576    SPF_UNKNOWN = 0,
577    SPF_SMIN,                   /// Signed minimum
578    SPF_UMIN,                   /// Unsigned minimum
579    SPF_SMAX,                   /// Signed maximum
580    SPF_UMAX,                   /// Unsigned maximum
581    SPF_FMINNUM,                /// Floating point minnum
582    SPF_FMAXNUM,                /// Floating point maxnum
583    SPF_ABS,                    /// Absolute value
584    SPF_NABS                    /// Negated absolute value
585  };
586
587  /// Behavior when a floating point min/max is given one NaN and one
588  /// non-NaN as input.
589  enum SelectPatternNaNBehavior {
590    SPNB_NA = 0,                /// NaN behavior not applicable.
591    SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
592    SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
593    SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
594                                /// it has been determined that no operands can
595                                /// be NaN).
596  };
597
598  struct SelectPatternResult {
599    SelectPatternFlavor Flavor;
600    SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
601                                          /// SPF_FMINNUM or SPF_FMAXNUM.
602    bool Ordered;               /// When implementing this min/max pattern as
603                                /// fcmp; select, does the fcmp have to be
604                                /// ordered?
605
606    /// Return true if \p SPF is a min or a max pattern.
607    static bool isMinOrMax(SelectPatternFlavor SPF) {
608      return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
609    }
610  };
611
612  /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
613  /// and providing the out parameter results if we successfully match.
614  ///
615  /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
616  /// the negation instruction from the idiom.
617  ///
618  /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
619  /// not match that of the original select. If this is the case, the cast
620  /// operation (one of Trunc,SExt,Zext) that must be done to transform the
621  /// type of LHS and RHS into the type of V is returned in CastOp.
622  ///
623  /// For example:
624  ///   %1 = icmp slt i32 %a, i32 4
625  ///   %2 = sext i32 %a to i64
626  ///   %3 = select i1 %1, i64 %2, i64 4
627  ///
628  /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
629  ///
630  SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
631                                         Instruction::CastOps *CastOp = nullptr,
632                                         unsigned Depth = 0);
633
634  inline SelectPatternResult
635  matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
636    Value *L = const_cast<Value *>(LHS);
637    Value *R = const_cast<Value *>(RHS);
638    auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
639    LHS = L;
640    RHS = R;
641    return Result;
642  }
643
644  /// Determine the pattern that a select with the given compare as its
645  /// predicate and given values as its true/false operands would match.
646  SelectPatternResult matchDecomposedSelectPattern(
647      CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
648      Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
649
650  /// Return the canonical comparison predicate for the specified
651  /// minimum/maximum flavor.
652  CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
653                                   bool Ordered = false);
654
655  /// Return the inverse minimum/maximum flavor of the specified flavor.
656  /// For example, signed minimum is the inverse of signed maximum.
657  SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
658
659  /// Return the canonical inverse comparison predicate for the specified
660  /// minimum/maximum flavor.
661  CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
662
663  /// Return true if RHS is known to be implied true by LHS.  Return false if
664  /// RHS is known to be implied false by LHS.  Otherwise, return None if no
665  /// implication can be made.
666  /// A & B must be i1 (boolean) values or a vector of such values. Note that
667  /// the truth table for implication is the same as <=u on i1 values (but not
668  /// <=s!).  The truth table for both is:
669  ///    | T | F (B)
670  ///  T | T | F
671  ///  F | T | T
672  /// (A)
673  Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
674                                    const DataLayout &DL, bool LHSIsTrue = true,
675                                    unsigned Depth = 0);
676
677  /// Return the boolean condition value in the context of the given instruction
678  /// if it is known based on dominating conditions.
679  Optional<bool> isImpliedByDomCondition(const Value *Cond,
680                                         const Instruction *ContextI,
681                                         const DataLayout &DL);
682
683  /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
684  /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
685  /// this case offset would be -8.
686  Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
687                                    const DataLayout &DL);
688} // end namespace llvm
689
690#endif // LLVM_ANALYSIS_VALUETRACKING_H
691