APInt.h revision 219077
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_APINT_H
16#define LLVM_APINT_H
17
18#include "llvm/Support/MathExtras.h"
19#include <cassert>
20#include <climits>
21#include <cstring>
22#include <string>
23
24namespace llvm {
25  class Serializer;
26  class Deserializer;
27  class FoldingSetNodeID;
28  class raw_ostream;
29  class StringRef;
30
31  template<typename T>
32  class SmallVectorImpl;
33
34  // An unsigned host type used as a single part of a multi-part
35  // bignum.
36  typedef uint64_t integerPart;
37
38  const unsigned int host_char_bit = 8;
39  const unsigned int integerPartWidth = host_char_bit *
40    static_cast<unsigned int>(sizeof(integerPart));
41
42//===----------------------------------------------------------------------===//
43//                              APInt Class
44//===----------------------------------------------------------------------===//
45
46/// APInt - This class represents arbitrary precision constant integral values.
47/// It is a functional replacement for common case unsigned integer type like
48/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50/// than 64-bits of precision. APInt provides a variety of arithmetic operators
51/// and methods to manipulate integer values of any bit-width. It supports both
52/// the typical integer arithmetic and comparison operations as well as bitwise
53/// manipulation.
54///
55/// The class has several invariants worth noting:
56///   * All bit, byte, and word positions are zero-based.
57///   * Once the bit width is set, it doesn't change except by the Truncate,
58///     SignExtend, or ZeroExtend operations.
59///   * All binary operators must be on APInt instances of the same bit width.
60///     Attempting to use these operators on instances with different bit
61///     widths will yield an assertion.
62///   * The value is stored canonically as an unsigned value. For operations
63///     where it makes a difference, there are both signed and unsigned variants
64///     of the operation. For example, sdiv and udiv. However, because the bit
65///     widths must be the same, operations such as Mul and Add produce the same
66///     results regardless of whether the values are interpreted as signed or
67///     not.
68///   * In general, the class tries to follow the style of computation that LLVM
69///     uses in its IR. This simplifies its use for LLVM.
70///
71/// @brief Class for arbitrary precision integers.
72class APInt {
73  unsigned BitWidth;      ///< The number of bits in this APInt.
74
75  /// This union is used to store the integer value. When the
76  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
77  union {
78    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
79    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
80  };
81
82  /// This enum is used to hold the constants we needed for APInt.
83  enum {
84    /// Bits in a word
85    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
86                          CHAR_BIT,
87    /// Byte size of a word
88    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
89  };
90
91  /// This constructor is used only internally for speed of construction of
92  /// temporaries. It is unsafe for general use so it is not public.
93  /// @brief Fast internal constructor
94  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
95
96  /// @returns true if the number of bits <= 64, false otherwise.
97  /// @brief Determine if this APInt just has one word to store value.
98  bool isSingleWord() const {
99    return BitWidth <= APINT_BITS_PER_WORD;
100  }
101
102  /// @returns the word position for the specified bit position.
103  /// @brief Determine which word a bit is in.
104  static unsigned whichWord(unsigned bitPosition) {
105    return bitPosition / APINT_BITS_PER_WORD;
106  }
107
108  /// @returns the bit position in a word for the specified bit position
109  /// in the APInt.
110  /// @brief Determine which bit in a word a bit is in.
111  static unsigned whichBit(unsigned bitPosition) {
112    return bitPosition % APINT_BITS_PER_WORD;
113  }
114
115  /// This method generates and returns a uint64_t (word) mask for a single
116  /// bit at a specific bit position. This is used to mask the bit in the
117  /// corresponding word.
118  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
119  /// @brief Get a single bit mask.
120  static uint64_t maskBit(unsigned bitPosition) {
121    return 1ULL << whichBit(bitPosition);
122  }
123
124  /// This method is used internally to clear the to "N" bits in the high order
125  /// word that are not used by the APInt. This is needed after the most
126  /// significant word is assigned a value to ensure that those bits are
127  /// zero'd out.
128  /// @brief Clear unused high order bits
129  APInt& clearUnusedBits() {
130    // Compute how many bits are used in the final word
131    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
132    if (wordBits == 0)
133      // If all bits are used, we want to leave the value alone. This also
134      // avoids the undefined behavior of >> when the shift is the same size as
135      // the word size (64).
136      return *this;
137
138    // Mask out the high bits.
139    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
140    if (isSingleWord())
141      VAL &= mask;
142    else
143      pVal[getNumWords() - 1] &= mask;
144    return *this;
145  }
146
147  /// @returns the corresponding word for the specified bit position.
148  /// @brief Get the word corresponding to a bit position
149  uint64_t getWord(unsigned bitPosition) const {
150    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
151  }
152
153  /// Converts a string into a number.  The string must be non-empty
154  /// and well-formed as a number of the given base. The bit-width
155  /// must be sufficient to hold the result.
156  ///
157  /// This is used by the constructors that take string arguments.
158  ///
159  /// StringRef::getAsInteger is superficially similar but (1) does
160  /// not assume that the string is well-formed and (2) grows the
161  /// result to hold the input.
162  ///
163  /// @param radix 2, 8, 10, or 16
164  /// @brief Convert a char array into an APInt
165  void fromString(unsigned numBits, StringRef str, uint8_t radix);
166
167  /// This is used by the toString method to divide by the radix. It simply
168  /// provides a more convenient form of divide for internal use since KnuthDiv
169  /// has specific constraints on its inputs. If those constraints are not met
170  /// then it provides a simpler form of divide.
171  /// @brief An internal division function for dividing APInts.
172  static void divide(const APInt LHS, unsigned lhsWords,
173                     const APInt &RHS, unsigned rhsWords,
174                     APInt *Quotient, APInt *Remainder);
175
176  /// out-of-line slow case for inline constructor
177  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
178
179  /// out-of-line slow case for inline copy constructor
180  void initSlowCase(const APInt& that);
181
182  /// out-of-line slow case for shl
183  APInt shlSlowCase(unsigned shiftAmt) const;
184
185  /// out-of-line slow case for operator&
186  APInt AndSlowCase(const APInt& RHS) const;
187
188  /// out-of-line slow case for operator|
189  APInt OrSlowCase(const APInt& RHS) const;
190
191  /// out-of-line slow case for operator^
192  APInt XorSlowCase(const APInt& RHS) const;
193
194  /// out-of-line slow case for operator=
195  APInt& AssignSlowCase(const APInt& RHS);
196
197  /// out-of-line slow case for operator==
198  bool EqualSlowCase(const APInt& RHS) const;
199
200  /// out-of-line slow case for operator==
201  bool EqualSlowCase(uint64_t Val) const;
202
203  /// out-of-line slow case for countLeadingZeros
204  unsigned countLeadingZerosSlowCase() const;
205
206  /// out-of-line slow case for countTrailingOnes
207  unsigned countTrailingOnesSlowCase() const;
208
209  /// out-of-line slow case for countPopulation
210  unsigned countPopulationSlowCase() const;
211
212public:
213  /// @name Constructors
214  /// @{
215  /// If isSigned is true then val is treated as if it were a signed value
216  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
217  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
218  /// the range of val are zero filled).
219  /// @param numBits the bit width of the constructed APInt
220  /// @param val the initial value of the APInt
221  /// @param isSigned how to treat signedness of val
222  /// @brief Create a new APInt of numBits width, initialized as val.
223  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
224    : BitWidth(numBits), VAL(0) {
225    assert(BitWidth && "bitwidth too small");
226    if (isSingleWord())
227      VAL = val;
228    else
229      initSlowCase(numBits, val, isSigned);
230    clearUnusedBits();
231  }
232
233  /// Note that numWords can be smaller or larger than the corresponding bit
234  /// width but any extraneous bits will be dropped.
235  /// @param numBits the bit width of the constructed APInt
236  /// @param numWords the number of words in bigVal
237  /// @param bigVal a sequence of words to form the initial value of the APInt
238  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
239  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
240
241  /// This constructor interprets the string \arg str in the given radix. The
242  /// interpretation stops when the first character that is not suitable for the
243  /// radix is encountered, or the end of the string. Acceptable radix values
244  /// are 2, 8, 10 and 16. It is an error for the value implied by the string to
245  /// require more bits than numBits.
246  ///
247  /// @param numBits the bit width of the constructed APInt
248  /// @param str the string to be interpreted
249  /// @param radix the radix to use for the conversion
250  /// @brief Construct an APInt from a string representation.
251  APInt(unsigned numBits, StringRef str, uint8_t radix);
252
253  /// Simply makes *this a copy of that.
254  /// @brief Copy Constructor.
255  APInt(const APInt& that)
256    : BitWidth(that.BitWidth), VAL(0) {
257    assert(BitWidth && "bitwidth too small");
258    if (isSingleWord())
259      VAL = that.VAL;
260    else
261      initSlowCase(that);
262  }
263
264  /// @brief Destructor.
265  ~APInt() {
266    if (!isSingleWord())
267      delete [] pVal;
268  }
269
270  /// Default constructor that creates an uninitialized APInt.  This is useful
271  ///  for object deserialization (pair this with the static method Read).
272  explicit APInt() : BitWidth(1) {}
273
274  /// Profile - Used to insert APInt objects, or objects that contain APInt
275  ///  objects, into FoldingSets.
276  void Profile(FoldingSetNodeID& id) const;
277
278  /// @}
279  /// @name Value Tests
280  /// @{
281  /// This tests the high bit of this APInt to determine if it is set.
282  /// @returns true if this APInt is negative, false otherwise
283  /// @brief Determine sign of this APInt.
284  bool isNegative() const {
285    return (*this)[BitWidth - 1];
286  }
287
288  /// This tests the high bit of the APInt to determine if it is unset.
289  /// @brief Determine if this APInt Value is non-negative (>= 0)
290  bool isNonNegative() const {
291    return !isNegative();
292  }
293
294  /// This tests if the value of this APInt is positive (> 0). Note
295  /// that 0 is not a positive value.
296  /// @returns true if this APInt is positive.
297  /// @brief Determine if this APInt Value is positive.
298  bool isStrictlyPositive() const {
299    return isNonNegative() && !!*this;
300  }
301
302  /// This checks to see if the value has all bits of the APInt are set or not.
303  /// @brief Determine if all bits are set
304  bool isAllOnesValue() const {
305    return countPopulation() == BitWidth;
306  }
307
308  /// This checks to see if the value of this APInt is the maximum unsigned
309  /// value for the APInt's bit width.
310  /// @brief Determine if this is the largest unsigned value.
311  bool isMaxValue() const {
312    return countPopulation() == BitWidth;
313  }
314
315  /// This checks to see if the value of this APInt is the maximum signed
316  /// value for the APInt's bit width.
317  /// @brief Determine if this is the largest signed value.
318  bool isMaxSignedValue() const {
319    return BitWidth == 1 ? VAL == 0 :
320                          !isNegative() && countPopulation() == BitWidth - 1;
321  }
322
323  /// This checks to see if the value of this APInt is the minimum unsigned
324  /// value for the APInt's bit width.
325  /// @brief Determine if this is the smallest unsigned value.
326  bool isMinValue() const {
327    return !*this;
328  }
329
330  /// This checks to see if the value of this APInt is the minimum signed
331  /// value for the APInt's bit width.
332  /// @brief Determine if this is the smallest signed value.
333  bool isMinSignedValue() const {
334    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
335  }
336
337  /// @brief Check if this APInt has an N-bits unsigned integer value.
338  bool isIntN(unsigned N) const {
339    assert(N && "N == 0 ???");
340    if (N >= getBitWidth())
341      return true;
342
343    if (isSingleWord())
344      return isUIntN(N, VAL);
345    return APInt(N, getNumWords(), pVal).zext(getBitWidth()) == (*this);
346  }
347
348  /// @brief Check if this APInt has an N-bits signed integer value.
349  bool isSignedIntN(unsigned N) const {
350    assert(N && "N == 0 ???");
351    return getMinSignedBits() <= N;
352  }
353
354  /// @returns true if the argument APInt value is a power of two > 0.
355  bool isPowerOf2() const {
356    if (isSingleWord())
357      return isPowerOf2_64(VAL);
358    return countPopulationSlowCase() == 1;
359  }
360
361  /// isSignBit - Return true if this is the value returned by getSignBit.
362  bool isSignBit() const { return isMinSignedValue(); }
363
364  /// This converts the APInt to a boolean value as a test against zero.
365  /// @brief Boolean conversion function.
366  bool getBoolValue() const {
367    return !!*this;
368  }
369
370  /// getLimitedValue - If this value is smaller than the specified limit,
371  /// return it, otherwise return the limit value.  This causes the value
372  /// to saturate to the limit.
373  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
374    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
375      Limit :  getZExtValue();
376  }
377
378  /// @}
379  /// @name Value Generators
380  /// @{
381  /// @brief Gets maximum unsigned value of APInt for specific bit width.
382  static APInt getMaxValue(unsigned numBits) {
383    return getAllOnesValue(numBits);
384  }
385
386  /// @brief Gets maximum signed value of APInt for a specific bit width.
387  static APInt getSignedMaxValue(unsigned numBits) {
388    APInt API = getAllOnesValue(numBits);
389    API.clearBit(numBits - 1);
390    return API;
391  }
392
393  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
394  static APInt getMinValue(unsigned numBits) {
395    return APInt(numBits, 0);
396  }
397
398  /// @brief Gets minimum signed value of APInt for a specific bit width.
399  static APInt getSignedMinValue(unsigned numBits) {
400    APInt API(numBits, 0);
401    API.setBit(numBits - 1);
402    return API;
403  }
404
405  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
406  /// it helps code readability when we want to get a SignBit.
407  /// @brief Get the SignBit for a specific bit width.
408  static APInt getSignBit(unsigned BitWidth) {
409    return getSignedMinValue(BitWidth);
410  }
411
412  /// @returns the all-ones value for an APInt of the specified bit-width.
413  /// @brief Get the all-ones value.
414  static APInt getAllOnesValue(unsigned numBits) {
415    return APInt(numBits, -1ULL, true);
416  }
417
418  /// @returns the '0' value for an APInt of the specified bit-width.
419  /// @brief Get the '0' value.
420  static APInt getNullValue(unsigned numBits) {
421    return APInt(numBits, 0);
422  }
423
424  /// Get an APInt with the same BitWidth as this APInt, just zero mask
425  /// the low bits and right shift to the least significant bit.
426  /// @returns the high "numBits" bits of this APInt.
427  APInt getHiBits(unsigned numBits) const;
428
429  /// Get an APInt with the same BitWidth as this APInt, just zero mask
430  /// the high bits.
431  /// @returns the low "numBits" bits of this APInt.
432  APInt getLoBits(unsigned numBits) const;
433
434  /// getOneBitSet - Return an APInt with exactly one bit set in the result.
435  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
436    APInt Res(numBits, 0);
437    Res.setBit(BitNo);
438    return Res;
439  }
440
441  /// Constructs an APInt value that has a contiguous range of bits set. The
442  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
443  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
444  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
445  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
446  /// @param numBits the intended bit width of the result
447  /// @param loBit the index of the lowest bit set.
448  /// @param hiBit the index of the highest bit set.
449  /// @returns An APInt value with the requested bits set.
450  /// @brief Get a value with a block of bits set.
451  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
452    assert(hiBit <= numBits && "hiBit out of range");
453    assert(loBit < numBits && "loBit out of range");
454    if (hiBit < loBit)
455      return getLowBitsSet(numBits, hiBit) |
456             getHighBitsSet(numBits, numBits-loBit);
457    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
458  }
459
460  /// Constructs an APInt value that has the top hiBitsSet bits set.
461  /// @param numBits the bitwidth of the result
462  /// @param hiBitsSet the number of high-order bits set in the result.
463  /// @brief Get a value with high bits set
464  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
465    assert(hiBitsSet <= numBits && "Too many bits to set!");
466    // Handle a degenerate case, to avoid shifting by word size
467    if (hiBitsSet == 0)
468      return APInt(numBits, 0);
469    unsigned shiftAmt = numBits - hiBitsSet;
470    // For small values, return quickly
471    if (numBits <= APINT_BITS_PER_WORD)
472      return APInt(numBits, ~0ULL << shiftAmt);
473    return getAllOnesValue(numBits).shl(shiftAmt);
474  }
475
476  /// Constructs an APInt value that has the bottom loBitsSet bits set.
477  /// @param numBits the bitwidth of the result
478  /// @param loBitsSet the number of low-order bits set in the result.
479  /// @brief Get a value with low bits set
480  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
481    assert(loBitsSet <= numBits && "Too many bits to set!");
482    // Handle a degenerate case, to avoid shifting by word size
483    if (loBitsSet == 0)
484      return APInt(numBits, 0);
485    if (loBitsSet == APINT_BITS_PER_WORD)
486      return APInt(numBits, -1ULL);
487    // For small values, return quickly.
488    if (numBits < APINT_BITS_PER_WORD)
489      return APInt(numBits, (1ULL << loBitsSet) - 1);
490    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
491  }
492
493  /// The hash value is computed as the sum of the words and the bit width.
494  /// @returns A hash value computed from the sum of the APInt words.
495  /// @brief Get a hash value based on this APInt
496  uint64_t getHashValue() const;
497
498  /// This function returns a pointer to the internal storage of the APInt.
499  /// This is useful for writing out the APInt in binary form without any
500  /// conversions.
501  const uint64_t* getRawData() const {
502    if (isSingleWord())
503      return &VAL;
504    return &pVal[0];
505  }
506
507  /// @}
508  /// @name Unary Operators
509  /// @{
510  /// @returns a new APInt value representing *this incremented by one
511  /// @brief Postfix increment operator.
512  const APInt operator++(int) {
513    APInt API(*this);
514    ++(*this);
515    return API;
516  }
517
518  /// @returns *this incremented by one
519  /// @brief Prefix increment operator.
520  APInt& operator++();
521
522  /// @returns a new APInt representing *this decremented by one.
523  /// @brief Postfix decrement operator.
524  const APInt operator--(int) {
525    APInt API(*this);
526    --(*this);
527    return API;
528  }
529
530  /// @returns *this decremented by one.
531  /// @brief Prefix decrement operator.
532  APInt& operator--();
533
534  /// Performs a bitwise complement operation on this APInt.
535  /// @returns an APInt that is the bitwise complement of *this
536  /// @brief Unary bitwise complement operator.
537  APInt operator~() const {
538    APInt Result(*this);
539    Result.flipAllBits();
540    return Result;
541  }
542
543  /// Negates *this using two's complement logic.
544  /// @returns An APInt value representing the negation of *this.
545  /// @brief Unary negation operator
546  APInt operator-() const {
547    return APInt(BitWidth, 0) - (*this);
548  }
549
550  /// Performs logical negation operation on this APInt.
551  /// @returns true if *this is zero, false otherwise.
552  /// @brief Logical negation operator.
553  bool operator!() const;
554
555  /// @}
556  /// @name Assignment Operators
557  /// @{
558  /// @returns *this after assignment of RHS.
559  /// @brief Copy assignment operator.
560  APInt& operator=(const APInt& RHS) {
561    // If the bitwidths are the same, we can avoid mucking with memory
562    if (isSingleWord() && RHS.isSingleWord()) {
563      VAL = RHS.VAL;
564      BitWidth = RHS.BitWidth;
565      return clearUnusedBits();
566    }
567
568    return AssignSlowCase(RHS);
569  }
570
571  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
572  /// the bit width, the excess bits are truncated. If the bit width is larger
573  /// than 64, the value is zero filled in the unspecified high order bits.
574  /// @returns *this after assignment of RHS value.
575  /// @brief Assignment operator.
576  APInt& operator=(uint64_t RHS);
577
578  /// Performs a bitwise AND operation on this APInt and RHS. The result is
579  /// assigned to *this.
580  /// @returns *this after ANDing with RHS.
581  /// @brief Bitwise AND assignment operator.
582  APInt& operator&=(const APInt& RHS);
583
584  /// Performs a bitwise OR operation on this APInt and RHS. The result is
585  /// assigned *this;
586  /// @returns *this after ORing with RHS.
587  /// @brief Bitwise OR assignment operator.
588  APInt& operator|=(const APInt& RHS);
589
590  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
591  /// logically zero-extended or truncated to match the bit-width of
592  /// the LHS.
593  ///
594  /// @brief Bitwise OR assignment operator.
595  APInt& operator|=(uint64_t RHS) {
596    if (isSingleWord()) {
597      VAL |= RHS;
598      clearUnusedBits();
599    } else {
600      pVal[0] |= RHS;
601    }
602    return *this;
603  }
604
605  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
606  /// assigned to *this.
607  /// @returns *this after XORing with RHS.
608  /// @brief Bitwise XOR assignment operator.
609  APInt& operator^=(const APInt& RHS);
610
611  /// Multiplies this APInt by RHS and assigns the result to *this.
612  /// @returns *this
613  /// @brief Multiplication assignment operator.
614  APInt& operator*=(const APInt& RHS);
615
616  /// Adds RHS to *this and assigns the result to *this.
617  /// @returns *this
618  /// @brief Addition assignment operator.
619  APInt& operator+=(const APInt& RHS);
620
621  /// Subtracts RHS from *this and assigns the result to *this.
622  /// @returns *this
623  /// @brief Subtraction assignment operator.
624  APInt& operator-=(const APInt& RHS);
625
626  /// Shifts *this left by shiftAmt and assigns the result to *this.
627  /// @returns *this after shifting left by shiftAmt
628  /// @brief Left-shift assignment function.
629  APInt& operator<<=(unsigned shiftAmt) {
630    *this = shl(shiftAmt);
631    return *this;
632  }
633
634  /// @}
635  /// @name Binary Operators
636  /// @{
637  /// Performs a bitwise AND operation on *this and RHS.
638  /// @returns An APInt value representing the bitwise AND of *this and RHS.
639  /// @brief Bitwise AND operator.
640  APInt operator&(const APInt& RHS) const {
641    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
642    if (isSingleWord())
643      return APInt(getBitWidth(), VAL & RHS.VAL);
644    return AndSlowCase(RHS);
645  }
646  APInt And(const APInt& RHS) const {
647    return this->operator&(RHS);
648  }
649
650  /// Performs a bitwise OR operation on *this and RHS.
651  /// @returns An APInt value representing the bitwise OR of *this and RHS.
652  /// @brief Bitwise OR operator.
653  APInt operator|(const APInt& RHS) const {
654    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
655    if (isSingleWord())
656      return APInt(getBitWidth(), VAL | RHS.VAL);
657    return OrSlowCase(RHS);
658  }
659  APInt Or(const APInt& RHS) const {
660    return this->operator|(RHS);
661  }
662
663  /// Performs a bitwise XOR operation on *this and RHS.
664  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
665  /// @brief Bitwise XOR operator.
666  APInt operator^(const APInt& RHS) const {
667    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
668    if (isSingleWord())
669      return APInt(BitWidth, VAL ^ RHS.VAL);
670    return XorSlowCase(RHS);
671  }
672  APInt Xor(const APInt& RHS) const {
673    return this->operator^(RHS);
674  }
675
676  /// Multiplies this APInt by RHS and returns the result.
677  /// @brief Multiplication operator.
678  APInt operator*(const APInt& RHS) const;
679
680  /// Adds RHS to this APInt and returns the result.
681  /// @brief Addition operator.
682  APInt operator+(const APInt& RHS) const;
683  APInt operator+(uint64_t RHS) const {
684    return (*this) + APInt(BitWidth, RHS);
685  }
686
687  /// Subtracts RHS from this APInt and returns the result.
688  /// @brief Subtraction operator.
689  APInt operator-(const APInt& RHS) const;
690  APInt operator-(uint64_t RHS) const {
691    return (*this) - APInt(BitWidth, RHS);
692  }
693
694  APInt operator<<(unsigned Bits) const {
695    return shl(Bits);
696  }
697
698  APInt operator<<(const APInt &Bits) const {
699    return shl(Bits);
700  }
701
702  /// Arithmetic right-shift this APInt by shiftAmt.
703  /// @brief Arithmetic right-shift function.
704  APInt ashr(unsigned shiftAmt) const;
705
706  /// Logical right-shift this APInt by shiftAmt.
707  /// @brief Logical right-shift function.
708  APInt lshr(unsigned shiftAmt) const;
709
710  /// Left-shift this APInt by shiftAmt.
711  /// @brief Left-shift function.
712  APInt shl(unsigned shiftAmt) const {
713    assert(shiftAmt <= BitWidth && "Invalid shift amount");
714    if (isSingleWord()) {
715      if (shiftAmt == BitWidth)
716        return APInt(BitWidth, 0); // avoid undefined shift results
717      return APInt(BitWidth, VAL << shiftAmt);
718    }
719    return shlSlowCase(shiftAmt);
720  }
721
722  /// @brief Rotate left by rotateAmt.
723  APInt rotl(unsigned rotateAmt) const;
724
725  /// @brief Rotate right by rotateAmt.
726  APInt rotr(unsigned rotateAmt) const;
727
728  /// Arithmetic right-shift this APInt by shiftAmt.
729  /// @brief Arithmetic right-shift function.
730  APInt ashr(const APInt &shiftAmt) const;
731
732  /// Logical right-shift this APInt by shiftAmt.
733  /// @brief Logical right-shift function.
734  APInt lshr(const APInt &shiftAmt) const;
735
736  /// Left-shift this APInt by shiftAmt.
737  /// @brief Left-shift function.
738  APInt shl(const APInt &shiftAmt) const;
739
740  /// @brief Rotate left by rotateAmt.
741  APInt rotl(const APInt &rotateAmt) const;
742
743  /// @brief Rotate right by rotateAmt.
744  APInt rotr(const APInt &rotateAmt) const;
745
746  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
747  /// RHS are treated as unsigned quantities for purposes of this division.
748  /// @returns a new APInt value containing the division result
749  /// @brief Unsigned division operation.
750  APInt udiv(const APInt &RHS) const;
751
752  /// Signed divide this APInt by APInt RHS.
753  /// @brief Signed division function for APInt.
754  APInt sdiv(const APInt &RHS) const {
755    if (isNegative())
756      if (RHS.isNegative())
757        return (-(*this)).udiv(-RHS);
758      else
759        return -((-(*this)).udiv(RHS));
760    else if (RHS.isNegative())
761      return -(this->udiv(-RHS));
762    return this->udiv(RHS);
763  }
764
765  /// Perform an unsigned remainder operation on this APInt with RHS being the
766  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
767  /// of this operation. Note that this is a true remainder operation and not
768  /// a modulo operation because the sign follows the sign of the dividend
769  /// which is *this.
770  /// @returns a new APInt value containing the remainder result
771  /// @brief Unsigned remainder operation.
772  APInt urem(const APInt &RHS) const;
773
774  /// Signed remainder operation on APInt.
775  /// @brief Function for signed remainder operation.
776  APInt srem(const APInt &RHS) const {
777    if (isNegative())
778      if (RHS.isNegative())
779        return -((-(*this)).urem(-RHS));
780      else
781        return -((-(*this)).urem(RHS));
782    else if (RHS.isNegative())
783      return this->urem(-RHS);
784    return this->urem(RHS);
785  }
786
787  /// Sometimes it is convenient to divide two APInt values and obtain both the
788  /// quotient and remainder. This function does both operations in the same
789  /// computation making it a little more efficient. The pair of input arguments
790  /// may overlap with the pair of output arguments. It is safe to call
791  /// udivrem(X, Y, X, Y), for example.
792  /// @brief Dual division/remainder interface.
793  static void udivrem(const APInt &LHS, const APInt &RHS,
794                      APInt &Quotient, APInt &Remainder);
795
796  static void sdivrem(const APInt &LHS, const APInt &RHS,
797                      APInt &Quotient, APInt &Remainder) {
798    if (LHS.isNegative()) {
799      if (RHS.isNegative())
800        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
801      else
802        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
803      Quotient = -Quotient;
804      Remainder = -Remainder;
805    } else if (RHS.isNegative()) {
806      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
807      Quotient = -Quotient;
808    } else {
809      APInt::udivrem(LHS, RHS, Quotient, Remainder);
810    }
811  }
812
813
814  // Operations that return overflow indicators.
815  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
816  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
817  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
818  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
819  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
820  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
821  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
822
823  /// @returns the bit value at bitPosition
824  /// @brief Array-indexing support.
825  bool operator[](unsigned bitPosition) const;
826
827  /// @}
828  /// @name Comparison Operators
829  /// @{
830  /// Compares this APInt with RHS for the validity of the equality
831  /// relationship.
832  /// @brief Equality operator.
833  bool operator==(const APInt& RHS) const {
834    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
835    if (isSingleWord())
836      return VAL == RHS.VAL;
837    return EqualSlowCase(RHS);
838  }
839
840  /// Compares this APInt with a uint64_t for the validity of the equality
841  /// relationship.
842  /// @returns true if *this == Val
843  /// @brief Equality operator.
844  bool operator==(uint64_t Val) const {
845    if (isSingleWord())
846      return VAL == Val;
847    return EqualSlowCase(Val);
848  }
849
850  /// Compares this APInt with RHS for the validity of the equality
851  /// relationship.
852  /// @returns true if *this == Val
853  /// @brief Equality comparison.
854  bool eq(const APInt &RHS) const {
855    return (*this) == RHS;
856  }
857
858  /// Compares this APInt with RHS for the validity of the inequality
859  /// relationship.
860  /// @returns true if *this != Val
861  /// @brief Inequality operator.
862  bool operator!=(const APInt& RHS) const {
863    return !((*this) == RHS);
864  }
865
866  /// Compares this APInt with a uint64_t for the validity of the inequality
867  /// relationship.
868  /// @returns true if *this != Val
869  /// @brief Inequality operator.
870  bool operator!=(uint64_t Val) const {
871    return !((*this) == Val);
872  }
873
874  /// Compares this APInt with RHS for the validity of the inequality
875  /// relationship.
876  /// @returns true if *this != Val
877  /// @brief Inequality comparison
878  bool ne(const APInt &RHS) const {
879    return !((*this) == RHS);
880  }
881
882  /// Regards both *this and RHS as unsigned quantities and compares them for
883  /// the validity of the less-than relationship.
884  /// @returns true if *this < RHS when both are considered unsigned.
885  /// @brief Unsigned less than comparison
886  bool ult(const APInt &RHS) const;
887
888  /// Regards both *this as an unsigned quantity and compares it with RHS for
889  /// the validity of the less-than relationship.
890  /// @returns true if *this < RHS when considered unsigned.
891  /// @brief Unsigned less than comparison
892  bool ult(uint64_t RHS) const {
893    return ult(APInt(getBitWidth(), RHS));
894  }
895
896  /// Regards both *this and RHS as signed quantities and compares them for
897  /// validity of the less-than relationship.
898  /// @returns true if *this < RHS when both are considered signed.
899  /// @brief Signed less than comparison
900  bool slt(const APInt& RHS) const;
901
902  /// Regards both *this as a signed quantity and compares it with RHS for
903  /// the validity of the less-than relationship.
904  /// @returns true if *this < RHS when considered signed.
905  /// @brief Signed less than comparison
906  bool slt(uint64_t RHS) const {
907    return slt(APInt(getBitWidth(), RHS));
908  }
909
910  /// Regards both *this and RHS as unsigned quantities and compares them for
911  /// validity of the less-or-equal relationship.
912  /// @returns true if *this <= RHS when both are considered unsigned.
913  /// @brief Unsigned less or equal comparison
914  bool ule(const APInt& RHS) const {
915    return ult(RHS) || eq(RHS);
916  }
917
918  /// Regards both *this as an unsigned quantity and compares it with RHS for
919  /// the validity of the less-or-equal relationship.
920  /// @returns true if *this <= RHS when considered unsigned.
921  /// @brief Unsigned less or equal comparison
922  bool ule(uint64_t RHS) const {
923    return ule(APInt(getBitWidth(), RHS));
924  }
925
926  /// Regards both *this and RHS as signed quantities and compares them for
927  /// validity of the less-or-equal relationship.
928  /// @returns true if *this <= RHS when both are considered signed.
929  /// @brief Signed less or equal comparison
930  bool sle(const APInt& RHS) const {
931    return slt(RHS) || eq(RHS);
932  }
933
934  /// Regards both *this as a signed quantity and compares it with RHS for
935  /// the validity of the less-or-equal relationship.
936  /// @returns true if *this <= RHS when considered signed.
937  /// @brief Signed less or equal comparison
938  bool sle(uint64_t RHS) const {
939    return sle(APInt(getBitWidth(), RHS));
940  }
941
942  /// Regards both *this and RHS as unsigned quantities and compares them for
943  /// the validity of the greater-than relationship.
944  /// @returns true if *this > RHS when both are considered unsigned.
945  /// @brief Unsigned greather than comparison
946  bool ugt(const APInt& RHS) const {
947    return !ult(RHS) && !eq(RHS);
948  }
949
950  /// Regards both *this as an unsigned quantity and compares it with RHS for
951  /// the validity of the greater-than relationship.
952  /// @returns true if *this > RHS when considered unsigned.
953  /// @brief Unsigned greater than comparison
954  bool ugt(uint64_t RHS) const {
955    return ugt(APInt(getBitWidth(), RHS));
956  }
957
958  /// Regards both *this and RHS as signed quantities and compares them for
959  /// the validity of the greater-than relationship.
960  /// @returns true if *this > RHS when both are considered signed.
961  /// @brief Signed greather than comparison
962  bool sgt(const APInt& RHS) const {
963    return !slt(RHS) && !eq(RHS);
964  }
965
966  /// Regards both *this as a signed quantity and compares it with RHS for
967  /// the validity of the greater-than relationship.
968  /// @returns true if *this > RHS when considered signed.
969  /// @brief Signed greater than comparison
970  bool sgt(uint64_t RHS) const {
971    return sgt(APInt(getBitWidth(), RHS));
972  }
973
974  /// Regards both *this and RHS as unsigned quantities and compares them for
975  /// validity of the greater-or-equal relationship.
976  /// @returns true if *this >= RHS when both are considered unsigned.
977  /// @brief Unsigned greater or equal comparison
978  bool uge(const APInt& RHS) const {
979    return !ult(RHS);
980  }
981
982  /// Regards both *this as an unsigned quantity and compares it with RHS for
983  /// the validity of the greater-or-equal relationship.
984  /// @returns true if *this >= RHS when considered unsigned.
985  /// @brief Unsigned greater or equal comparison
986  bool uge(uint64_t RHS) const {
987    return uge(APInt(getBitWidth(), RHS));
988  }
989
990  /// Regards both *this and RHS as signed quantities and compares them for
991  /// validity of the greater-or-equal relationship.
992  /// @returns true if *this >= RHS when both are considered signed.
993  /// @brief Signed greather or equal comparison
994  bool sge(const APInt& RHS) const {
995    return !slt(RHS);
996  }
997
998  /// Regards both *this as a signed quantity and compares it with RHS for
999  /// the validity of the greater-or-equal relationship.
1000  /// @returns true if *this >= RHS when considered signed.
1001  /// @brief Signed greater or equal comparison
1002  bool sge(uint64_t RHS) const {
1003    return sge(APInt(getBitWidth(), RHS));
1004  }
1005
1006
1007
1008
1009  /// This operation tests if there are any pairs of corresponding bits
1010  /// between this APInt and RHS that are both set.
1011  bool intersects(const APInt &RHS) const {
1012    return (*this & RHS) != 0;
1013  }
1014
1015  /// @}
1016  /// @name Resizing Operators
1017  /// @{
1018  /// Truncate the APInt to a specified width. It is an error to specify a width
1019  /// that is greater than or equal to the current width.
1020  /// @brief Truncate to new width.
1021  APInt trunc(unsigned width) const;
1022
1023  /// This operation sign extends the APInt to a new width. If the high order
1024  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1025  /// It is an error to specify a width that is less than or equal to the
1026  /// current width.
1027  /// @brief Sign extend to a new width.
1028  APInt sext(unsigned width) const;
1029
1030  /// This operation zero extends the APInt to a new width. The high order bits
1031  /// are filled with 0 bits.  It is an error to specify a width that is less
1032  /// than or equal to the current width.
1033  /// @brief Zero extend to a new width.
1034  APInt zext(unsigned width) const;
1035
1036  /// Make this APInt have the bit width given by \p width. The value is sign
1037  /// extended, truncated, or left alone to make it that width.
1038  /// @brief Sign extend or truncate to width
1039  APInt sextOrTrunc(unsigned width) const;
1040
1041  /// Make this APInt have the bit width given by \p width. The value is zero
1042  /// extended, truncated, or left alone to make it that width.
1043  /// @brief Zero extend or truncate to width
1044  APInt zextOrTrunc(unsigned width) const;
1045
1046  /// @}
1047  /// @name Bit Manipulation Operators
1048  /// @{
1049  /// @brief Set every bit to 1.
1050  void setAllBits() {
1051    if (isSingleWord())
1052      VAL = -1ULL;
1053    else {
1054      // Set all the bits in all the words.
1055      for (unsigned i = 0; i < getNumWords(); ++i)
1056	pVal[i] = -1ULL;
1057    }
1058    // Clear the unused ones
1059    clearUnusedBits();
1060  }
1061
1062  /// Set the given bit to 1 whose position is given as "bitPosition".
1063  /// @brief Set a given bit to 1.
1064  void setBit(unsigned bitPosition);
1065
1066  /// @brief Set every bit to 0.
1067  void clearAllBits() {
1068    if (isSingleWord())
1069      VAL = 0;
1070    else
1071      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1072  }
1073
1074  /// Set the given bit to 0 whose position is given as "bitPosition".
1075  /// @brief Set a given bit to 0.
1076  void clearBit(unsigned bitPosition);
1077
1078  /// @brief Toggle every bit to its opposite value.
1079  void flipAllBits() {
1080    if (isSingleWord())
1081      VAL ^= -1ULL;
1082    else {
1083      for (unsigned i = 0; i < getNumWords(); ++i)
1084        pVal[i] ^= -1ULL;
1085    }
1086    clearUnusedBits();
1087  }
1088
1089  /// Toggle a given bit to its opposite value whose position is given
1090  /// as "bitPosition".
1091  /// @brief Toggles a given bit to its opposite value.
1092  void flipBit(unsigned bitPosition);
1093
1094  /// @}
1095  /// @name Value Characterization Functions
1096  /// @{
1097
1098  /// @returns the total number of bits.
1099  unsigned getBitWidth() const {
1100    return BitWidth;
1101  }
1102
1103  /// Here one word's bitwidth equals to that of uint64_t.
1104  /// @returns the number of words to hold the integer value of this APInt.
1105  /// @brief Get the number of words.
1106  unsigned getNumWords() const {
1107    return getNumWords(BitWidth);
1108  }
1109
1110  /// Here one word's bitwidth equals to that of uint64_t.
1111  /// @returns the number of words to hold the integer value with a
1112  /// given bit width.
1113  /// @brief Get the number of words.
1114  static unsigned getNumWords(unsigned BitWidth) {
1115    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1116  }
1117
1118  /// This function returns the number of active bits which is defined as the
1119  /// bit width minus the number of leading zeros. This is used in several
1120  /// computations to see how "wide" the value is.
1121  /// @brief Compute the number of active bits in the value
1122  unsigned getActiveBits() const {
1123    return BitWidth - countLeadingZeros();
1124  }
1125
1126  /// This function returns the number of active words in the value of this
1127  /// APInt. This is used in conjunction with getActiveData to extract the raw
1128  /// value of the APInt.
1129  unsigned getActiveWords() const {
1130    return whichWord(getActiveBits()-1) + 1;
1131  }
1132
1133  /// Computes the minimum bit width for this APInt while considering it to be
1134  /// a signed (and probably negative) value. If the value is not negative,
1135  /// this function returns the same value as getActiveBits()+1. Otherwise, it
1136  /// returns the smallest bit width that will retain the negative value. For
1137  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1138  /// for -1, this function will always return 1.
1139  /// @brief Get the minimum bit size for this signed APInt
1140  unsigned getMinSignedBits() const {
1141    if (isNegative())
1142      return BitWidth - countLeadingOnes() + 1;
1143    return getActiveBits()+1;
1144  }
1145
1146  /// This method attempts to return the value of this APInt as a zero extended
1147  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1148  /// uint64_t. Otherwise an assertion will result.
1149  /// @brief Get zero extended value
1150  uint64_t getZExtValue() const {
1151    if (isSingleWord())
1152      return VAL;
1153    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1154    return pVal[0];
1155  }
1156
1157  /// This method attempts to return the value of this APInt as a sign extended
1158  /// int64_t. The bit width must be <= 64 or the value must fit within an
1159  /// int64_t. Otherwise an assertion will result.
1160  /// @brief Get sign extended value
1161  int64_t getSExtValue() const {
1162    if (isSingleWord())
1163      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1164                     (APINT_BITS_PER_WORD - BitWidth);
1165    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1166    return int64_t(pVal[0]);
1167  }
1168
1169  /// This method determines how many bits are required to hold the APInt
1170  /// equivalent of the string given by \arg str.
1171  /// @brief Get bits required for string value.
1172  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1173
1174  /// countLeadingZeros - This function is an APInt version of the
1175  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1176  /// of zeros from the most significant bit to the first one bit.
1177  /// @returns BitWidth if the value is zero.
1178  /// @returns the number of zeros from the most significant bit to the first
1179  /// one bits.
1180  unsigned countLeadingZeros() const {
1181    if (isSingleWord()) {
1182      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1183      return CountLeadingZeros_64(VAL) - unusedBits;
1184    }
1185    return countLeadingZerosSlowCase();
1186  }
1187
1188  /// countLeadingOnes - This function is an APInt version of the
1189  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1190  /// of ones from the most significant bit to the first zero bit.
1191  /// @returns 0 if the high order bit is not set
1192  /// @returns the number of 1 bits from the most significant to the least
1193  /// @brief Count the number of leading one bits.
1194  unsigned countLeadingOnes() const;
1195
1196  /// Computes the number of leading bits of this APInt that are equal to its
1197  /// sign bit.
1198  unsigned getNumSignBits() const {
1199    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1200  }
1201
1202  /// countTrailingZeros - This function is an APInt version of the
1203  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1204  /// the number of zeros from the least significant bit to the first set bit.
1205  /// @returns BitWidth if the value is zero.
1206  /// @returns the number of zeros from the least significant bit to the first
1207  /// one bit.
1208  /// @brief Count the number of trailing zero bits.
1209  unsigned countTrailingZeros() const;
1210
1211  /// countTrailingOnes - This function is an APInt version of the
1212  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1213  /// the number of ones from the least significant bit to the first zero bit.
1214  /// @returns BitWidth if the value is all ones.
1215  /// @returns the number of ones from the least significant bit to the first
1216  /// zero bit.
1217  /// @brief Count the number of trailing one bits.
1218  unsigned countTrailingOnes() const {
1219    if (isSingleWord())
1220      return CountTrailingOnes_64(VAL);
1221    return countTrailingOnesSlowCase();
1222  }
1223
1224  /// countPopulation - This function is an APInt version of the
1225  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1226  /// of 1 bits in the APInt value.
1227  /// @returns 0 if the value is zero.
1228  /// @returns the number of set bits.
1229  /// @brief Count the number of bits set.
1230  unsigned countPopulation() const {
1231    if (isSingleWord())
1232      return CountPopulation_64(VAL);
1233    return countPopulationSlowCase();
1234  }
1235
1236  /// @}
1237  /// @name Conversion Functions
1238  /// @{
1239  void print(raw_ostream &OS, bool isSigned) const;
1240
1241  /// toString - Converts an APInt to a string and append it to Str.  Str is
1242  /// commonly a SmallString.
1243  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed) const;
1244
1245  /// Considers the APInt to be unsigned and converts it into a string in the
1246  /// radix given. The radix can be 2, 8, 10 or 16.
1247  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1248    toString(Str, Radix, false);
1249  }
1250
1251  /// Considers the APInt to be signed and converts it into a string in the
1252  /// radix given. The radix can be 2, 8, 10 or 16.
1253  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1254    toString(Str, Radix, true);
1255  }
1256
1257  /// toString - This returns the APInt as a std::string.  Note that this is an
1258  /// inefficient method.  It is better to pass in a SmallVector/SmallString
1259  /// to the methods above to avoid thrashing the heap for the string.
1260  std::string toString(unsigned Radix, bool Signed) const;
1261
1262
1263  /// @returns a byte-swapped representation of this APInt Value.
1264  APInt byteSwap() const;
1265
1266  /// @brief Converts this APInt to a double value.
1267  double roundToDouble(bool isSigned) const;
1268
1269  /// @brief Converts this unsigned APInt to a double value.
1270  double roundToDouble() const {
1271    return roundToDouble(false);
1272  }
1273
1274  /// @brief Converts this signed APInt to a double value.
1275  double signedRoundToDouble() const {
1276    return roundToDouble(true);
1277  }
1278
1279  /// The conversion does not do a translation from integer to double, it just
1280  /// re-interprets the bits as a double. Note that it is valid to do this on
1281  /// any bit width. Exactly 64 bits will be translated.
1282  /// @brief Converts APInt bits to a double
1283  double bitsToDouble() const {
1284    union {
1285      uint64_t I;
1286      double D;
1287    } T;
1288    T.I = (isSingleWord() ? VAL : pVal[0]);
1289    return T.D;
1290  }
1291
1292  /// The conversion does not do a translation from integer to float, it just
1293  /// re-interprets the bits as a float. Note that it is valid to do this on
1294  /// any bit width. Exactly 32 bits will be translated.
1295  /// @brief Converts APInt bits to a double
1296  float bitsToFloat() const {
1297    union {
1298      unsigned I;
1299      float F;
1300    } T;
1301    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1302    return T.F;
1303  }
1304
1305  /// The conversion does not do a translation from double to integer, it just
1306  /// re-interprets the bits of the double.
1307  /// @brief Converts a double to APInt bits.
1308  static APInt doubleToBits(double V) {
1309    union {
1310      uint64_t I;
1311      double D;
1312    } T;
1313    T.D = V;
1314    return APInt(sizeof T * CHAR_BIT, T.I);
1315  }
1316
1317  /// The conversion does not do a translation from float to integer, it just
1318  /// re-interprets the bits of the float.
1319  /// @brief Converts a float to APInt bits.
1320  static APInt floatToBits(float V) {
1321    union {
1322      unsigned I;
1323      float F;
1324    } T;
1325    T.F = V;
1326    return APInt(sizeof T * CHAR_BIT, T.I);
1327  }
1328
1329  /// @}
1330  /// @name Mathematics Operations
1331  /// @{
1332
1333  /// @returns the floor log base 2 of this APInt.
1334  unsigned logBase2() const {
1335    return BitWidth - 1 - countLeadingZeros();
1336  }
1337
1338  /// @returns the ceil log base 2 of this APInt.
1339  unsigned ceilLogBase2() const {
1340    return BitWidth - (*this - 1).countLeadingZeros();
1341  }
1342
1343  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1344  /// otherwise
1345  int32_t exactLogBase2() const {
1346    if (!isPowerOf2())
1347      return -1;
1348    return logBase2();
1349  }
1350
1351  /// @brief Compute the square root
1352  APInt sqrt() const;
1353
1354  /// If *this is < 0 then return -(*this), otherwise *this;
1355  /// @brief Get the absolute value;
1356  APInt abs() const {
1357    if (isNegative())
1358      return -(*this);
1359    return *this;
1360  }
1361
1362  /// @returns the multiplicative inverse for a given modulo.
1363  APInt multiplicativeInverse(const APInt& modulo) const;
1364
1365  /// @}
1366  /// @name Support for division by constant
1367  /// @{
1368
1369  /// Calculate the magic number for signed division by a constant.
1370  struct ms;
1371  ms magic() const;
1372
1373  /// Calculate the magic number for unsigned division by a constant.
1374  struct mu;
1375  mu magicu() const;
1376
1377  /// @}
1378  /// @name Building-block Operations for APInt and APFloat
1379  /// @{
1380
1381  // These building block operations operate on a representation of
1382  // arbitrary precision, two's-complement, bignum integer values.
1383  // They should be sufficient to implement APInt and APFloat bignum
1384  // requirements.  Inputs are generally a pointer to the base of an
1385  // array of integer parts, representing an unsigned bignum, and a
1386  // count of how many parts there are.
1387
1388  /// Sets the least significant part of a bignum to the input value,
1389  /// and zeroes out higher parts.  */
1390  static void tcSet(integerPart *, integerPart, unsigned int);
1391
1392  /// Assign one bignum to another.
1393  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1394
1395  /// Returns true if a bignum is zero, false otherwise.
1396  static bool tcIsZero(const integerPart *, unsigned int);
1397
1398  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1399  static int tcExtractBit(const integerPart *, unsigned int bit);
1400
1401  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1402  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1403  /// becomes the least significant bit of DST.  All high bits above
1404  /// srcBITS in DST are zero-filled.
1405  static void tcExtract(integerPart *, unsigned int dstCount,
1406                        const integerPart *,
1407                        unsigned int srcBits, unsigned int srcLSB);
1408
1409  /// Set the given bit of a bignum.  Zero-based.
1410  static void tcSetBit(integerPart *, unsigned int bit);
1411
1412  /// Clear the given bit of a bignum.  Zero-based.
1413  static void tcClearBit(integerPart *, unsigned int bit);
1414
1415  /// Returns the bit number of the least or most significant set bit
1416  /// of a number.  If the input number has no bits set -1U is
1417  /// returned.
1418  static unsigned int tcLSB(const integerPart *, unsigned int);
1419  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1420
1421  /// Negate a bignum in-place.
1422  static void tcNegate(integerPart *, unsigned int);
1423
1424  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1425  /// carry flag.
1426  static integerPart tcAdd(integerPart *, const integerPart *,
1427                           integerPart carry, unsigned);
1428
1429  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1430  /// carry flag.
1431  static integerPart tcSubtract(integerPart *, const integerPart *,
1432                                integerPart carry, unsigned);
1433
1434  ///  DST += SRC * MULTIPLIER + PART   if add is true
1435  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1436  ///
1437  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1438  ///  they must start at the same point, i.e. DST == SRC.
1439  ///
1440  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1441  ///  returned.  Otherwise DST is filled with the least significant
1442  ///  DSTPARTS parts of the result, and if all of the omitted higher
1443  ///  parts were zero return zero, otherwise overflow occurred and
1444  ///  return one.
1445  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1446                            integerPart multiplier, integerPart carry,
1447                            unsigned int srcParts, unsigned int dstParts,
1448                            bool add);
1449
1450  /// DST = LHS * RHS, where DST has the same width as the operands
1451  /// and is filled with the least significant parts of the result.
1452  /// Returns one if overflow occurred, otherwise zero.  DST must be
1453  /// disjoint from both operands.
1454  static int tcMultiply(integerPart *, const integerPart *,
1455                        const integerPart *, unsigned);
1456
1457  /// DST = LHS * RHS, where DST has width the sum of the widths of
1458  /// the operands.  No overflow occurs.  DST must be disjoint from
1459  /// both operands. Returns the number of parts required to hold the
1460  /// result.
1461  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1462                                     const integerPart *, unsigned, unsigned);
1463
1464  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1465  /// Otherwise set LHS to LHS / RHS with the fractional part
1466  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1467  ///
1468  ///  OLD_LHS = RHS * LHS + REMAINDER
1469  ///
1470  ///  SCRATCH is a bignum of the same size as the operands and result
1471  ///  for use by the routine; its contents need not be initialized
1472  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1473  ///  distinct.
1474  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1475                      integerPart *remainder, integerPart *scratch,
1476                      unsigned int parts);
1477
1478  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1479  /// There are no restrictions on COUNT.
1480  static void tcShiftLeft(integerPart *, unsigned int parts,
1481                          unsigned int count);
1482
1483  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1484  /// There are no restrictions on COUNT.
1485  static void tcShiftRight(integerPart *, unsigned int parts,
1486                           unsigned int count);
1487
1488  /// The obvious AND, OR and XOR and complement operations.
1489  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1490  static void tcOr(integerPart *, const integerPart *, unsigned int);
1491  static void tcXor(integerPart *, const integerPart *, unsigned int);
1492  static void tcComplement(integerPart *, unsigned int);
1493
1494  /// Comparison (unsigned) of two bignums.
1495  static int tcCompare(const integerPart *, const integerPart *,
1496                       unsigned int);
1497
1498  /// Increment a bignum in-place.  Return the carry flag.
1499  static integerPart tcIncrement(integerPart *, unsigned int);
1500
1501  /// Set the least significant BITS and clear the rest.
1502  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1503                                        unsigned int bits);
1504
1505  /// @brief debug method
1506  void dump() const;
1507
1508  /// @}
1509};
1510
1511/// Magic data for optimising signed division by a constant.
1512struct APInt::ms {
1513  APInt m;  ///< magic number
1514  unsigned s;  ///< shift amount
1515};
1516
1517/// Magic data for optimising unsigned division by a constant.
1518struct APInt::mu {
1519  APInt m;     ///< magic number
1520  bool a;      ///< add indicator
1521  unsigned s;  ///< shift amount
1522};
1523
1524inline bool operator==(uint64_t V1, const APInt& V2) {
1525  return V2 == V1;
1526}
1527
1528inline bool operator!=(uint64_t V1, const APInt& V2) {
1529  return V2 != V1;
1530}
1531
1532inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1533  I.print(OS, true);
1534  return OS;
1535}
1536
1537namespace APIntOps {
1538
1539/// @brief Determine the smaller of two APInts considered to be signed.
1540inline APInt smin(const APInt &A, const APInt &B) {
1541  return A.slt(B) ? A : B;
1542}
1543
1544/// @brief Determine the larger of two APInts considered to be signed.
1545inline APInt smax(const APInt &A, const APInt &B) {
1546  return A.sgt(B) ? A : B;
1547}
1548
1549/// @brief Determine the smaller of two APInts considered to be signed.
1550inline APInt umin(const APInt &A, const APInt &B) {
1551  return A.ult(B) ? A : B;
1552}
1553
1554/// @brief Determine the larger of two APInts considered to be unsigned.
1555inline APInt umax(const APInt &A, const APInt &B) {
1556  return A.ugt(B) ? A : B;
1557}
1558
1559/// @brief Check if the specified APInt has a N-bits unsigned integer value.
1560inline bool isIntN(unsigned N, const APInt& APIVal) {
1561  return APIVal.isIntN(N);
1562}
1563
1564/// @brief Check if the specified APInt has a N-bits signed integer value.
1565inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1566  return APIVal.isSignedIntN(N);
1567}
1568
1569/// @returns true if the argument APInt value is a sequence of ones
1570/// starting at the least significant bit with the remainder zero.
1571inline bool isMask(unsigned numBits, const APInt& APIVal) {
1572  return numBits <= APIVal.getBitWidth() &&
1573    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1574}
1575
1576/// @returns true if the argument APInt value contains a sequence of ones
1577/// with the remainder zero.
1578inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1579  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1580}
1581
1582/// @returns a byte-swapped representation of the specified APInt Value.
1583inline APInt byteSwap(const APInt& APIVal) {
1584  return APIVal.byteSwap();
1585}
1586
1587/// @returns the floor log base 2 of the specified APInt value.
1588inline unsigned logBase2(const APInt& APIVal) {
1589  return APIVal.logBase2();
1590}
1591
1592/// GreatestCommonDivisor - This function returns the greatest common
1593/// divisor of the two APInt values using Euclid's algorithm.
1594/// @returns the greatest common divisor of Val1 and Val2
1595/// @brief Compute GCD of two APInt values.
1596APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1597
1598/// Treats the APInt as an unsigned value for conversion purposes.
1599/// @brief Converts the given APInt to a double value.
1600inline double RoundAPIntToDouble(const APInt& APIVal) {
1601  return APIVal.roundToDouble();
1602}
1603
1604/// Treats the APInt as a signed value for conversion purposes.
1605/// @brief Converts the given APInt to a double value.
1606inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1607  return APIVal.signedRoundToDouble();
1608}
1609
1610/// @brief Converts the given APInt to a float vlalue.
1611inline float RoundAPIntToFloat(const APInt& APIVal) {
1612  return float(RoundAPIntToDouble(APIVal));
1613}
1614
1615/// Treast the APInt as a signed value for conversion purposes.
1616/// @brief Converts the given APInt to a float value.
1617inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1618  return float(APIVal.signedRoundToDouble());
1619}
1620
1621/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1622/// @brief Converts the given double value into a APInt.
1623APInt RoundDoubleToAPInt(double Double, unsigned width);
1624
1625/// RoundFloatToAPInt - Converts a float value into an APInt value.
1626/// @brief Converts a float value into a APInt.
1627inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1628  return RoundDoubleToAPInt(double(Float), width);
1629}
1630
1631/// Arithmetic right-shift the APInt by shiftAmt.
1632/// @brief Arithmetic right-shift function.
1633inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1634  return LHS.ashr(shiftAmt);
1635}
1636
1637/// Logical right-shift the APInt by shiftAmt.
1638/// @brief Logical right-shift function.
1639inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1640  return LHS.lshr(shiftAmt);
1641}
1642
1643/// Left-shift the APInt by shiftAmt.
1644/// @brief Left-shift function.
1645inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1646  return LHS.shl(shiftAmt);
1647}
1648
1649/// Signed divide APInt LHS by APInt RHS.
1650/// @brief Signed division function for APInt.
1651inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1652  return LHS.sdiv(RHS);
1653}
1654
1655/// Unsigned divide APInt LHS by APInt RHS.
1656/// @brief Unsigned division function for APInt.
1657inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1658  return LHS.udiv(RHS);
1659}
1660
1661/// Signed remainder operation on APInt.
1662/// @brief Function for signed remainder operation.
1663inline APInt srem(const APInt& LHS, const APInt& RHS) {
1664  return LHS.srem(RHS);
1665}
1666
1667/// Unsigned remainder operation on APInt.
1668/// @brief Function for unsigned remainder operation.
1669inline APInt urem(const APInt& LHS, const APInt& RHS) {
1670  return LHS.urem(RHS);
1671}
1672
1673/// Performs multiplication on APInt values.
1674/// @brief Function for multiplication operation.
1675inline APInt mul(const APInt& LHS, const APInt& RHS) {
1676  return LHS * RHS;
1677}
1678
1679/// Performs addition on APInt values.
1680/// @brief Function for addition operation.
1681inline APInt add(const APInt& LHS, const APInt& RHS) {
1682  return LHS + RHS;
1683}
1684
1685/// Performs subtraction on APInt values.
1686/// @brief Function for subtraction operation.
1687inline APInt sub(const APInt& LHS, const APInt& RHS) {
1688  return LHS - RHS;
1689}
1690
1691/// Performs bitwise AND operation on APInt LHS and
1692/// APInt RHS.
1693/// @brief Bitwise AND function for APInt.
1694inline APInt And(const APInt& LHS, const APInt& RHS) {
1695  return LHS & RHS;
1696}
1697
1698/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1699/// @brief Bitwise OR function for APInt.
1700inline APInt Or(const APInt& LHS, const APInt& RHS) {
1701  return LHS | RHS;
1702}
1703
1704/// Performs bitwise XOR operation on APInt.
1705/// @brief Bitwise XOR function for APInt.
1706inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1707  return LHS ^ RHS;
1708}
1709
1710/// Performs a bitwise complement operation on APInt.
1711/// @brief Bitwise complement function.
1712inline APInt Not(const APInt& APIVal) {
1713  return ~APIVal;
1714}
1715
1716} // End of APIntOps namespace
1717
1718} // End of llvm namespace
1719
1720#endif
1721