APInt.h revision 321369
1275970Scy//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2275970Scy//
3275970Scy//                     The LLVM Compiler Infrastructure
4275970Scy//
5275970Scy// This file is distributed under the University of Illinois Open Source
6275970Scy// License. See LICENSE.TXT for details.
7275970Scy//
8275970Scy//===----------------------------------------------------------------------===//
9275970Scy///
10275970Scy/// \file
11275970Scy/// \brief This file implements a class to represent arbitrary precision
12275970Scy/// integral constant values and operations on them.
13275970Scy///
14275970Scy//===----------------------------------------------------------------------===//
15275970Scy
16275970Scy#ifndef LLVM_ADT_APINT_H
17275970Scy#define LLVM_ADT_APINT_H
18275970Scy
19275970Scy#include "llvm/Support/Compiler.h"
20275970Scy#include "llvm/Support/MathExtras.h"
21275970Scy#include <cassert>
22275970Scy#include <climits>
23275970Scy#include <cstring>
24275970Scy#include <string>
25275970Scy
26275970Scynamespace llvm {
27275970Scyclass FoldingSetNodeID;
28275970Scyclass StringRef;
29275970Scyclass hash_code;
30275970Scyclass raw_ostream;
31275970Scy
32275970Scytemplate <typename T> class SmallVectorImpl;
33275970Scytemplate <typename T> class ArrayRef;
34275970Scy
35275970Scyclass APInt;
36275970Scy
37275970Scyinline APInt operator-(APInt);
38275970Scy
39275970Scy//===----------------------------------------------------------------------===//
40275970Scy//                              APInt Class
41275970Scy//===----------------------------------------------------------------------===//
42275970Scy
43275970Scy/// \brief Class for arbitrary precision integers.
44275970Scy///
45275970Scy/// APInt is a functional replacement for common case unsigned integer type like
46275970Scy/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54///   * All bit, byte, and word positions are zero-based.
55///   * Once the bit width is set, it doesn't change except by the Truncate,
56///     SignExtend, or ZeroExtend operations.
57///   * All binary operators must be on APInt instances of the same bit width.
58///     Attempting to use these operators on instances with different bit
59///     widths will yield an assertion.
60///   * The value is stored canonically as an unsigned value. For operations
61///     where it makes a difference, there are both signed and unsigned variants
62///     of the operation. For example, sdiv and udiv. However, because the bit
63///     widths must be the same, operations such as Mul and Add produce the same
64///     results regardless of whether the values are interpreted as signed or
65///     not.
66///   * In general, the class tries to follow the style of computation that LLVM
67///     uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD APInt {
70public:
71  typedef uint64_t WordType;
72
73  /// This enum is used to hold the constants we needed for APInt.
74  enum : unsigned {
75    /// Byte size of a word.
76    APINT_WORD_SIZE = sizeof(WordType),
77    /// Bits in a word.
78    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79  };
80
81  static const WordType WORD_MAX = ~WordType(0);
82
83private:
84  /// This union is used to store the integer value. When the
85  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86  union {
87    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
88    uint64_t *pVal; ///< Used to store the >64 bits integer value.
89  } U;
90
91  unsigned BitWidth; ///< The number of bits in this APInt.
92
93  friend struct DenseMapAPIntKeyInfo;
94
95  friend class APSInt;
96
97  /// \brief Fast internal constructor
98  ///
99  /// This constructor is used only internally for speed of construction of
100  /// temporaries. It is unsafe for general use so it is not public.
101  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102    U.pVal = val;
103  }
104
105  /// \brief Determine if this APInt just has one word to store value.
106  ///
107  /// \returns true if the number of bits <= 64, false otherwise.
108  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110  /// \brief Determine which word a bit is in.
111  ///
112  /// \returns the word position for the specified bit position.
113  static unsigned whichWord(unsigned bitPosition) {
114    return bitPosition / APINT_BITS_PER_WORD;
115  }
116
117  /// \brief Determine which bit in a word a bit is in.
118  ///
119  /// \returns the bit position in a word for the specified bit position
120  /// in the APInt.
121  static unsigned whichBit(unsigned bitPosition) {
122    return bitPosition % APINT_BITS_PER_WORD;
123  }
124
125  /// \brief Get a single bit mask.
126  ///
127  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128  /// This method generates and returns a uint64_t (word) mask for a single
129  /// bit at a specific bit position. This is used to mask the bit in the
130  /// corresponding word.
131  static uint64_t maskBit(unsigned bitPosition) {
132    return 1ULL << whichBit(bitPosition);
133  }
134
135  /// \brief Clear unused high order bits
136  ///
137  /// This method is used internally to clear the top "N" bits in the high order
138  /// word that are not used by the APInt. This is needed after the most
139  /// significant word is assigned a value to ensure that those bits are
140  /// zero'd out.
141  APInt &clearUnusedBits() {
142    // Compute how many bits are used in the final word
143    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145    // Mask out the high bits.
146    uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147    if (isSingleWord())
148      U.VAL &= mask;
149    else
150      U.pVal[getNumWords() - 1] &= mask;
151    return *this;
152  }
153
154  /// \brief Get the word corresponding to a bit position
155  /// \returns the corresponding word for the specified bit position.
156  uint64_t getWord(unsigned bitPosition) const {
157    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158  }
159
160  /// Utility method to change the bit width of this APInt to new bit width,
161  /// allocating and/or deallocating as necessary. There is no guarantee on the
162  /// value of any bits upon return. Caller should populate the bits after.
163  void reallocate(unsigned NewBitWidth);
164
165  /// \brief Convert a char array into an APInt
166  ///
167  /// \param radix 2, 8, 10, 16, or 36
168  /// Converts a string into a number.  The string must be non-empty
169  /// and well-formed as a number of the given base. The bit-width
170  /// must be sufficient to hold the result.
171  ///
172  /// This is used by the constructors that take string arguments.
173  ///
174  /// StringRef::getAsInteger is superficially similar but (1) does
175  /// not assume that the string is well-formed and (2) grows the
176  /// result to hold the input.
177  void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179  /// \brief An internal division function for dividing APInts.
180  ///
181  /// This is used by the toString method to divide by the radix. It simply
182  /// provides a more convenient form of divide for internal use since KnuthDiv
183  /// has specific constraints on its inputs. If those constraints are not met
184  /// then it provides a simpler form of divide.
185  static void divide(const WordType *LHS, unsigned lhsWords,
186                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187                     WordType *Remainder);
188
189  /// out-of-line slow case for inline constructor
190  void initSlowCase(uint64_t val, bool isSigned);
191
192  /// shared code between two array constructors
193  void initFromArray(ArrayRef<uint64_t> array);
194
195  /// out-of-line slow case for inline copy constructor
196  void initSlowCase(const APInt &that);
197
198  /// out-of-line slow case for shl
199  void shlSlowCase(unsigned ShiftAmt);
200
201  /// out-of-line slow case for lshr.
202  void lshrSlowCase(unsigned ShiftAmt);
203
204  /// out-of-line slow case for ashr.
205  void ashrSlowCase(unsigned ShiftAmt);
206
207  /// out-of-line slow case for operator=
208  void AssignSlowCase(const APInt &RHS);
209
210  /// out-of-line slow case for operator==
211  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
212
213  /// out-of-line slow case for countLeadingZeros
214  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
215
216  /// out-of-line slow case for countLeadingOnes.
217  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
218
219  /// out-of-line slow case for countTrailingZeros.
220  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
221
222  /// out-of-line slow case for countTrailingOnes
223  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
224
225  /// out-of-line slow case for countPopulation
226  unsigned countPopulationSlowCase() const LLVM_READONLY;
227
228  /// out-of-line slow case for intersects.
229  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
230
231  /// out-of-line slow case for isSubsetOf.
232  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
233
234  /// out-of-line slow case for setBits.
235  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237  /// out-of-line slow case for flipAllBits.
238  void flipAllBitsSlowCase();
239
240  /// out-of-line slow case for operator&=.
241  void AndAssignSlowCase(const APInt& RHS);
242
243  /// out-of-line slow case for operator|=.
244  void OrAssignSlowCase(const APInt& RHS);
245
246  /// out-of-line slow case for operator^=.
247  void XorAssignSlowCase(const APInt& RHS);
248
249  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250  /// to, or greater than RHS.
251  int compare(const APInt &RHS) const LLVM_READONLY;
252
253  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254  /// to, or greater than RHS.
255  int compareSigned(const APInt &RHS) const LLVM_READONLY;
256
257public:
258  /// \name Constructors
259  /// @{
260
261  /// \brief Create a new APInt of numBits width, initialized as val.
262  ///
263  /// If isSigned is true then val is treated as if it were a signed value
264  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266  /// the range of val are zero filled).
267  ///
268  /// \param numBits the bit width of the constructed APInt
269  /// \param val the initial value of the APInt
270  /// \param isSigned how to treat signedness of val
271  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272      : BitWidth(numBits) {
273    assert(BitWidth && "bitwidth too small");
274    if (isSingleWord()) {
275      U.VAL = val;
276      clearUnusedBits();
277    } else {
278      initSlowCase(val, isSigned);
279    }
280  }
281
282  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283  ///
284  /// Note that bigVal.size() can be smaller or larger than the corresponding
285  /// bit width but any extraneous bits will be dropped.
286  ///
287  /// \param numBits the bit width of the constructed APInt
288  /// \param bigVal a sequence of words to form the initial value of the APInt
289  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292  /// deprecated because this constructor is prone to ambiguity with the
293  /// APInt(unsigned, uint64_t, bool) constructor.
294  ///
295  /// If this overload is ever deleted, care should be taken to prevent calls
296  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297  /// constructor.
298  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300  /// \brief Construct an APInt from a string representation.
301  ///
302  /// This constructor interprets the string \p str in the given radix. The
303  /// interpretation stops when the first character that is not suitable for the
304  /// radix is encountered, or the end of the string. Acceptable radix values
305  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306  /// string to require more bits than numBits.
307  ///
308  /// \param numBits the bit width of the constructed APInt
309  /// \param str the string to be interpreted
310  /// \param radix the radix to use for the conversion
311  APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313  /// Simply makes *this a copy of that.
314  /// @brief Copy Constructor.
315  APInt(const APInt &that) : BitWidth(that.BitWidth) {
316    if (isSingleWord())
317      U.VAL = that.U.VAL;
318    else
319      initSlowCase(that);
320  }
321
322  /// \brief Move Constructor.
323  APInt(APInt &&that) : BitWidth(that.BitWidth) {
324    memcpy(&U, &that.U, sizeof(U));
325    that.BitWidth = 0;
326  }
327
328  /// \brief Destructor.
329  ~APInt() {
330    if (needsCleanup())
331      delete[] U.pVal;
332  }
333
334  /// \brief Default constructor that creates an uninteresting APInt
335  /// representing a 1-bit zero value.
336  ///
337  /// This is useful for object deserialization (pair this with the static
338  ///  method Read).
339  explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341  /// \brief Returns whether this instance allocated memory.
342  bool needsCleanup() const { return !isSingleWord(); }
343
344  /// Used to insert APInt objects, or objects that contain APInt objects, into
345  ///  FoldingSets.
346  void Profile(FoldingSetNodeID &id) const;
347
348  /// @}
349  /// \name Value Tests
350  /// @{
351
352  /// \brief Determine sign of this APInt.
353  ///
354  /// This tests the high bit of this APInt to determine if it is set.
355  ///
356  /// \returns true if this APInt is negative, false otherwise
357  bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359  /// \brief Determine if this APInt Value is non-negative (>= 0)
360  ///
361  /// This tests the high bit of the APInt to determine if it is unset.
362  bool isNonNegative() const { return !isNegative(); }
363
364  /// \brief Determine if sign bit of this APInt is set.
365  ///
366  /// This tests the high bit of this APInt to determine if it is set.
367  ///
368  /// \returns true if this APInt has its sign bit set, false otherwise.
369  bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371  /// \brief Determine if sign bit of this APInt is clear.
372  ///
373  /// This tests the high bit of this APInt to determine if it is clear.
374  ///
375  /// \returns true if this APInt has its sign bit clear, false otherwise.
376  bool isSignBitClear() const { return !isSignBitSet(); }
377
378  /// \brief Determine if this APInt Value is positive.
379  ///
380  /// This tests if the value of this APInt is positive (> 0). Note
381  /// that 0 is not a positive value.
382  ///
383  /// \returns true if this APInt is positive.
384  bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386  /// \brief Determine if all bits are set
387  ///
388  /// This checks to see if the value has all bits of the APInt are set or not.
389  bool isAllOnesValue() const {
390    if (isSingleWord())
391      return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392    return countTrailingOnesSlowCase() == BitWidth;
393  }
394
395  /// \brief Determine if all bits are clear
396  ///
397  /// This checks to see if the value has all bits of the APInt are clear or
398  /// not.
399  bool isNullValue() const { return !*this; }
400
401  /// \brief Determine if this is a value of 1.
402  ///
403  /// This checks to see if the value of this APInt is one.
404  bool isOneValue() const {
405    if (isSingleWord())
406      return U.VAL == 1;
407    return countLeadingZerosSlowCase() == BitWidth - 1;
408  }
409
410  /// \brief Determine if this is the largest unsigned value.
411  ///
412  /// This checks to see if the value of this APInt is the maximum unsigned
413  /// value for the APInt's bit width.
414  bool isMaxValue() const { return isAllOnesValue(); }
415
416  /// \brief Determine if this is the largest signed value.
417  ///
418  /// This checks to see if the value of this APInt is the maximum signed
419  /// value for the APInt's bit width.
420  bool isMaxSignedValue() const {
421    if (isSingleWord())
422      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424  }
425
426  /// \brief Determine if this is the smallest unsigned value.
427  ///
428  /// This checks to see if the value of this APInt is the minimum unsigned
429  /// value for the APInt's bit width.
430  bool isMinValue() const { return isNullValue(); }
431
432  /// \brief Determine if this is the smallest signed value.
433  ///
434  /// This checks to see if the value of this APInt is the minimum signed
435  /// value for the APInt's bit width.
436  bool isMinSignedValue() const {
437    if (isSingleWord())
438      return U.VAL == (WordType(1) << (BitWidth - 1));
439    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440  }
441
442  /// \brief Check if this APInt has an N-bits unsigned integer value.
443  bool isIntN(unsigned N) const {
444    assert(N && "N == 0 ???");
445    return getActiveBits() <= N;
446  }
447
448  /// \brief Check if this APInt has an N-bits signed integer value.
449  bool isSignedIntN(unsigned N) const {
450    assert(N && "N == 0 ???");
451    return getMinSignedBits() <= N;
452  }
453
454  /// \brief Check if this APInt's value is a power of two greater than zero.
455  ///
456  /// \returns true if the argument APInt value is a power of two > 0.
457  bool isPowerOf2() const {
458    if (isSingleWord())
459      return isPowerOf2_64(U.VAL);
460    return countPopulationSlowCase() == 1;
461  }
462
463  /// \brief Check if the APInt's value is returned by getSignMask.
464  ///
465  /// \returns true if this is the value returned by getSignMask.
466  bool isSignMask() const { return isMinSignedValue(); }
467
468  /// \brief Convert APInt to a boolean value.
469  ///
470  /// This converts the APInt to a boolean value as a test against zero.
471  bool getBoolValue() const { return !!*this; }
472
473  /// If this value is smaller than the specified limit, return it, otherwise
474  /// return the limit value.  This causes the value to saturate to the limit.
475  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
476    return ugt(Limit) ? Limit : getZExtValue();
477  }
478
479  /// \brief Check if the APInt consists of a repeated bit pattern.
480  ///
481  /// e.g. 0x01010101 satisfies isSplat(8).
482  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483  /// width without remainder.
484  bool isSplat(unsigned SplatSizeInBits) const;
485
486  /// \returns true if this APInt value is a sequence of \param numBits ones
487  /// starting at the least significant bit with the remainder zero.
488  bool isMask(unsigned numBits) const {
489    assert(numBits != 0 && "numBits must be non-zero");
490    assert(numBits <= BitWidth && "numBits out of range");
491    if (isSingleWord())
492      return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493    unsigned Ones = countTrailingOnesSlowCase();
494    return (numBits == Ones) &&
495           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496  }
497
498  /// \returns true if this APInt is a non-empty sequence of ones starting at
499  /// the least significant bit with the remainder zero.
500  /// Ex. isMask(0x0000FFFFU) == true.
501  bool isMask() const {
502    if (isSingleWord())
503      return isMask_64(U.VAL);
504    unsigned Ones = countTrailingOnesSlowCase();
505    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506  }
507
508  /// \brief Return true if this APInt value contains a sequence of ones with
509  /// the remainder zero.
510  bool isShiftedMask() const {
511    if (isSingleWord())
512      return isShiftedMask_64(U.VAL);
513    unsigned Ones = countPopulationSlowCase();
514    unsigned LeadZ = countLeadingZerosSlowCase();
515    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516  }
517
518  /// @}
519  /// \name Value Generators
520  /// @{
521
522  /// \brief Gets maximum unsigned value of APInt for specific bit width.
523  static APInt getMaxValue(unsigned numBits) {
524    return getAllOnesValue(numBits);
525  }
526
527  /// \brief Gets maximum signed value of APInt for a specific bit width.
528  static APInt getSignedMaxValue(unsigned numBits) {
529    APInt API = getAllOnesValue(numBits);
530    API.clearBit(numBits - 1);
531    return API;
532  }
533
534  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537  /// \brief Gets minimum signed value of APInt for a specific bit width.
538  static APInt getSignedMinValue(unsigned numBits) {
539    APInt API(numBits, 0);
540    API.setBit(numBits - 1);
541    return API;
542  }
543
544  /// \brief Get the SignMask for a specific bit width.
545  ///
546  /// This is just a wrapper function of getSignedMinValue(), and it helps code
547  /// readability when we want to get a SignMask.
548  static APInt getSignMask(unsigned BitWidth) {
549    return getSignedMinValue(BitWidth);
550  }
551
552  /// \brief Get the all-ones value.
553  ///
554  /// \returns the all-ones value for an APInt of the specified bit-width.
555  static APInt getAllOnesValue(unsigned numBits) {
556    return APInt(numBits, WORD_MAX, true);
557  }
558
559  /// \brief Get the '0' value.
560  ///
561  /// \returns the '0' value for an APInt of the specified bit-width.
562  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564  /// \brief Compute an APInt containing numBits highbits from this APInt.
565  ///
566  /// Get an APInt with the same BitWidth as this APInt, just zero mask
567  /// the low bits and right shift to the least significant bit.
568  ///
569  /// \returns the high "numBits" bits of this APInt.
570  APInt getHiBits(unsigned numBits) const;
571
572  /// \brief Compute an APInt containing numBits lowbits from this APInt.
573  ///
574  /// Get an APInt with the same BitWidth as this APInt, just zero mask
575  /// the high bits.
576  ///
577  /// \returns the low "numBits" bits of this APInt.
578  APInt getLoBits(unsigned numBits) const;
579
580  /// \brief Return an APInt with exactly one bit set in the result.
581  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582    APInt Res(numBits, 0);
583    Res.setBit(BitNo);
584    return Res;
585  }
586
587  /// \brief Get a value with a block of bits set.
588  ///
589  /// Constructs an APInt value that has a contiguous range of bits set. The
590  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594  ///
595  /// \param numBits the intended bit width of the result
596  /// \param loBit the index of the lowest bit set.
597  /// \param hiBit the index of the highest bit set.
598  ///
599  /// \returns An APInt value with the requested bits set.
600  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601    APInt Res(numBits, 0);
602    Res.setBits(loBit, hiBit);
603    return Res;
604  }
605
606  /// \brief Get a value with upper bits starting at loBit set.
607  ///
608  /// Constructs an APInt value that has a contiguous range of bits set. The
609  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610  /// bits will be zero. For example, with parameters(32, 12) you would get
611  /// 0xFFFFF000.
612  ///
613  /// \param numBits the intended bit width of the result
614  /// \param loBit the index of the lowest bit to set.
615  ///
616  /// \returns An APInt value with the requested bits set.
617  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618    APInt Res(numBits, 0);
619    Res.setBitsFrom(loBit);
620    return Res;
621  }
622
623  /// \brief Get a value with high bits set
624  ///
625  /// Constructs an APInt value that has the top hiBitsSet bits set.
626  ///
627  /// \param numBits the bitwidth of the result
628  /// \param hiBitsSet the number of high-order bits set in the result.
629  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630    APInt Res(numBits, 0);
631    Res.setHighBits(hiBitsSet);
632    return Res;
633  }
634
635  /// \brief Get a value with low bits set
636  ///
637  /// Constructs an APInt value that has the bottom loBitsSet bits set.
638  ///
639  /// \param numBits the bitwidth of the result
640  /// \param loBitsSet the number of low-order bits set in the result.
641  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642    APInt Res(numBits, 0);
643    Res.setLowBits(loBitsSet);
644    return Res;
645  }
646
647  /// \brief Return a value containing V broadcasted over NewLen bits.
648  static APInt getSplat(unsigned NewLen, const APInt &V);
649
650  /// \brief Determine if two APInts have the same value, after zero-extending
651  /// one of them (if needed!) to ensure that the bit-widths match.
652  static bool isSameValue(const APInt &I1, const APInt &I2) {
653    if (I1.getBitWidth() == I2.getBitWidth())
654      return I1 == I2;
655
656    if (I1.getBitWidth() > I2.getBitWidth())
657      return I1 == I2.zext(I1.getBitWidth());
658
659    return I1.zext(I2.getBitWidth()) == I2;
660  }
661
662  /// \brief Overload to compute a hash_code for an APInt value.
663  friend hash_code hash_value(const APInt &Arg);
664
665  /// This function returns a pointer to the internal storage of the APInt.
666  /// This is useful for writing out the APInt in binary form without any
667  /// conversions.
668  const uint64_t *getRawData() const {
669    if (isSingleWord())
670      return &U.VAL;
671    return &U.pVal[0];
672  }
673
674  /// @}
675  /// \name Unary Operators
676  /// @{
677
678  /// \brief Postfix increment operator.
679  ///
680  /// Increments *this by 1.
681  ///
682  /// \returns a new APInt value representing the original value of *this.
683  const APInt operator++(int) {
684    APInt API(*this);
685    ++(*this);
686    return API;
687  }
688
689  /// \brief Prefix increment operator.
690  ///
691  /// \returns *this incremented by one
692  APInt &operator++();
693
694  /// \brief Postfix decrement operator.
695  ///
696  /// Decrements *this by 1.
697  ///
698  /// \returns a new APInt value representing the original value of *this.
699  const APInt operator--(int) {
700    APInt API(*this);
701    --(*this);
702    return API;
703  }
704
705  /// \brief Prefix decrement operator.
706  ///
707  /// \returns *this decremented by one.
708  APInt &operator--();
709
710  /// \brief Logical negation operator.
711  ///
712  /// Performs logical negation operation on this APInt.
713  ///
714  /// \returns true if *this is zero, false otherwise.
715  bool operator!() const {
716    if (isSingleWord())
717      return U.VAL == 0;
718    return countLeadingZerosSlowCase() == BitWidth;
719  }
720
721  /// @}
722  /// \name Assignment Operators
723  /// @{
724
725  /// \brief Copy assignment operator.
726  ///
727  /// \returns *this after assignment of RHS.
728  APInt &operator=(const APInt &RHS) {
729    // If the bitwidths are the same, we can avoid mucking with memory
730    if (isSingleWord() && RHS.isSingleWord()) {
731      U.VAL = RHS.U.VAL;
732      BitWidth = RHS.BitWidth;
733      return clearUnusedBits();
734    }
735
736    AssignSlowCase(RHS);
737    return *this;
738  }
739
740  /// @brief Move assignment operator.
741  APInt &operator=(APInt &&that) {
742    assert(this != &that && "Self-move not supported");
743    if (!isSingleWord())
744      delete[] U.pVal;
745
746    // Use memcpy so that type based alias analysis sees both VAL and pVal
747    // as modified.
748    memcpy(&U, &that.U, sizeof(U));
749
750    BitWidth = that.BitWidth;
751    that.BitWidth = 0;
752
753    return *this;
754  }
755
756  /// \brief Assignment operator.
757  ///
758  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759  /// the bit width, the excess bits are truncated. If the bit width is larger
760  /// than 64, the value is zero filled in the unspecified high order bits.
761  ///
762  /// \returns *this after assignment of RHS value.
763  APInt &operator=(uint64_t RHS) {
764    if (isSingleWord()) {
765      U.VAL = RHS;
766      clearUnusedBits();
767    } else {
768      U.pVal[0] = RHS;
769      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770    }
771    return *this;
772  }
773
774  /// \brief Bitwise AND assignment operator.
775  ///
776  /// Performs a bitwise AND operation on this APInt and RHS. The result is
777  /// assigned to *this.
778  ///
779  /// \returns *this after ANDing with RHS.
780  APInt &operator&=(const APInt &RHS) {
781    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
782    if (isSingleWord())
783      U.VAL &= RHS.U.VAL;
784    else
785      AndAssignSlowCase(RHS);
786    return *this;
787  }
788
789  /// \brief Bitwise AND assignment operator.
790  ///
791  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792  /// logically zero-extended or truncated to match the bit-width of
793  /// the LHS.
794  APInt &operator&=(uint64_t RHS) {
795    if (isSingleWord()) {
796      U.VAL &= RHS;
797      return *this;
798    }
799    U.pVal[0] &= RHS;
800    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801    return *this;
802  }
803
804  /// \brief Bitwise OR assignment operator.
805  ///
806  /// Performs a bitwise OR operation on this APInt and RHS. The result is
807  /// assigned *this;
808  ///
809  /// \returns *this after ORing with RHS.
810  APInt &operator|=(const APInt &RHS) {
811    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
812    if (isSingleWord())
813      U.VAL |= RHS.U.VAL;
814    else
815      OrAssignSlowCase(RHS);
816    return *this;
817  }
818
819  /// \brief Bitwise OR assignment operator.
820  ///
821  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822  /// logically zero-extended or truncated to match the bit-width of
823  /// the LHS.
824  APInt &operator|=(uint64_t RHS) {
825    if (isSingleWord()) {
826      U.VAL |= RHS;
827      clearUnusedBits();
828    } else {
829      U.pVal[0] |= RHS;
830    }
831    return *this;
832  }
833
834  /// \brief Bitwise XOR assignment operator.
835  ///
836  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837  /// assigned to *this.
838  ///
839  /// \returns *this after XORing with RHS.
840  APInt &operator^=(const APInt &RHS) {
841    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
842    if (isSingleWord())
843      U.VAL ^= RHS.U.VAL;
844    else
845      XorAssignSlowCase(RHS);
846    return *this;
847  }
848
849  /// \brief Bitwise XOR assignment operator.
850  ///
851  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852  /// logically zero-extended or truncated to match the bit-width of
853  /// the LHS.
854  APInt &operator^=(uint64_t RHS) {
855    if (isSingleWord()) {
856      U.VAL ^= RHS;
857      clearUnusedBits();
858    } else {
859      U.pVal[0] ^= RHS;
860    }
861    return *this;
862  }
863
864  /// \brief Multiplication assignment operator.
865  ///
866  /// Multiplies this APInt by RHS and assigns the result to *this.
867  ///
868  /// \returns *this
869  APInt &operator*=(const APInt &RHS);
870  APInt &operator*=(uint64_t RHS);
871
872  /// \brief Addition assignment operator.
873  ///
874  /// Adds RHS to *this and assigns the result to *this.
875  ///
876  /// \returns *this
877  APInt &operator+=(const APInt &RHS);
878  APInt &operator+=(uint64_t RHS);
879
880  /// \brief Subtraction assignment operator.
881  ///
882  /// Subtracts RHS from *this and assigns the result to *this.
883  ///
884  /// \returns *this
885  APInt &operator-=(const APInt &RHS);
886  APInt &operator-=(uint64_t RHS);
887
888  /// \brief Left-shift assignment function.
889  ///
890  /// Shifts *this left by shiftAmt and assigns the result to *this.
891  ///
892  /// \returns *this after shifting left by ShiftAmt
893  APInt &operator<<=(unsigned ShiftAmt) {
894    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
895    if (isSingleWord()) {
896      if (ShiftAmt == BitWidth)
897        U.VAL = 0;
898      else
899        U.VAL <<= ShiftAmt;
900      return clearUnusedBits();
901    }
902    shlSlowCase(ShiftAmt);
903    return *this;
904  }
905
906  /// \brief Left-shift assignment function.
907  ///
908  /// Shifts *this left by shiftAmt and assigns the result to *this.
909  ///
910  /// \returns *this after shifting left by ShiftAmt
911  APInt &operator<<=(const APInt &ShiftAmt);
912
913  /// @}
914  /// \name Binary Operators
915  /// @{
916
917  /// \brief Multiplication operator.
918  ///
919  /// Multiplies this APInt by RHS and returns the result.
920  APInt operator*(const APInt &RHS) const;
921
922  /// \brief Left logical shift operator.
923  ///
924  /// Shifts this APInt left by \p Bits and returns the result.
925  APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927  /// \brief Left logical shift operator.
928  ///
929  /// Shifts this APInt left by \p Bits and returns the result.
930  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932  /// \brief Arithmetic right-shift function.
933  ///
934  /// Arithmetic right-shift this APInt by shiftAmt.
935  APInt ashr(unsigned ShiftAmt) const {
936    APInt R(*this);
937    R.ashrInPlace(ShiftAmt);
938    return R;
939  }
940
941  /// Arithmetic right-shift this APInt by ShiftAmt in place.
942  void ashrInPlace(unsigned ShiftAmt) {
943    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
944    if (isSingleWord()) {
945      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946      if (ShiftAmt == BitWidth)
947        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948      else
949        U.VAL = SExtVAL >> ShiftAmt;
950      clearUnusedBits();
951      return;
952    }
953    ashrSlowCase(ShiftAmt);
954  }
955
956  /// \brief Logical right-shift function.
957  ///
958  /// Logical right-shift this APInt by shiftAmt.
959  APInt lshr(unsigned shiftAmt) const {
960    APInt R(*this);
961    R.lshrInPlace(shiftAmt);
962    return R;
963  }
964
965  /// Logical right-shift this APInt by ShiftAmt in place.
966  void lshrInPlace(unsigned ShiftAmt) {
967    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
968    if (isSingleWord()) {
969      if (ShiftAmt == BitWidth)
970        U.VAL = 0;
971      else
972        U.VAL >>= ShiftAmt;
973      return;
974    }
975    lshrSlowCase(ShiftAmt);
976  }
977
978  /// \brief Left-shift function.
979  ///
980  /// Left-shift this APInt by shiftAmt.
981  APInt shl(unsigned shiftAmt) const {
982    APInt R(*this);
983    R <<= shiftAmt;
984    return R;
985  }
986
987  /// \brief Rotate left by rotateAmt.
988  APInt rotl(unsigned rotateAmt) const;
989
990  /// \brief Rotate right by rotateAmt.
991  APInt rotr(unsigned rotateAmt) const;
992
993  /// \brief Arithmetic right-shift function.
994  ///
995  /// Arithmetic right-shift this APInt by shiftAmt.
996  APInt ashr(const APInt &ShiftAmt) const {
997    APInt R(*this);
998    R.ashrInPlace(ShiftAmt);
999    return R;
1000  }
1001
1002  /// Arithmetic right-shift this APInt by shiftAmt in place.
1003  void ashrInPlace(const APInt &shiftAmt);
1004
1005  /// \brief Logical right-shift function.
1006  ///
1007  /// Logical right-shift this APInt by shiftAmt.
1008  APInt lshr(const APInt &ShiftAmt) const {
1009    APInt R(*this);
1010    R.lshrInPlace(ShiftAmt);
1011    return R;
1012  }
1013
1014  /// Logical right-shift this APInt by ShiftAmt in place.
1015  void lshrInPlace(const APInt &ShiftAmt);
1016
1017  /// \brief Left-shift function.
1018  ///
1019  /// Left-shift this APInt by shiftAmt.
1020  APInt shl(const APInt &ShiftAmt) const {
1021    APInt R(*this);
1022    R <<= ShiftAmt;
1023    return R;
1024  }
1025
1026  /// \brief Rotate left by rotateAmt.
1027  APInt rotl(const APInt &rotateAmt) const;
1028
1029  /// \brief Rotate right by rotateAmt.
1030  APInt rotr(const APInt &rotateAmt) const;
1031
1032  /// \brief Unsigned division operation.
1033  ///
1034  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035  /// RHS are treated as unsigned quantities for purposes of this division.
1036  ///
1037  /// \returns a new APInt value containing the division result
1038  APInt udiv(const APInt &RHS) const;
1039  APInt udiv(uint64_t RHS) const;
1040
1041  /// \brief Signed division function for APInt.
1042  ///
1043  /// Signed divide this APInt by APInt RHS.
1044  APInt sdiv(const APInt &RHS) const;
1045  APInt sdiv(int64_t RHS) const;
1046
1047  /// \brief Unsigned remainder operation.
1048  ///
1049  /// Perform an unsigned remainder operation on this APInt with RHS being the
1050  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051  /// of this operation. Note that this is a true remainder operation and not a
1052  /// modulo operation because the sign follows the sign of the dividend which
1053  /// is *this.
1054  ///
1055  /// \returns a new APInt value containing the remainder result
1056  APInt urem(const APInt &RHS) const;
1057  uint64_t urem(uint64_t RHS) const;
1058
1059  /// \brief Function for signed remainder operation.
1060  ///
1061  /// Signed remainder operation on APInt.
1062  APInt srem(const APInt &RHS) const;
1063  int64_t srem(int64_t RHS) const;
1064
1065  /// \brief Dual division/remainder interface.
1066  ///
1067  /// Sometimes it is convenient to divide two APInt values and obtain both the
1068  /// quotient and remainder. This function does both operations in the same
1069  /// computation making it a little more efficient. The pair of input arguments
1070  /// may overlap with the pair of output arguments. It is safe to call
1071  /// udivrem(X, Y, X, Y), for example.
1072  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073                      APInt &Remainder);
1074  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075                      uint64_t &Remainder);
1076
1077  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078                      APInt &Remainder);
1079  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080                      int64_t &Remainder);
1081
1082  // Operations that return overflow indicators.
1083  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093  /// \brief Array-indexing support.
1094  ///
1095  /// \returns the bit value at bitPosition
1096  bool operator[](unsigned bitPosition) const {
1097    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1098    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099  }
1100
1101  /// @}
1102  /// \name Comparison Operators
1103  /// @{
1104
1105  /// \brief Equality operator.
1106  ///
1107  /// Compares this APInt with RHS for the validity of the equality
1108  /// relationship.
1109  bool operator==(const APInt &RHS) const {
1110    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1111    if (isSingleWord())
1112      return U.VAL == RHS.U.VAL;
1113    return EqualSlowCase(RHS);
1114  }
1115
1116  /// \brief Equality operator.
1117  ///
1118  /// Compares this APInt with a uint64_t for the validity of the equality
1119  /// relationship.
1120  ///
1121  /// \returns true if *this == Val
1122  bool operator==(uint64_t Val) const {
1123    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124  }
1125
1126  /// \brief Equality comparison.
1127  ///
1128  /// Compares this APInt with RHS for the validity of the equality
1129  /// relationship.
1130  ///
1131  /// \returns true if *this == Val
1132  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134  /// \brief Inequality operator.
1135  ///
1136  /// Compares this APInt with RHS for the validity of the inequality
1137  /// relationship.
1138  ///
1139  /// \returns true if *this != Val
1140  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142  /// \brief Inequality operator.
1143  ///
1144  /// Compares this APInt with a uint64_t for the validity of the inequality
1145  /// relationship.
1146  ///
1147  /// \returns true if *this != Val
1148  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150  /// \brief Inequality comparison
1151  ///
1152  /// Compares this APInt with RHS for the validity of the inequality
1153  /// relationship.
1154  ///
1155  /// \returns true if *this != Val
1156  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158  /// \brief Unsigned less than comparison
1159  ///
1160  /// Regards both *this and RHS as unsigned quantities and compares them for
1161  /// the validity of the less-than relationship.
1162  ///
1163  /// \returns true if *this < RHS when both are considered unsigned.
1164  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166  /// \brief Unsigned less than comparison
1167  ///
1168  /// Regards both *this as an unsigned quantity and compares it with RHS for
1169  /// the validity of the less-than relationship.
1170  ///
1171  /// \returns true if *this < RHS when considered unsigned.
1172  bool ult(uint64_t RHS) const {
1173    // Only need to check active bits if not a single word.
1174    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175  }
1176
1177  /// \brief Signed less than comparison
1178  ///
1179  /// Regards both *this and RHS as signed quantities and compares them for
1180  /// validity of the less-than relationship.
1181  ///
1182  /// \returns true if *this < RHS when both are considered signed.
1183  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185  /// \brief Signed less than comparison
1186  ///
1187  /// Regards both *this as a signed quantity and compares it with RHS for
1188  /// the validity of the less-than relationship.
1189  ///
1190  /// \returns true if *this < RHS when considered signed.
1191  bool slt(int64_t RHS) const {
1192    return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193                                                        : getSExtValue() < RHS;
1194  }
1195
1196  /// \brief Unsigned less or equal comparison
1197  ///
1198  /// Regards both *this and RHS as unsigned quantities and compares them for
1199  /// validity of the less-or-equal relationship.
1200  ///
1201  /// \returns true if *this <= RHS when both are considered unsigned.
1202  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204  /// \brief Unsigned less or equal comparison
1205  ///
1206  /// Regards both *this as an unsigned quantity and compares it with RHS for
1207  /// the validity of the less-or-equal relationship.
1208  ///
1209  /// \returns true if *this <= RHS when considered unsigned.
1210  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212  /// \brief Signed less or equal comparison
1213  ///
1214  /// Regards both *this and RHS as signed quantities and compares them for
1215  /// validity of the less-or-equal relationship.
1216  ///
1217  /// \returns true if *this <= RHS when both are considered signed.
1218  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220  /// \brief Signed less or equal comparison
1221  ///
1222  /// Regards both *this as a signed quantity and compares it with RHS for the
1223  /// validity of the less-or-equal relationship.
1224  ///
1225  /// \returns true if *this <= RHS when considered signed.
1226  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228  /// \brief Unsigned greather than comparison
1229  ///
1230  /// Regards both *this and RHS as unsigned quantities and compares them for
1231  /// the validity of the greater-than relationship.
1232  ///
1233  /// \returns true if *this > RHS when both are considered unsigned.
1234  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236  /// \brief Unsigned greater than comparison
1237  ///
1238  /// Regards both *this as an unsigned quantity and compares it with RHS for
1239  /// the validity of the greater-than relationship.
1240  ///
1241  /// \returns true if *this > RHS when considered unsigned.
1242  bool ugt(uint64_t RHS) const {
1243    // Only need to check active bits if not a single word.
1244    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1245  }
1246
1247  /// \brief Signed greather than comparison
1248  ///
1249  /// Regards both *this and RHS as signed quantities and compares them for the
1250  /// validity of the greater-than relationship.
1251  ///
1252  /// \returns true if *this > RHS when both are considered signed.
1253  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255  /// \brief Signed greater than comparison
1256  ///
1257  /// Regards both *this as a signed quantity and compares it with RHS for
1258  /// the validity of the greater-than relationship.
1259  ///
1260  /// \returns true if *this > RHS when considered signed.
1261  bool sgt(int64_t RHS) const {
1262    return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263                                                        : getSExtValue() > RHS;
1264  }
1265
1266  /// \brief Unsigned greater or equal comparison
1267  ///
1268  /// Regards both *this and RHS as unsigned quantities and compares them for
1269  /// validity of the greater-or-equal relationship.
1270  ///
1271  /// \returns true if *this >= RHS when both are considered unsigned.
1272  bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274  /// \brief Unsigned greater or equal comparison
1275  ///
1276  /// Regards both *this as an unsigned quantity and compares it with RHS for
1277  /// the validity of the greater-or-equal relationship.
1278  ///
1279  /// \returns true if *this >= RHS when considered unsigned.
1280  bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282  /// \brief Signed greather or equal comparison
1283  ///
1284  /// Regards both *this and RHS as signed quantities and compares them for
1285  /// validity of the greater-or-equal relationship.
1286  ///
1287  /// \returns true if *this >= RHS when both are considered signed.
1288  bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290  /// \brief Signed greater or equal comparison
1291  ///
1292  /// Regards both *this as a signed quantity and compares it with RHS for
1293  /// the validity of the greater-or-equal relationship.
1294  ///
1295  /// \returns true if *this >= RHS when considered signed.
1296  bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298  /// This operation tests if there are any pairs of corresponding bits
1299  /// between this APInt and RHS that are both set.
1300  bool intersects(const APInt &RHS) const {
1301    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1302    if (isSingleWord())
1303      return (U.VAL & RHS.U.VAL) != 0;
1304    return intersectsSlowCase(RHS);
1305  }
1306
1307  /// This operation checks that all bits set in this APInt are also set in RHS.
1308  bool isSubsetOf(const APInt &RHS) const {
1309    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1310    if (isSingleWord())
1311      return (U.VAL & ~RHS.U.VAL) == 0;
1312    return isSubsetOfSlowCase(RHS);
1313  }
1314
1315  /// @}
1316  /// \name Resizing Operators
1317  /// @{
1318
1319  /// \brief Truncate to new width.
1320  ///
1321  /// Truncate the APInt to a specified width. It is an error to specify a width
1322  /// that is greater than or equal to the current width.
1323  APInt trunc(unsigned width) const;
1324
1325  /// \brief Sign extend to a new width.
1326  ///
1327  /// This operation sign extends the APInt to a new width. If the high order
1328  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329  /// It is an error to specify a width that is less than or equal to the
1330  /// current width.
1331  APInt sext(unsigned width) const;
1332
1333  /// \brief Zero extend to a new width.
1334  ///
1335  /// This operation zero extends the APInt to a new width. The high order bits
1336  /// are filled with 0 bits.  It is an error to specify a width that is less
1337  /// than or equal to the current width.
1338  APInt zext(unsigned width) const;
1339
1340  /// \brief Sign extend or truncate to width
1341  ///
1342  /// Make this APInt have the bit width given by \p width. The value is sign
1343  /// extended, truncated, or left alone to make it that width.
1344  APInt sextOrTrunc(unsigned width) const;
1345
1346  /// \brief Zero extend or truncate to width
1347  ///
1348  /// Make this APInt have the bit width given by \p width. The value is zero
1349  /// extended, truncated, or left alone to make it that width.
1350  APInt zextOrTrunc(unsigned width) const;
1351
1352  /// \brief Sign extend or truncate to width
1353  ///
1354  /// Make this APInt have the bit width given by \p width. The value is sign
1355  /// extended, or left alone to make it that width.
1356  APInt sextOrSelf(unsigned width) const;
1357
1358  /// \brief Zero extend or truncate to width
1359  ///
1360  /// Make this APInt have the bit width given by \p width. The value is zero
1361  /// extended, or left alone to make it that width.
1362  APInt zextOrSelf(unsigned width) const;
1363
1364  /// @}
1365  /// \name Bit Manipulation Operators
1366  /// @{
1367
1368  /// \brief Set every bit to 1.
1369  void setAllBits() {
1370    if (isSingleWord())
1371      U.VAL = WORD_MAX;
1372    else
1373      // Set all the bits in all the words.
1374      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375    // Clear the unused ones
1376    clearUnusedBits();
1377  }
1378
1379  /// \brief Set a given bit to 1.
1380  ///
1381  /// Set the given bit to 1 whose position is given as "bitPosition".
1382  void setBit(unsigned BitPosition) {
1383    assert(BitPosition <= BitWidth && "BitPosition out of range");
1384    WordType Mask = maskBit(BitPosition);
1385    if (isSingleWord())
1386      U.VAL |= Mask;
1387    else
1388      U.pVal[whichWord(BitPosition)] |= Mask;
1389  }
1390
1391  /// Set the sign bit to 1.
1392  void setSignBit() {
1393    setBit(BitWidth - 1);
1394  }
1395
1396  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397  void setBits(unsigned loBit, unsigned hiBit) {
1398    assert(hiBit <= BitWidth && "hiBit out of range");
1399    assert(loBit <= BitWidth && "loBit out of range");
1400    assert(loBit <= hiBit && "loBit greater than hiBit");
1401    if (loBit == hiBit)
1402      return;
1403    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404      uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405      mask <<= loBit;
1406      if (isSingleWord())
1407        U.VAL |= mask;
1408      else
1409        U.pVal[0] |= mask;
1410    } else {
1411      setBitsSlowCase(loBit, hiBit);
1412    }
1413  }
1414
1415  /// Set the top bits starting from loBit.
1416  void setBitsFrom(unsigned loBit) {
1417    return setBits(loBit, BitWidth);
1418  }
1419
1420  /// Set the bottom loBits bits.
1421  void setLowBits(unsigned loBits) {
1422    return setBits(0, loBits);
1423  }
1424
1425  /// Set the top hiBits bits.
1426  void setHighBits(unsigned hiBits) {
1427    return setBits(BitWidth - hiBits, BitWidth);
1428  }
1429
1430  /// \brief Set every bit to 0.
1431  void clearAllBits() {
1432    if (isSingleWord())
1433      U.VAL = 0;
1434    else
1435      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436  }
1437
1438  /// \brief Set a given bit to 0.
1439  ///
1440  /// Set the given bit to 0 whose position is given as "bitPosition".
1441  void clearBit(unsigned BitPosition) {
1442    assert(BitPosition <= BitWidth && "BitPosition out of range");
1443    WordType Mask = ~maskBit(BitPosition);
1444    if (isSingleWord())
1445      U.VAL &= Mask;
1446    else
1447      U.pVal[whichWord(BitPosition)] &= Mask;
1448  }
1449
1450  /// Set the sign bit to 0.
1451  void clearSignBit() {
1452    clearBit(BitWidth - 1);
1453  }
1454
1455  /// \brief Toggle every bit to its opposite value.
1456  void flipAllBits() {
1457    if (isSingleWord()) {
1458      U.VAL ^= WORD_MAX;
1459      clearUnusedBits();
1460    } else {
1461      flipAllBitsSlowCase();
1462    }
1463  }
1464
1465  /// \brief Toggles a given bit to its opposite value.
1466  ///
1467  /// Toggle a given bit to its opposite value whose position is given
1468  /// as "bitPosition".
1469  void flipBit(unsigned bitPosition);
1470
1471  /// Negate this APInt in place.
1472  void negate() {
1473    flipAllBits();
1474    ++(*this);
1475  }
1476
1477  /// Insert the bits from a smaller APInt starting at bitPosition.
1478  void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483  /// @}
1484  /// \name Value Characterization Functions
1485  /// @{
1486
1487  /// \brief Return the number of bits in the APInt.
1488  unsigned getBitWidth() const { return BitWidth; }
1489
1490  /// \brief Get the number of words.
1491  ///
1492  /// Here one word's bitwidth equals to that of uint64_t.
1493  ///
1494  /// \returns the number of words to hold the integer value of this APInt.
1495  unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497  /// \brief Get the number of words.
1498  ///
1499  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500  ///
1501  /// \returns the number of words to hold the integer value with a given bit
1502  /// width.
1503  static unsigned getNumWords(unsigned BitWidth) {
1504    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505  }
1506
1507  /// \brief Compute the number of active bits in the value
1508  ///
1509  /// This function returns the number of active bits which is defined as the
1510  /// bit width minus the number of leading zeros. This is used in several
1511  /// computations to see how "wide" the value is.
1512  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514  /// \brief Compute the number of active words in the value of this APInt.
1515  ///
1516  /// This is used in conjunction with getActiveData to extract the raw value of
1517  /// the APInt.
1518  unsigned getActiveWords() const {
1519    unsigned numActiveBits = getActiveBits();
1520    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521  }
1522
1523  /// \brief Get the minimum bit size for this signed APInt
1524  ///
1525  /// Computes the minimum bit width for this APInt while considering it to be a
1526  /// signed (and probably negative) value. If the value is not negative, this
1527  /// function returns the same value as getActiveBits()+1. Otherwise, it
1528  /// returns the smallest bit width that will retain the negative value. For
1529  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530  /// for -1, this function will always return 1.
1531  unsigned getMinSignedBits() const {
1532    if (isNegative())
1533      return BitWidth - countLeadingOnes() + 1;
1534    return getActiveBits() + 1;
1535  }
1536
1537  /// \brief Get zero extended value
1538  ///
1539  /// This method attempts to return the value of this APInt as a zero extended
1540  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541  /// uint64_t. Otherwise an assertion will result.
1542  uint64_t getZExtValue() const {
1543    if (isSingleWord())
1544      return U.VAL;
1545    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1546    return U.pVal[0];
1547  }
1548
1549  /// \brief Get sign extended value
1550  ///
1551  /// This method attempts to return the value of this APInt as a sign extended
1552  /// int64_t. The bit width must be <= 64 or the value must fit within an
1553  /// int64_t. Otherwise an assertion will result.
1554  int64_t getSExtValue() const {
1555    if (isSingleWord())
1556      return SignExtend64(U.VAL, BitWidth);
1557    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1558    return int64_t(U.pVal[0]);
1559  }
1560
1561  /// \brief Get bits required for string value.
1562  ///
1563  /// This method determines how many bits are required to hold the APInt
1564  /// equivalent of the string given by \p str.
1565  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567  /// \brief The APInt version of the countLeadingZeros functions in
1568  ///   MathExtras.h.
1569  ///
1570  /// It counts the number of zeros from the most significant bit to the first
1571  /// one bit.
1572  ///
1573  /// \returns BitWidth if the value is zero, otherwise returns the number of
1574  ///   zeros from the most significant bit to the first one bits.
1575  unsigned countLeadingZeros() const {
1576    if (isSingleWord()) {
1577      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578      return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579    }
1580    return countLeadingZerosSlowCase();
1581  }
1582
1583  /// \brief Count the number of leading one bits.
1584  ///
1585  /// This function is an APInt version of the countLeadingOnes
1586  /// functions in MathExtras.h. It counts the number of ones from the most
1587  /// significant bit to the first zero bit.
1588  ///
1589  /// \returns 0 if the high order bit is not set, otherwise returns the number
1590  /// of 1 bits from the most significant to the least
1591  unsigned countLeadingOnes() const {
1592    if (isSingleWord())
1593      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594    return countLeadingOnesSlowCase();
1595  }
1596
1597  /// Computes the number of leading bits of this APInt that are equal to its
1598  /// sign bit.
1599  unsigned getNumSignBits() const {
1600    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601  }
1602
1603  /// \brief Count the number of trailing zero bits.
1604  ///
1605  /// This function is an APInt version of the countTrailingZeros
1606  /// functions in MathExtras.h. It counts the number of zeros from the least
1607  /// significant bit to the first set bit.
1608  ///
1609  /// \returns BitWidth if the value is zero, otherwise returns the number of
1610  /// zeros from the least significant bit to the first one bit.
1611  unsigned countTrailingZeros() const {
1612    if (isSingleWord())
1613      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614    return countTrailingZerosSlowCase();
1615  }
1616
1617  /// \brief Count the number of trailing one bits.
1618  ///
1619  /// This function is an APInt version of the countTrailingOnes
1620  /// functions in MathExtras.h. It counts the number of ones from the least
1621  /// significant bit to the first zero bit.
1622  ///
1623  /// \returns BitWidth if the value is all ones, otherwise returns the number
1624  /// of ones from the least significant bit to the first zero bit.
1625  unsigned countTrailingOnes() const {
1626    if (isSingleWord())
1627      return llvm::countTrailingOnes(U.VAL);
1628    return countTrailingOnesSlowCase();
1629  }
1630
1631  /// \brief Count the number of bits set.
1632  ///
1633  /// This function is an APInt version of the countPopulation functions
1634  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635  ///
1636  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637  unsigned countPopulation() const {
1638    if (isSingleWord())
1639      return llvm::countPopulation(U.VAL);
1640    return countPopulationSlowCase();
1641  }
1642
1643  /// @}
1644  /// \name Conversion Functions
1645  /// @{
1646  void print(raw_ostream &OS, bool isSigned) const;
1647
1648  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1649  /// SmallString.
1650  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651                bool formatAsCLiteral = false) const;
1652
1653  /// Considers the APInt to be unsigned and converts it into a string in the
1654  /// radix given. The radix can be 2, 8, 10 16, or 36.
1655  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656    toString(Str, Radix, false, false);
1657  }
1658
1659  /// Considers the APInt to be signed and converts it into a string in the
1660  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662    toString(Str, Radix, true, false);
1663  }
1664
1665  /// \brief Return the APInt as a std::string.
1666  ///
1667  /// Note that this is an inefficient method.  It is better to pass in a
1668  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669  /// for the string.
1670  std::string toString(unsigned Radix, bool Signed) const;
1671
1672  /// \returns a byte-swapped representation of this APInt Value.
1673  APInt byteSwap() const;
1674
1675  /// \returns the value with the bit representation reversed of this APInt
1676  /// Value.
1677  APInt reverseBits() const;
1678
1679  /// \brief Converts this APInt to a double value.
1680  double roundToDouble(bool isSigned) const;
1681
1682  /// \brief Converts this unsigned APInt to a double value.
1683  double roundToDouble() const { return roundToDouble(false); }
1684
1685  /// \brief Converts this signed APInt to a double value.
1686  double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688  /// \brief Converts APInt bits to a double
1689  ///
1690  /// The conversion does not do a translation from integer to double, it just
1691  /// re-interprets the bits as a double. Note that it is valid to do this on
1692  /// any bit width. Exactly 64 bits will be translated.
1693  double bitsToDouble() const {
1694    return BitsToDouble(getWord(0));
1695  }
1696
1697  /// \brief Converts APInt bits to a double
1698  ///
1699  /// The conversion does not do a translation from integer to float, it just
1700  /// re-interprets the bits as a float. Note that it is valid to do this on
1701  /// any bit width. Exactly 32 bits will be translated.
1702  float bitsToFloat() const {
1703    return BitsToFloat(getWord(0));
1704  }
1705
1706  /// \brief Converts a double to APInt bits.
1707  ///
1708  /// The conversion does not do a translation from double to integer, it just
1709  /// re-interprets the bits of the double.
1710  static APInt doubleToBits(double V) {
1711    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1712  }
1713
1714  /// \brief Converts a float to APInt bits.
1715  ///
1716  /// The conversion does not do a translation from float to integer, it just
1717  /// re-interprets the bits of the float.
1718  static APInt floatToBits(float V) {
1719    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1720  }
1721
1722  /// @}
1723  /// \name Mathematics Operations
1724  /// @{
1725
1726  /// \returns the floor log base 2 of this APInt.
1727  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1728
1729  /// \returns the ceil log base 2 of this APInt.
1730  unsigned ceilLogBase2() const {
1731    APInt temp(*this);
1732    --temp;
1733    return BitWidth - temp.countLeadingZeros();
1734  }
1735
1736  /// \returns the nearest log base 2 of this APInt. Ties round up.
1737  ///
1738  /// NOTE: When we have a BitWidth of 1, we define:
1739  ///
1740  ///   log2(0) = UINT32_MAX
1741  ///   log2(1) = 0
1742  ///
1743  /// to get around any mathematical concerns resulting from
1744  /// referencing 2 in a space where 2 does no exist.
1745  unsigned nearestLogBase2() const {
1746    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747    // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748    // UINT32_MAX.
1749    if (BitWidth == 1)
1750      return U.VAL - 1;
1751
1752    // Handle the zero case.
1753    if (isNullValue())
1754      return UINT32_MAX;
1755
1756    // The non-zero case is handled by computing:
1757    //
1758    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759    //
1760    // where x[i] is referring to the value of the ith bit of x.
1761    unsigned lg = logBase2();
1762    return lg + unsigned((*this)[lg - 1]);
1763  }
1764
1765  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766  /// otherwise
1767  int32_t exactLogBase2() const {
1768    if (!isPowerOf2())
1769      return -1;
1770    return logBase2();
1771  }
1772
1773  /// \brief Compute the square root
1774  APInt sqrt() const;
1775
1776  /// \brief Get the absolute value;
1777  ///
1778  /// If *this is < 0 then return -(*this), otherwise *this;
1779  APInt abs() const {
1780    if (isNegative())
1781      return -(*this);
1782    return *this;
1783  }
1784
1785  /// \returns the multiplicative inverse for a given modulo.
1786  APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788  /// @}
1789  /// \name Support for division by constant
1790  /// @{
1791
1792  /// Calculate the magic number for signed division by a constant.
1793  struct ms;
1794  ms magic() const;
1795
1796  /// Calculate the magic number for unsigned division by a constant.
1797  struct mu;
1798  mu magicu(unsigned LeadingZeros = 0) const;
1799
1800  /// @}
1801  /// \name Building-block Operations for APInt and APFloat
1802  /// @{
1803
1804  // These building block operations operate on a representation of arbitrary
1805  // precision, two's-complement, bignum integer values. They should be
1806  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807  // generally a pointer to the base of an array of integer parts, representing
1808  // an unsigned bignum, and a count of how many parts there are.
1809
1810  /// Sets the least significant part of a bignum to the input value, and zeroes
1811  /// out higher parts.
1812  static void tcSet(WordType *, WordType, unsigned);
1813
1814  /// Assign one bignum to another.
1815  static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817  /// Returns true if a bignum is zero, false otherwise.
1818  static bool tcIsZero(const WordType *, unsigned);
1819
1820  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1821  static int tcExtractBit(const WordType *, unsigned bit);
1822
1823  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825  /// significant bit of DST.  All high bits above srcBITS in DST are
1826  /// zero-filled.
1827  static void tcExtract(WordType *, unsigned dstCount,
1828                        const WordType *, unsigned srcBits,
1829                        unsigned srcLSB);
1830
1831  /// Set the given bit of a bignum.  Zero-based.
1832  static void tcSetBit(WordType *, unsigned bit);
1833
1834  /// Clear the given bit of a bignum.  Zero-based.
1835  static void tcClearBit(WordType *, unsigned bit);
1836
1837  /// Returns the bit number of the least or most significant set bit of a
1838  /// number.  If the input number has no bits set -1U is returned.
1839  static unsigned tcLSB(const WordType *, unsigned n);
1840  static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842  /// Negate a bignum in-place.
1843  static void tcNegate(WordType *, unsigned);
1844
1845  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1846  static WordType tcAdd(WordType *, const WordType *,
1847                        WordType carry, unsigned);
1848  /// DST += RHS.  Returns the carry flag.
1849  static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852  static WordType tcSubtract(WordType *, const WordType *,
1853                             WordType carry, unsigned);
1854  /// DST -= RHS.  Returns the carry flag.
1855  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857  /// DST += SRC * MULTIPLIER + PART   if add is true
1858  /// DST  = SRC * MULTIPLIER + PART   if add is false
1859  ///
1860  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1861  /// start at the same point, i.e. DST == SRC.
1862  ///
1863  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865  /// result, and if all of the omitted higher parts were zero return zero,
1866  /// otherwise overflow occurred and return one.
1867  static int tcMultiplyPart(WordType *dst, const WordType *src,
1868                            WordType multiplier, WordType carry,
1869                            unsigned srcParts, unsigned dstParts,
1870                            bool add);
1871
1872  /// DST = LHS * RHS, where DST has the same width as the operands and is
1873  /// filled with the least significant parts of the result.  Returns one if
1874  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1875  /// operands.
1876  static int tcMultiply(WordType *, const WordType *, const WordType *,
1877                        unsigned);
1878
1879  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880  /// operands. No overflow occurs. DST must be disjoint from both operands.
1881  static void tcFullMultiply(WordType *, const WordType *,
1882                             const WordType *, unsigned, unsigned);
1883
1884  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886  /// REMAINDER to the remainder, return zero.  i.e.
1887  ///
1888  ///  OLD_LHS = RHS * LHS + REMAINDER
1889  ///
1890  /// SCRATCH is a bignum of the same size as the operands and result for use by
1891  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1892  /// REMAINDER and SCRATCH must be distinct.
1893  static int tcDivide(WordType *lhs, const WordType *rhs,
1894                      WordType *remainder, WordType *scratch,
1895                      unsigned parts);
1896
1897  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898  /// restrictions on Count.
1899  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1902  /// restrictions on Count.
1903  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905  /// The obvious AND, OR and XOR and complement operations.
1906  static void tcAnd(WordType *, const WordType *, unsigned);
1907  static void tcOr(WordType *, const WordType *, unsigned);
1908  static void tcXor(WordType *, const WordType *, unsigned);
1909  static void tcComplement(WordType *, unsigned);
1910
1911  /// Comparison (unsigned) of two bignums.
1912  static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914  /// Increment a bignum in-place.  Return the carry flag.
1915  static WordType tcIncrement(WordType *dst, unsigned parts) {
1916    return tcAddPart(dst, 1, parts);
1917  }
1918
1919  /// Decrement a bignum in-place.  Return the borrow flag.
1920  static WordType tcDecrement(WordType *dst, unsigned parts) {
1921    return tcSubtractPart(dst, 1, parts);
1922  }
1923
1924  /// Set the least significant BITS and clear the rest.
1925  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927  /// \brief debug method
1928  void dump() const;
1929
1930  /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935  APInt m;    ///< magic number
1936  unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941  APInt m;    ///< magic number
1942  bool a;     ///< add indicator
1943  unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954  v.flipAllBits();
1955  return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959  a &= b;
1960  return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964  b &= a;
1965  return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969  a &= RHS;
1970  return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974  b &= LHS;
1975  return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979  a |= b;
1980  return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984  b |= a;
1985  return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989  a |= RHS;
1990  return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994  b |= LHS;
1995  return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999  a ^= b;
2000  return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004  b ^= a;
2005  return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009  a ^= RHS;
2010  return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014  b ^= LHS;
2015  return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019  I.print(OS, true);
2020  return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024  v.negate();
2025  return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029  a += b;
2030  return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034  b += a;
2035  return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039  a += RHS;
2040  return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044  b += LHS;
2045  return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049  a -= b;
2050  return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054  b.negate();
2055  b += a;
2056  return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060  a -= RHS;
2061  return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065  b.negate();
2066  b += LHS;
2067  return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071  a *= RHS;
2072  return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076  b *= LHS;
2077  return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085  return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090  return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095  return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100  return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115  return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122  return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127  return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134  return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146  return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif
2157