MapVector.h revision 321369
1//===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a map that provides insertion order iteration. The
11// interface is purposefully minimal. The key is assumed to be cheap to copy
12// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
13// a std::vector.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_MAPVECTOR_H
18#define LLVM_ADT_MAPVECTOR_H
19
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/SmallVector.h"
22#include <algorithm>
23#include <cassert>
24#include <cstddef>
25#include <iterator>
26#include <type_traits>
27#include <utility>
28#include <vector>
29
30namespace llvm {
31
32/// This class implements a map that also provides access to all stored values
33/// in a deterministic order. The values are kept in a std::vector and the
34/// mapping is done with DenseMap from Keys to indexes in that vector.
35template<typename KeyT, typename ValueT,
36         typename MapType = DenseMap<KeyT, unsigned>,
37         typename VectorType = std::vector<std::pair<KeyT, ValueT>>>
38class MapVector {
39  using value_type = typename VectorType::value_type;
40  using size_type = typename VectorType::size_type;
41
42  MapType Map;
43  VectorType Vector;
44
45public:
46  using iterator = typename VectorType::iterator;
47  using const_iterator = typename VectorType::const_iterator;
48  using reverse_iterator = typename VectorType::reverse_iterator;
49  using const_reverse_iterator = typename VectorType::const_reverse_iterator;
50
51  /// Clear the MapVector and return the underlying vector.
52  VectorType takeVector() {
53    Map.clear();
54    return std::move(Vector);
55  }
56
57  size_type size() const { return Vector.size(); }
58
59  iterator begin() { return Vector.begin(); }
60  const_iterator begin() const { return Vector.begin(); }
61  iterator end() { return Vector.end(); }
62  const_iterator end() const { return Vector.end(); }
63
64  reverse_iterator rbegin() { return Vector.rbegin(); }
65  const_reverse_iterator rbegin() const { return Vector.rbegin(); }
66  reverse_iterator rend() { return Vector.rend(); }
67  const_reverse_iterator rend() const { return Vector.rend(); }
68
69  bool empty() const {
70    return Vector.empty();
71  }
72
73  std::pair<KeyT, ValueT>       &front()       { return Vector.front(); }
74  const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
75  std::pair<KeyT, ValueT>       &back()        { return Vector.back(); }
76  const std::pair<KeyT, ValueT> &back()  const { return Vector.back(); }
77
78  void clear() {
79    Map.clear();
80    Vector.clear();
81  }
82
83  void swap(MapVector &RHS) {
84    std::swap(Map, RHS.Map);
85    std::swap(Vector, RHS.Vector);
86  }
87
88  ValueT &operator[](const KeyT &Key) {
89    std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
90    std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
91    unsigned &I = Result.first->second;
92    if (Result.second) {
93      Vector.push_back(std::make_pair(Key, ValueT()));
94      I = Vector.size() - 1;
95    }
96    return Vector[I].second;
97  }
98
99  // Returns a copy of the value.  Only allowed if ValueT is copyable.
100  ValueT lookup(const KeyT &Key) const {
101    static_assert(std::is_copy_constructible<ValueT>::value,
102                  "Cannot call lookup() if ValueT is not copyable.");
103    typename MapType::const_iterator Pos = Map.find(Key);
104    return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
105  }
106
107  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
108    std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
109    std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
110    unsigned &I = Result.first->second;
111    if (Result.second) {
112      Vector.push_back(std::make_pair(KV.first, KV.second));
113      I = Vector.size() - 1;
114      return std::make_pair(std::prev(end()), true);
115    }
116    return std::make_pair(begin() + I, false);
117  }
118
119  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
120    // Copy KV.first into the map, then move it into the vector.
121    std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
122    std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
123    unsigned &I = Result.first->second;
124    if (Result.second) {
125      Vector.push_back(std::move(KV));
126      I = Vector.size() - 1;
127      return std::make_pair(std::prev(end()), true);
128    }
129    return std::make_pair(begin() + I, false);
130  }
131
132  size_type count(const KeyT &Key) const {
133    typename MapType::const_iterator Pos = Map.find(Key);
134    return Pos == Map.end()? 0 : 1;
135  }
136
137  iterator find(const KeyT &Key) {
138    typename MapType::const_iterator Pos = Map.find(Key);
139    return Pos == Map.end()? Vector.end() :
140                            (Vector.begin() + Pos->second);
141  }
142
143  const_iterator find(const KeyT &Key) const {
144    typename MapType::const_iterator Pos = Map.find(Key);
145    return Pos == Map.end()? Vector.end() :
146                            (Vector.begin() + Pos->second);
147  }
148
149  /// \brief Remove the last element from the vector.
150  void pop_back() {
151    typename MapType::iterator Pos = Map.find(Vector.back().first);
152    Map.erase(Pos);
153    Vector.pop_back();
154  }
155
156  /// \brief Remove the element given by Iterator.
157  ///
158  /// Returns an iterator to the element following the one which was removed,
159  /// which may be end().
160  ///
161  /// \note This is a deceivingly expensive operation (linear time).  It's
162  /// usually better to use \a remove_if() if possible.
163  typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
164    Map.erase(Iterator->first);
165    auto Next = Vector.erase(Iterator);
166    if (Next == Vector.end())
167      return Next;
168
169    // Update indices in the map.
170    size_t Index = Next - Vector.begin();
171    for (auto &I : Map) {
172      assert(I.second != Index && "Index was already erased!");
173      if (I.second > Index)
174        --I.second;
175    }
176    return Next;
177  }
178
179  /// \brief Remove all elements with the key value Key.
180  ///
181  /// Returns the number of elements removed.
182  size_type erase(const KeyT &Key) {
183    auto Iterator = find(Key);
184    if (Iterator == end())
185      return 0;
186    erase(Iterator);
187    return 1;
188  }
189
190  /// \brief Remove the elements that match the predicate.
191  ///
192  /// Erase all elements that match \c Pred in a single pass.  Takes linear
193  /// time.
194  template <class Predicate> void remove_if(Predicate Pred);
195};
196
197template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
198template <class Function>
199void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
200  auto O = Vector.begin();
201  for (auto I = O, E = Vector.end(); I != E; ++I) {
202    if (Pred(*I)) {
203      // Erase from the map.
204      Map.erase(I->first);
205      continue;
206    }
207
208    if (I != O) {
209      // Move the value and update the index in the map.
210      *O = std::move(*I);
211      Map[O->first] = O - Vector.begin();
212    }
213    ++O;
214  }
215  // Erase trailing entries in the vector.
216  Vector.erase(O, Vector.end());
217}
218
219/// \brief A MapVector that performs no allocations if smaller than a certain
220/// size.
221template <typename KeyT, typename ValueT, unsigned N>
222struct SmallMapVector
223    : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
224                SmallVector<std::pair<KeyT, ValueT>, N>> {
225};
226
227} // end namespace llvm
228
229#endif // LLVM_ADT_MAPVECTOR_H
230