APInt.h revision 208954
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_APINT_H
16#define LLVM_APINT_H
17
18#include "llvm/Support/MathExtras.h"
19#include <cassert>
20#include <climits>
21#include <cstring>
22#include <string>
23
24namespace llvm {
25  class Serializer;
26  class Deserializer;
27  class FoldingSetNodeID;
28  class raw_ostream;
29  class StringRef;
30
31  template<typename T>
32  class SmallVectorImpl;
33
34  // An unsigned host type used as a single part of a multi-part
35  // bignum.
36  typedef uint64_t integerPart;
37
38  const unsigned int host_char_bit = 8;
39  const unsigned int integerPartWidth = host_char_bit *
40    static_cast<unsigned int>(sizeof(integerPart));
41
42//===----------------------------------------------------------------------===//
43//                              APInt Class
44//===----------------------------------------------------------------------===//
45
46/// APInt - This class represents arbitrary precision constant integral values.
47/// It is a functional replacement for common case unsigned integer type like
48/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50/// than 64-bits of precision. APInt provides a variety of arithmetic operators
51/// and methods to manipulate integer values of any bit-width. It supports both
52/// the typical integer arithmetic and comparison operations as well as bitwise
53/// manipulation.
54///
55/// The class has several invariants worth noting:
56///   * All bit, byte, and word positions are zero-based.
57///   * Once the bit width is set, it doesn't change except by the Truncate,
58///     SignExtend, or ZeroExtend operations.
59///   * All binary operators must be on APInt instances of the same bit width.
60///     Attempting to use these operators on instances with different bit
61///     widths will yield an assertion.
62///   * The value is stored canonically as an unsigned value. For operations
63///     where it makes a difference, there are both signed and unsigned variants
64///     of the operation. For example, sdiv and udiv. However, because the bit
65///     widths must be the same, operations such as Mul and Add produce the same
66///     results regardless of whether the values are interpreted as signed or
67///     not.
68///   * In general, the class tries to follow the style of computation that LLVM
69///     uses in its IR. This simplifies its use for LLVM.
70///
71/// @brief Class for arbitrary precision integers.
72class APInt {
73  unsigned BitWidth;      ///< The number of bits in this APInt.
74
75  /// This union is used to store the integer value. When the
76  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
77  union {
78    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
79    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
80  };
81
82  /// This enum is used to hold the constants we needed for APInt.
83  enum {
84    /// Bits in a word
85    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
86                          CHAR_BIT,
87    /// Byte size of a word
88    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
89  };
90
91  /// This constructor is used only internally for speed of construction of
92  /// temporaries. It is unsafe for general use so it is not public.
93  /// @brief Fast internal constructor
94  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
95
96  /// @returns true if the number of bits <= 64, false otherwise.
97  /// @brief Determine if this APInt just has one word to store value.
98  bool isSingleWord() const {
99    return BitWidth <= APINT_BITS_PER_WORD;
100  }
101
102  /// @returns the word position for the specified bit position.
103  /// @brief Determine which word a bit is in.
104  static unsigned whichWord(unsigned bitPosition) {
105    return bitPosition / APINT_BITS_PER_WORD;
106  }
107
108  /// @returns the bit position in a word for the specified bit position
109  /// in the APInt.
110  /// @brief Determine which bit in a word a bit is in.
111  static unsigned whichBit(unsigned bitPosition) {
112    return bitPosition % APINT_BITS_PER_WORD;
113  }
114
115  /// This method generates and returns a uint64_t (word) mask for a single
116  /// bit at a specific bit position. This is used to mask the bit in the
117  /// corresponding word.
118  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
119  /// @brief Get a single bit mask.
120  static uint64_t maskBit(unsigned bitPosition) {
121    return 1ULL << whichBit(bitPosition);
122  }
123
124  /// This method is used internally to clear the to "N" bits in the high order
125  /// word that are not used by the APInt. This is needed after the most
126  /// significant word is assigned a value to ensure that those bits are
127  /// zero'd out.
128  /// @brief Clear unused high order bits
129  APInt& clearUnusedBits() {
130    // Compute how many bits are used in the final word
131    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
132    if (wordBits == 0)
133      // If all bits are used, we want to leave the value alone. This also
134      // avoids the undefined behavior of >> when the shift is the same size as
135      // the word size (64).
136      return *this;
137
138    // Mask out the high bits.
139    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
140    if (isSingleWord())
141      VAL &= mask;
142    else
143      pVal[getNumWords() - 1] &= mask;
144    return *this;
145  }
146
147  /// @returns the corresponding word for the specified bit position.
148  /// @brief Get the word corresponding to a bit position
149  uint64_t getWord(unsigned bitPosition) const {
150    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
151  }
152
153  /// Converts a string into a number.  The string must be non-empty
154  /// and well-formed as a number of the given base. The bit-width
155  /// must be sufficient to hold the result.
156  ///
157  /// This is used by the constructors that take string arguments.
158  ///
159  /// StringRef::getAsInteger is superficially similar but (1) does
160  /// not assume that the string is well-formed and (2) grows the
161  /// result to hold the input.
162  ///
163  /// @param radix 2, 8, 10, or 16
164  /// @brief Convert a char array into an APInt
165  void fromString(unsigned numBits, const StringRef &str, uint8_t radix);
166
167  /// This is used by the toString method to divide by the radix. It simply
168  /// provides a more convenient form of divide for internal use since KnuthDiv
169  /// has specific constraints on its inputs. If those constraints are not met
170  /// then it provides a simpler form of divide.
171  /// @brief An internal division function for dividing APInts.
172  static void divide(const APInt LHS, unsigned lhsWords,
173                     const APInt &RHS, unsigned rhsWords,
174                     APInt *Quotient, APInt *Remainder);
175
176  /// out-of-line slow case for inline constructor
177  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
178
179  /// out-of-line slow case for inline copy constructor
180  void initSlowCase(const APInt& that);
181
182  /// out-of-line slow case for shl
183  APInt shlSlowCase(unsigned shiftAmt) const;
184
185  /// out-of-line slow case for operator&
186  APInt AndSlowCase(const APInt& RHS) const;
187
188  /// out-of-line slow case for operator|
189  APInt OrSlowCase(const APInt& RHS) const;
190
191  /// out-of-line slow case for operator^
192  APInt XorSlowCase(const APInt& RHS) const;
193
194  /// out-of-line slow case for operator=
195  APInt& AssignSlowCase(const APInt& RHS);
196
197  /// out-of-line slow case for operator==
198  bool EqualSlowCase(const APInt& RHS) const;
199
200  /// out-of-line slow case for operator==
201  bool EqualSlowCase(uint64_t Val) const;
202
203  /// out-of-line slow case for countLeadingZeros
204  unsigned countLeadingZerosSlowCase() const;
205
206  /// out-of-line slow case for countTrailingOnes
207  unsigned countTrailingOnesSlowCase() const;
208
209  /// out-of-line slow case for countPopulation
210  unsigned countPopulationSlowCase() const;
211
212public:
213  /// @name Constructors
214  /// @{
215  /// If isSigned is true then val is treated as if it were a signed value
216  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
217  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
218  /// the range of val are zero filled).
219  /// @param numBits the bit width of the constructed APInt
220  /// @param val the initial value of the APInt
221  /// @param isSigned how to treat signedness of val
222  /// @brief Create a new APInt of numBits width, initialized as val.
223  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
224    : BitWidth(numBits), VAL(0) {
225    assert(BitWidth && "bitwidth too small");
226    if (isSingleWord())
227      VAL = val;
228    else
229      initSlowCase(numBits, val, isSigned);
230    clearUnusedBits();
231  }
232
233  /// Note that numWords can be smaller or larger than the corresponding bit
234  /// width but any extraneous bits will be dropped.
235  /// @param numBits the bit width of the constructed APInt
236  /// @param numWords the number of words in bigVal
237  /// @param bigVal a sequence of words to form the initial value of the APInt
238  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
239  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
240
241  /// This constructor interprets the string \arg str in the given radix. The
242  /// interpretation stops when the first character that is not suitable for the
243  /// radix is encountered, or the end of the string. Acceptable radix values
244  /// are 2, 8, 10 and 16. It is an error for the value implied by the string to
245  /// require more bits than numBits.
246  ///
247  /// @param numBits the bit width of the constructed APInt
248  /// @param str the string to be interpreted
249  /// @param radix the radix to use for the conversion
250  /// @brief Construct an APInt from a string representation.
251  APInt(unsigned numBits, const StringRef &str, uint8_t radix);
252
253  /// Simply makes *this a copy of that.
254  /// @brief Copy Constructor.
255  APInt(const APInt& that)
256    : BitWidth(that.BitWidth), VAL(0) {
257    assert(BitWidth && "bitwidth too small");
258    if (isSingleWord())
259      VAL = that.VAL;
260    else
261      initSlowCase(that);
262  }
263
264  /// @brief Destructor.
265  ~APInt() {
266    if (!isSingleWord())
267      delete [] pVal;
268  }
269
270  /// Default constructor that creates an uninitialized APInt.  This is useful
271  ///  for object deserialization (pair this with the static method Read).
272  explicit APInt() : BitWidth(1) {}
273
274  /// Profile - Used to insert APInt objects, or objects that contain APInt
275  ///  objects, into FoldingSets.
276  void Profile(FoldingSetNodeID& id) const;
277
278  /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
279  void Emit(Serializer& S) const;
280
281  /// @brief Used by the Bitcode deserializer to deserialize APInts.
282  void Read(Deserializer& D);
283
284  /// @}
285  /// @name Value Tests
286  /// @{
287  /// This tests the high bit of this APInt to determine if it is set.
288  /// @returns true if this APInt is negative, false otherwise
289  /// @brief Determine sign of this APInt.
290  bool isNegative() const {
291    return (*this)[BitWidth - 1];
292  }
293
294  /// This tests the high bit of the APInt to determine if it is unset.
295  /// @brief Determine if this APInt Value is non-negative (>= 0)
296  bool isNonNegative() const {
297    return !isNegative();
298  }
299
300  /// This tests if the value of this APInt is positive (> 0). Note
301  /// that 0 is not a positive value.
302  /// @returns true if this APInt is positive.
303  /// @brief Determine if this APInt Value is positive.
304  bool isStrictlyPositive() const {
305    return isNonNegative() && (*this) != 0;
306  }
307
308  /// This checks to see if the value has all bits of the APInt are set or not.
309  /// @brief Determine if all bits are set
310  bool isAllOnesValue() const {
311    return countPopulation() == BitWidth;
312  }
313
314  /// This checks to see if the value of this APInt is the maximum unsigned
315  /// value for the APInt's bit width.
316  /// @brief Determine if this is the largest unsigned value.
317  bool isMaxValue() const {
318    return countPopulation() == BitWidth;
319  }
320
321  /// This checks to see if the value of this APInt is the maximum signed
322  /// value for the APInt's bit width.
323  /// @brief Determine if this is the largest signed value.
324  bool isMaxSignedValue() const {
325    return BitWidth == 1 ? VAL == 0 :
326                          !isNegative() && countPopulation() == BitWidth - 1;
327  }
328
329  /// This checks to see if the value of this APInt is the minimum unsigned
330  /// value for the APInt's bit width.
331  /// @brief Determine if this is the smallest unsigned value.
332  bool isMinValue() const {
333    return countPopulation() == 0;
334  }
335
336  /// This checks to see if the value of this APInt is the minimum signed
337  /// value for the APInt's bit width.
338  /// @brief Determine if this is the smallest signed value.
339  bool isMinSignedValue() const {
340    return BitWidth == 1 ? VAL == 1 :
341                           isNegative() && countPopulation() == 1;
342  }
343
344  /// @brief Check if this APInt has an N-bits unsigned integer value.
345  bool isIntN(unsigned N) const {
346    assert(N && "N == 0 ???");
347    if (N >= getBitWidth())
348      return true;
349
350    if (isSingleWord())
351      return VAL == (VAL & (~0ULL >> (64 - N)));
352    APInt Tmp(N, getNumWords(), pVal);
353    Tmp.zext(getBitWidth());
354    return Tmp == (*this);
355  }
356
357  /// @brief Check if this APInt has an N-bits signed integer value.
358  bool isSignedIntN(unsigned N) const {
359    assert(N && "N == 0 ???");
360    return getMinSignedBits() <= N;
361  }
362
363  /// @returns true if the argument APInt value is a power of two > 0.
364  bool isPowerOf2() const;
365
366  /// isSignBit - Return true if this is the value returned by getSignBit.
367  bool isSignBit() const { return isMinSignedValue(); }
368
369  /// This converts the APInt to a boolean value as a test against zero.
370  /// @brief Boolean conversion function.
371  bool getBoolValue() const {
372    return *this != 0;
373  }
374
375  /// getLimitedValue - If this value is smaller than the specified limit,
376  /// return it, otherwise return the limit value.  This causes the value
377  /// to saturate to the limit.
378  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
379    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
380      Limit :  getZExtValue();
381  }
382
383  /// @}
384  /// @name Value Generators
385  /// @{
386  /// @brief Gets maximum unsigned value of APInt for specific bit width.
387  static APInt getMaxValue(unsigned numBits) {
388    return APInt(numBits, 0).set();
389  }
390
391  /// @brief Gets maximum signed value of APInt for a specific bit width.
392  static APInt getSignedMaxValue(unsigned numBits) {
393    return APInt(numBits, 0).set().clear(numBits - 1);
394  }
395
396  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
397  static APInt getMinValue(unsigned numBits) {
398    return APInt(numBits, 0);
399  }
400
401  /// @brief Gets minimum signed value of APInt for a specific bit width.
402  static APInt getSignedMinValue(unsigned numBits) {
403    return APInt(numBits, 0).set(numBits - 1);
404  }
405
406  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
407  /// it helps code readability when we want to get a SignBit.
408  /// @brief Get the SignBit for a specific bit width.
409  static APInt getSignBit(unsigned BitWidth) {
410    return getSignedMinValue(BitWidth);
411  }
412
413  /// @returns the all-ones value for an APInt of the specified bit-width.
414  /// @brief Get the all-ones value.
415  static APInt getAllOnesValue(unsigned numBits) {
416    return APInt(numBits, 0).set();
417  }
418
419  /// @returns the '0' value for an APInt of the specified bit-width.
420  /// @brief Get the '0' value.
421  static APInt getNullValue(unsigned numBits) {
422    return APInt(numBits, 0);
423  }
424
425  /// Get an APInt with the same BitWidth as this APInt, just zero mask
426  /// the low bits and right shift to the least significant bit.
427  /// @returns the high "numBits" bits of this APInt.
428  APInt getHiBits(unsigned numBits) const;
429
430  /// Get an APInt with the same BitWidth as this APInt, just zero mask
431  /// the high bits.
432  /// @returns the low "numBits" bits of this APInt.
433  APInt getLoBits(unsigned numBits) const;
434
435  /// Constructs an APInt value that has a contiguous range of bits set. The
436  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
437  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
438  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
439  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
440  /// @param numBits the intended bit width of the result
441  /// @param loBit the index of the lowest bit set.
442  /// @param hiBit the index of the highest bit set.
443  /// @returns An APInt value with the requested bits set.
444  /// @brief Get a value with a block of bits set.
445  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
446    assert(hiBit <= numBits && "hiBit out of range");
447    assert(loBit < numBits && "loBit out of range");
448    if (hiBit < loBit)
449      return getLowBitsSet(numBits, hiBit) |
450             getHighBitsSet(numBits, numBits-loBit);
451    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
452  }
453
454  /// Constructs an APInt value that has the top hiBitsSet bits set.
455  /// @param numBits the bitwidth of the result
456  /// @param hiBitsSet the number of high-order bits set in the result.
457  /// @brief Get a value with high bits set
458  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
459    assert(hiBitsSet <= numBits && "Too many bits to set!");
460    // Handle a degenerate case, to avoid shifting by word size
461    if (hiBitsSet == 0)
462      return APInt(numBits, 0);
463    unsigned shiftAmt = numBits - hiBitsSet;
464    // For small values, return quickly
465    if (numBits <= APINT_BITS_PER_WORD)
466      return APInt(numBits, ~0ULL << shiftAmt);
467    return (~APInt(numBits, 0)).shl(shiftAmt);
468  }
469
470  /// Constructs an APInt value that has the bottom loBitsSet bits set.
471  /// @param numBits the bitwidth of the result
472  /// @param loBitsSet the number of low-order bits set in the result.
473  /// @brief Get a value with low bits set
474  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
475    assert(loBitsSet <= numBits && "Too many bits to set!");
476    // Handle a degenerate case, to avoid shifting by word size
477    if (loBitsSet == 0)
478      return APInt(numBits, 0);
479    if (loBitsSet == APINT_BITS_PER_WORD)
480      return APInt(numBits, -1ULL);
481    // For small values, return quickly.
482    if (numBits < APINT_BITS_PER_WORD)
483      return APInt(numBits, (1ULL << loBitsSet) - 1);
484    return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
485  }
486
487  /// The hash value is computed as the sum of the words and the bit width.
488  /// @returns A hash value computed from the sum of the APInt words.
489  /// @brief Get a hash value based on this APInt
490  uint64_t getHashValue() const;
491
492  /// This function returns a pointer to the internal storage of the APInt.
493  /// This is useful for writing out the APInt in binary form without any
494  /// conversions.
495  const uint64_t* getRawData() const {
496    if (isSingleWord())
497      return &VAL;
498    return &pVal[0];
499  }
500
501  /// @}
502  /// @name Unary Operators
503  /// @{
504  /// @returns a new APInt value representing *this incremented by one
505  /// @brief Postfix increment operator.
506  const APInt operator++(int) {
507    APInt API(*this);
508    ++(*this);
509    return API;
510  }
511
512  /// @returns *this incremented by one
513  /// @brief Prefix increment operator.
514  APInt& operator++();
515
516  /// @returns a new APInt representing *this decremented by one.
517  /// @brief Postfix decrement operator.
518  const APInt operator--(int) {
519    APInt API(*this);
520    --(*this);
521    return API;
522  }
523
524  /// @returns *this decremented by one.
525  /// @brief Prefix decrement operator.
526  APInt& operator--();
527
528  /// Performs a bitwise complement operation on this APInt.
529  /// @returns an APInt that is the bitwise complement of *this
530  /// @brief Unary bitwise complement operator.
531  APInt operator~() const {
532    APInt Result(*this);
533    Result.flip();
534    return Result;
535  }
536
537  /// Negates *this using two's complement logic.
538  /// @returns An APInt value representing the negation of *this.
539  /// @brief Unary negation operator
540  APInt operator-() const {
541    return APInt(BitWidth, 0) - (*this);
542  }
543
544  /// Performs logical negation operation on this APInt.
545  /// @returns true if *this is zero, false otherwise.
546  /// @brief Logical negation operator.
547  bool operator!() const;
548
549  /// @}
550  /// @name Assignment Operators
551  /// @{
552  /// @returns *this after assignment of RHS.
553  /// @brief Copy assignment operator.
554  APInt& operator=(const APInt& RHS) {
555    // If the bitwidths are the same, we can avoid mucking with memory
556    if (isSingleWord() && RHS.isSingleWord()) {
557      VAL = RHS.VAL;
558      BitWidth = RHS.BitWidth;
559      return clearUnusedBits();
560    }
561
562    return AssignSlowCase(RHS);
563  }
564
565  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
566  /// the bit width, the excess bits are truncated. If the bit width is larger
567  /// than 64, the value is zero filled in the unspecified high order bits.
568  /// @returns *this after assignment of RHS value.
569  /// @brief Assignment operator.
570  APInt& operator=(uint64_t RHS);
571
572  /// Performs a bitwise AND operation on this APInt and RHS. The result is
573  /// assigned to *this.
574  /// @returns *this after ANDing with RHS.
575  /// @brief Bitwise AND assignment operator.
576  APInt& operator&=(const APInt& RHS);
577
578  /// Performs a bitwise OR operation on this APInt and RHS. The result is
579  /// assigned *this;
580  /// @returns *this after ORing with RHS.
581  /// @brief Bitwise OR assignment operator.
582  APInt& operator|=(const APInt& RHS);
583
584  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
585  /// logically zero-extended or truncated to match the bit-width of
586  /// the LHS.
587  ///
588  /// @brief Bitwise OR assignment operator.
589  APInt& operator|=(uint64_t RHS) {
590    if (isSingleWord()) {
591      VAL |= RHS;
592      clearUnusedBits();
593    } else {
594      pVal[0] |= RHS;
595    }
596    return *this;
597  }
598
599  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
600  /// assigned to *this.
601  /// @returns *this after XORing with RHS.
602  /// @brief Bitwise XOR assignment operator.
603  APInt& operator^=(const APInt& RHS);
604
605  /// Multiplies this APInt by RHS and assigns the result to *this.
606  /// @returns *this
607  /// @brief Multiplication assignment operator.
608  APInt& operator*=(const APInt& RHS);
609
610  /// Adds RHS to *this and assigns the result to *this.
611  /// @returns *this
612  /// @brief Addition assignment operator.
613  APInt& operator+=(const APInt& RHS);
614
615  /// Subtracts RHS from *this and assigns the result to *this.
616  /// @returns *this
617  /// @brief Subtraction assignment operator.
618  APInt& operator-=(const APInt& RHS);
619
620  /// Shifts *this left by shiftAmt and assigns the result to *this.
621  /// @returns *this after shifting left by shiftAmt
622  /// @brief Left-shift assignment function.
623  APInt& operator<<=(unsigned shiftAmt) {
624    *this = shl(shiftAmt);
625    return *this;
626  }
627
628  /// @}
629  /// @name Binary Operators
630  /// @{
631  /// Performs a bitwise AND operation on *this and RHS.
632  /// @returns An APInt value representing the bitwise AND of *this and RHS.
633  /// @brief Bitwise AND operator.
634  APInt operator&(const APInt& RHS) const {
635    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
636    if (isSingleWord())
637      return APInt(getBitWidth(), VAL & RHS.VAL);
638    return AndSlowCase(RHS);
639  }
640  APInt And(const APInt& RHS) const {
641    return this->operator&(RHS);
642  }
643
644  /// Performs a bitwise OR operation on *this and RHS.
645  /// @returns An APInt value representing the bitwise OR of *this and RHS.
646  /// @brief Bitwise OR operator.
647  APInt operator|(const APInt& RHS) const {
648    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
649    if (isSingleWord())
650      return APInt(getBitWidth(), VAL | RHS.VAL);
651    return OrSlowCase(RHS);
652  }
653  APInt Or(const APInt& RHS) const {
654    return this->operator|(RHS);
655  }
656
657  /// Performs a bitwise XOR operation on *this and RHS.
658  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
659  /// @brief Bitwise XOR operator.
660  APInt operator^(const APInt& RHS) const {
661    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
662    if (isSingleWord())
663      return APInt(BitWidth, VAL ^ RHS.VAL);
664    return XorSlowCase(RHS);
665  }
666  APInt Xor(const APInt& RHS) const {
667    return this->operator^(RHS);
668  }
669
670  /// Multiplies this APInt by RHS and returns the result.
671  /// @brief Multiplication operator.
672  APInt operator*(const APInt& RHS) const;
673
674  /// Adds RHS to this APInt and returns the result.
675  /// @brief Addition operator.
676  APInt operator+(const APInt& RHS) const;
677  APInt operator+(uint64_t RHS) const {
678    return (*this) + APInt(BitWidth, RHS);
679  }
680
681  /// Subtracts RHS from this APInt and returns the result.
682  /// @brief Subtraction operator.
683  APInt operator-(const APInt& RHS) const;
684  APInt operator-(uint64_t RHS) const {
685    return (*this) - APInt(BitWidth, RHS);
686  }
687
688  APInt operator<<(unsigned Bits) const {
689    return shl(Bits);
690  }
691
692  APInt operator<<(const APInt &Bits) const {
693    return shl(Bits);
694  }
695
696  /// Arithmetic right-shift this APInt by shiftAmt.
697  /// @brief Arithmetic right-shift function.
698  APInt ashr(unsigned shiftAmt) const;
699
700  /// Logical right-shift this APInt by shiftAmt.
701  /// @brief Logical right-shift function.
702  APInt lshr(unsigned shiftAmt) const;
703
704  /// Left-shift this APInt by shiftAmt.
705  /// @brief Left-shift function.
706  APInt shl(unsigned shiftAmt) const {
707    assert(shiftAmt <= BitWidth && "Invalid shift amount");
708    if (isSingleWord()) {
709      if (shiftAmt == BitWidth)
710        return APInt(BitWidth, 0); // avoid undefined shift results
711      return APInt(BitWidth, VAL << shiftAmt);
712    }
713    return shlSlowCase(shiftAmt);
714  }
715
716  /// @brief Rotate left by rotateAmt.
717  APInt rotl(unsigned rotateAmt) const;
718
719  /// @brief Rotate right by rotateAmt.
720  APInt rotr(unsigned rotateAmt) const;
721
722  /// Arithmetic right-shift this APInt by shiftAmt.
723  /// @brief Arithmetic right-shift function.
724  APInt ashr(const APInt &shiftAmt) const;
725
726  /// Logical right-shift this APInt by shiftAmt.
727  /// @brief Logical right-shift function.
728  APInt lshr(const APInt &shiftAmt) const;
729
730  /// Left-shift this APInt by shiftAmt.
731  /// @brief Left-shift function.
732  APInt shl(const APInt &shiftAmt) const;
733
734  /// @brief Rotate left by rotateAmt.
735  APInt rotl(const APInt &rotateAmt) const;
736
737  /// @brief Rotate right by rotateAmt.
738  APInt rotr(const APInt &rotateAmt) const;
739
740  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
741  /// RHS are treated as unsigned quantities for purposes of this division.
742  /// @returns a new APInt value containing the division result
743  /// @brief Unsigned division operation.
744  APInt udiv(const APInt& RHS) const;
745
746  /// Signed divide this APInt by APInt RHS.
747  /// @brief Signed division function for APInt.
748  APInt sdiv(const APInt& RHS) const {
749    if (isNegative())
750      if (RHS.isNegative())
751        return (-(*this)).udiv(-RHS);
752      else
753        return -((-(*this)).udiv(RHS));
754    else if (RHS.isNegative())
755      return -(this->udiv(-RHS));
756    return this->udiv(RHS);
757  }
758
759  /// Perform an unsigned remainder operation on this APInt with RHS being the
760  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
761  /// of this operation. Note that this is a true remainder operation and not
762  /// a modulo operation because the sign follows the sign of the dividend
763  /// which is *this.
764  /// @returns a new APInt value containing the remainder result
765  /// @brief Unsigned remainder operation.
766  APInt urem(const APInt& RHS) const;
767
768  /// Signed remainder operation on APInt.
769  /// @brief Function for signed remainder operation.
770  APInt srem(const APInt& RHS) const {
771    if (isNegative())
772      if (RHS.isNegative())
773        return -((-(*this)).urem(-RHS));
774      else
775        return -((-(*this)).urem(RHS));
776    else if (RHS.isNegative())
777      return this->urem(-RHS);
778    return this->urem(RHS);
779  }
780
781  /// Sometimes it is convenient to divide two APInt values and obtain both the
782  /// quotient and remainder. This function does both operations in the same
783  /// computation making it a little more efficient. The pair of input arguments
784  /// may overlap with the pair of output arguments. It is safe to call
785  /// udivrem(X, Y, X, Y), for example.
786  /// @brief Dual division/remainder interface.
787  static void udivrem(const APInt &LHS, const APInt &RHS,
788                      APInt &Quotient, APInt &Remainder);
789
790  static void sdivrem(const APInt &LHS, const APInt &RHS,
791                      APInt &Quotient, APInt &Remainder)
792  {
793    if (LHS.isNegative()) {
794      if (RHS.isNegative())
795        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
796      else
797        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
798      Quotient = -Quotient;
799      Remainder = -Remainder;
800    } else if (RHS.isNegative()) {
801      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
802      Quotient = -Quotient;
803    } else {
804      APInt::udivrem(LHS, RHS, Quotient, Remainder);
805    }
806  }
807
808  /// @returns the bit value at bitPosition
809  /// @brief Array-indexing support.
810  bool operator[](unsigned bitPosition) const;
811
812  /// @}
813  /// @name Comparison Operators
814  /// @{
815  /// Compares this APInt with RHS for the validity of the equality
816  /// relationship.
817  /// @brief Equality operator.
818  bool operator==(const APInt& RHS) const {
819    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
820    if (isSingleWord())
821      return VAL == RHS.VAL;
822    return EqualSlowCase(RHS);
823  }
824
825  /// Compares this APInt with a uint64_t for the validity of the equality
826  /// relationship.
827  /// @returns true if *this == Val
828  /// @brief Equality operator.
829  bool operator==(uint64_t Val) const {
830    if (isSingleWord())
831      return VAL == Val;
832    return EqualSlowCase(Val);
833  }
834
835  /// Compares this APInt with RHS for the validity of the equality
836  /// relationship.
837  /// @returns true if *this == Val
838  /// @brief Equality comparison.
839  bool eq(const APInt &RHS) const {
840    return (*this) == RHS;
841  }
842
843  /// Compares this APInt with RHS for the validity of the inequality
844  /// relationship.
845  /// @returns true if *this != Val
846  /// @brief Inequality operator.
847  bool operator!=(const APInt& RHS) const {
848    return !((*this) == RHS);
849  }
850
851  /// Compares this APInt with a uint64_t for the validity of the inequality
852  /// relationship.
853  /// @returns true if *this != Val
854  /// @brief Inequality operator.
855  bool operator!=(uint64_t Val) const {
856    return !((*this) == Val);
857  }
858
859  /// Compares this APInt with RHS for the validity of the inequality
860  /// relationship.
861  /// @returns true if *this != Val
862  /// @brief Inequality comparison
863  bool ne(const APInt &RHS) const {
864    return !((*this) == RHS);
865  }
866
867  /// Regards both *this and RHS as unsigned quantities and compares them for
868  /// the validity of the less-than relationship.
869  /// @returns true if *this < RHS when both are considered unsigned.
870  /// @brief Unsigned less than comparison
871  bool ult(const APInt& RHS) const;
872
873  /// Regards both *this as an unsigned quantity and compares it with RHS for
874  /// the validity of the less-than relationship.
875  /// @returns true if *this < RHS when considered unsigned.
876  /// @brief Unsigned less than comparison
877  bool ult(uint64_t RHS) const {
878    return ult(APInt(getBitWidth(), RHS));
879  }
880
881  /// Regards both *this and RHS as signed quantities and compares them for
882  /// validity of the less-than relationship.
883  /// @returns true if *this < RHS when both are considered signed.
884  /// @brief Signed less than comparison
885  bool slt(const APInt& RHS) const;
886
887  /// Regards both *this as a signed quantity and compares it with RHS for
888  /// the validity of the less-than relationship.
889  /// @returns true if *this < RHS when considered signed.
890  /// @brief Signed less than comparison
891  bool slt(uint64_t RHS) const {
892    return slt(APInt(getBitWidth(), RHS));
893  }
894
895  /// Regards both *this and RHS as unsigned quantities and compares them for
896  /// validity of the less-or-equal relationship.
897  /// @returns true if *this <= RHS when both are considered unsigned.
898  /// @brief Unsigned less or equal comparison
899  bool ule(const APInt& RHS) const {
900    return ult(RHS) || eq(RHS);
901  }
902
903  /// Regards both *this as an unsigned quantity and compares it with RHS for
904  /// the validity of the less-or-equal relationship.
905  /// @returns true if *this <= RHS when considered unsigned.
906  /// @brief Unsigned less or equal comparison
907  bool ule(uint64_t RHS) const {
908    return ule(APInt(getBitWidth(), RHS));
909  }
910
911  /// Regards both *this and RHS as signed quantities and compares them for
912  /// validity of the less-or-equal relationship.
913  /// @returns true if *this <= RHS when both are considered signed.
914  /// @brief Signed less or equal comparison
915  bool sle(const APInt& RHS) const {
916    return slt(RHS) || eq(RHS);
917  }
918
919  /// Regards both *this as a signed quantity and compares it with RHS for
920  /// the validity of the less-or-equal relationship.
921  /// @returns true if *this <= RHS when considered signed.
922  /// @brief Signed less or equal comparison
923  bool sle(uint64_t RHS) const {
924    return sle(APInt(getBitWidth(), RHS));
925  }
926
927  /// Regards both *this and RHS as unsigned quantities and compares them for
928  /// the validity of the greater-than relationship.
929  /// @returns true if *this > RHS when both are considered unsigned.
930  /// @brief Unsigned greather than comparison
931  bool ugt(const APInt& RHS) const {
932    return !ult(RHS) && !eq(RHS);
933  }
934
935  /// Regards both *this as an unsigned quantity and compares it with RHS for
936  /// the validity of the greater-than relationship.
937  /// @returns true if *this > RHS when considered unsigned.
938  /// @brief Unsigned greater than comparison
939  bool ugt(uint64_t RHS) const {
940    return ugt(APInt(getBitWidth(), RHS));
941  }
942
943  /// Regards both *this and RHS as signed quantities and compares them for
944  /// the validity of the greater-than relationship.
945  /// @returns true if *this > RHS when both are considered signed.
946  /// @brief Signed greather than comparison
947  bool sgt(const APInt& RHS) const {
948    return !slt(RHS) && !eq(RHS);
949  }
950
951  /// Regards both *this as a signed quantity and compares it with RHS for
952  /// the validity of the greater-than relationship.
953  /// @returns true if *this > RHS when considered signed.
954  /// @brief Signed greater than comparison
955  bool sgt(uint64_t RHS) const {
956    return sgt(APInt(getBitWidth(), RHS));
957  }
958
959  /// Regards both *this and RHS as unsigned quantities and compares them for
960  /// validity of the greater-or-equal relationship.
961  /// @returns true if *this >= RHS when both are considered unsigned.
962  /// @brief Unsigned greater or equal comparison
963  bool uge(const APInt& RHS) const {
964    return !ult(RHS);
965  }
966
967  /// Regards both *this as an unsigned quantity and compares it with RHS for
968  /// the validity of the greater-or-equal relationship.
969  /// @returns true if *this >= RHS when considered unsigned.
970  /// @brief Unsigned greater or equal comparison
971  bool uge(uint64_t RHS) const {
972    return uge(APInt(getBitWidth(), RHS));
973  }
974
975  /// Regards both *this and RHS as signed quantities and compares them for
976  /// validity of the greater-or-equal relationship.
977  /// @returns true if *this >= RHS when both are considered signed.
978  /// @brief Signed greather or equal comparison
979  bool sge(const APInt& RHS) const {
980    return !slt(RHS);
981  }
982
983  /// Regards both *this as a signed quantity and compares it with RHS for
984  /// the validity of the greater-or-equal relationship.
985  /// @returns true if *this >= RHS when considered signed.
986  /// @brief Signed greater or equal comparison
987  bool sge(uint64_t RHS) const {
988    return sge(APInt(getBitWidth(), RHS));
989  }
990
991  /// This operation tests if there are any pairs of corresponding bits
992  /// between this APInt and RHS that are both set.
993  bool intersects(const APInt &RHS) const {
994    return (*this & RHS) != 0;
995  }
996
997  /// @}
998  /// @name Resizing Operators
999  /// @{
1000  /// Truncate the APInt to a specified width. It is an error to specify a width
1001  /// that is greater than or equal to the current width.
1002  /// @brief Truncate to new width.
1003  APInt &trunc(unsigned width);
1004
1005  /// This operation sign extends the APInt to a new width. If the high order
1006  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1007  /// It is an error to specify a width that is less than or equal to the
1008  /// current width.
1009  /// @brief Sign extend to a new width.
1010  APInt &sext(unsigned width);
1011
1012  /// This operation zero extends the APInt to a new width. The high order bits
1013  /// are filled with 0 bits.  It is an error to specify a width that is less
1014  /// than or equal to the current width.
1015  /// @brief Zero extend to a new width.
1016  APInt &zext(unsigned width);
1017
1018  /// Make this APInt have the bit width given by \p width. The value is sign
1019  /// extended, truncated, or left alone to make it that width.
1020  /// @brief Sign extend or truncate to width
1021  APInt &sextOrTrunc(unsigned width);
1022
1023  /// Make this APInt have the bit width given by \p width. The value is zero
1024  /// extended, truncated, or left alone to make it that width.
1025  /// @brief Zero extend or truncate to width
1026  APInt &zextOrTrunc(unsigned width);
1027
1028  /// @}
1029  /// @name Bit Manipulation Operators
1030  /// @{
1031  /// @brief Set every bit to 1.
1032  APInt& set() {
1033    if (isSingleWord()) {
1034      VAL = -1ULL;
1035      return clearUnusedBits();
1036    }
1037
1038    // Set all the bits in all the words.
1039    for (unsigned i = 0; i < getNumWords(); ++i)
1040      pVal[i] = -1ULL;
1041    // Clear the unused ones
1042    return clearUnusedBits();
1043  }
1044
1045  /// Set the given bit to 1 whose position is given as "bitPosition".
1046  /// @brief Set a given bit to 1.
1047  APInt& set(unsigned bitPosition);
1048
1049  /// @brief Set every bit to 0.
1050  APInt& clear() {
1051    if (isSingleWord())
1052      VAL = 0;
1053    else
1054      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1055    return *this;
1056  }
1057
1058  /// Set the given bit to 0 whose position is given as "bitPosition".
1059  /// @brief Set a given bit to 0.
1060  APInt& clear(unsigned bitPosition);
1061
1062  /// @brief Toggle every bit to its opposite value.
1063  APInt& flip() {
1064    if (isSingleWord()) {
1065      VAL ^= -1ULL;
1066      return clearUnusedBits();
1067    }
1068    for (unsigned i = 0; i < getNumWords(); ++i)
1069      pVal[i] ^= -1ULL;
1070    return clearUnusedBits();
1071  }
1072
1073  /// Toggle a given bit to its opposite value whose position is given
1074  /// as "bitPosition".
1075  /// @brief Toggles a given bit to its opposite value.
1076  APInt& flip(unsigned bitPosition);
1077
1078  /// @}
1079  /// @name Value Characterization Functions
1080  /// @{
1081
1082  /// @returns the total number of bits.
1083  unsigned getBitWidth() const {
1084    return BitWidth;
1085  }
1086
1087  /// Here one word's bitwidth equals to that of uint64_t.
1088  /// @returns the number of words to hold the integer value of this APInt.
1089  /// @brief Get the number of words.
1090  unsigned getNumWords() const {
1091    return getNumWords(BitWidth);
1092  }
1093
1094  /// Here one word's bitwidth equals to that of uint64_t.
1095  /// @returns the number of words to hold the integer value with a
1096  /// given bit width.
1097  /// @brief Get the number of words.
1098  static unsigned getNumWords(unsigned BitWidth) {
1099    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1100  }
1101
1102  /// This function returns the number of active bits which is defined as the
1103  /// bit width minus the number of leading zeros. This is used in several
1104  /// computations to see how "wide" the value is.
1105  /// @brief Compute the number of active bits in the value
1106  unsigned getActiveBits() const {
1107    return BitWidth - countLeadingZeros();
1108  }
1109
1110  /// This function returns the number of active words in the value of this
1111  /// APInt. This is used in conjunction with getActiveData to extract the raw
1112  /// value of the APInt.
1113  unsigned getActiveWords() const {
1114    return whichWord(getActiveBits()-1) + 1;
1115  }
1116
1117  /// Computes the minimum bit width for this APInt while considering it to be
1118  /// a signed (and probably negative) value. If the value is not negative,
1119  /// this function returns the same value as getActiveBits()+1. Otherwise, it
1120  /// returns the smallest bit width that will retain the negative value. For
1121  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1122  /// for -1, this function will always return 1.
1123  /// @brief Get the minimum bit size for this signed APInt
1124  unsigned getMinSignedBits() const {
1125    if (isNegative())
1126      return BitWidth - countLeadingOnes() + 1;
1127    return getActiveBits()+1;
1128  }
1129
1130  /// This method attempts to return the value of this APInt as a zero extended
1131  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1132  /// uint64_t. Otherwise an assertion will result.
1133  /// @brief Get zero extended value
1134  uint64_t getZExtValue() const {
1135    if (isSingleWord())
1136      return VAL;
1137    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1138    return pVal[0];
1139  }
1140
1141  /// This method attempts to return the value of this APInt as a sign extended
1142  /// int64_t. The bit width must be <= 64 or the value must fit within an
1143  /// int64_t. Otherwise an assertion will result.
1144  /// @brief Get sign extended value
1145  int64_t getSExtValue() const {
1146    if (isSingleWord())
1147      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1148                     (APINT_BITS_PER_WORD - BitWidth);
1149    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1150    return int64_t(pVal[0]);
1151  }
1152
1153  /// This method determines how many bits are required to hold the APInt
1154  /// equivalent of the string given by \arg str.
1155  /// @brief Get bits required for string value.
1156  static unsigned getBitsNeeded(const StringRef& str, uint8_t radix);
1157
1158  /// countLeadingZeros - This function is an APInt version of the
1159  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1160  /// of zeros from the most significant bit to the first one bit.
1161  /// @returns BitWidth if the value is zero.
1162  /// @returns the number of zeros from the most significant bit to the first
1163  /// one bits.
1164  unsigned countLeadingZeros() const {
1165    if (isSingleWord()) {
1166      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1167      return CountLeadingZeros_64(VAL) - unusedBits;
1168    }
1169    return countLeadingZerosSlowCase();
1170  }
1171
1172  /// countLeadingOnes - This function is an APInt version of the
1173  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1174  /// of ones from the most significant bit to the first zero bit.
1175  /// @returns 0 if the high order bit is not set
1176  /// @returns the number of 1 bits from the most significant to the least
1177  /// @brief Count the number of leading one bits.
1178  unsigned countLeadingOnes() const;
1179
1180  /// countTrailingZeros - This function is an APInt version of the
1181  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1182  /// the number of zeros from the least significant bit to the first set bit.
1183  /// @returns BitWidth if the value is zero.
1184  /// @returns the number of zeros from the least significant bit to the first
1185  /// one bit.
1186  /// @brief Count the number of trailing zero bits.
1187  unsigned countTrailingZeros() const;
1188
1189  /// countTrailingOnes - This function is an APInt version of the
1190  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1191  /// the number of ones from the least significant bit to the first zero bit.
1192  /// @returns BitWidth if the value is all ones.
1193  /// @returns the number of ones from the least significant bit to the first
1194  /// zero bit.
1195  /// @brief Count the number of trailing one bits.
1196  unsigned countTrailingOnes() const {
1197    if (isSingleWord())
1198      return CountTrailingOnes_64(VAL);
1199    return countTrailingOnesSlowCase();
1200  }
1201
1202  /// countPopulation - This function is an APInt version of the
1203  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1204  /// of 1 bits in the APInt value.
1205  /// @returns 0 if the value is zero.
1206  /// @returns the number of set bits.
1207  /// @brief Count the number of bits set.
1208  unsigned countPopulation() const {
1209    if (isSingleWord())
1210      return CountPopulation_64(VAL);
1211    return countPopulationSlowCase();
1212  }
1213
1214  /// @}
1215  /// @name Conversion Functions
1216  /// @{
1217  void print(raw_ostream &OS, bool isSigned) const;
1218
1219  /// toString - Converts an APInt to a string and append it to Str.  Str is
1220  /// commonly a SmallString.
1221  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed) const;
1222
1223  /// Considers the APInt to be unsigned and converts it into a string in the
1224  /// radix given. The radix can be 2, 8, 10 or 16.
1225  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1226    toString(Str, Radix, false);
1227  }
1228
1229  /// Considers the APInt to be signed and converts it into a string in the
1230  /// radix given. The radix can be 2, 8, 10 or 16.
1231  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1232    toString(Str, Radix, true);
1233  }
1234
1235  /// toString - This returns the APInt as a std::string.  Note that this is an
1236  /// inefficient method.  It is better to pass in a SmallVector/SmallString
1237  /// to the methods above to avoid thrashing the heap for the string.
1238  std::string toString(unsigned Radix, bool Signed) const;
1239
1240
1241  /// @returns a byte-swapped representation of this APInt Value.
1242  APInt byteSwap() const;
1243
1244  /// @brief Converts this APInt to a double value.
1245  double roundToDouble(bool isSigned) const;
1246
1247  /// @brief Converts this unsigned APInt to a double value.
1248  double roundToDouble() const {
1249    return roundToDouble(false);
1250  }
1251
1252  /// @brief Converts this signed APInt to a double value.
1253  double signedRoundToDouble() const {
1254    return roundToDouble(true);
1255  }
1256
1257  /// The conversion does not do a translation from integer to double, it just
1258  /// re-interprets the bits as a double. Note that it is valid to do this on
1259  /// any bit width. Exactly 64 bits will be translated.
1260  /// @brief Converts APInt bits to a double
1261  double bitsToDouble() const {
1262    union {
1263      uint64_t I;
1264      double D;
1265    } T;
1266    T.I = (isSingleWord() ? VAL : pVal[0]);
1267    return T.D;
1268  }
1269
1270  /// The conversion does not do a translation from integer to float, it just
1271  /// re-interprets the bits as a float. Note that it is valid to do this on
1272  /// any bit width. Exactly 32 bits will be translated.
1273  /// @brief Converts APInt bits to a double
1274  float bitsToFloat() const {
1275    union {
1276      unsigned I;
1277      float F;
1278    } T;
1279    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1280    return T.F;
1281  }
1282
1283  /// The conversion does not do a translation from double to integer, it just
1284  /// re-interprets the bits of the double. Note that it is valid to do this on
1285  /// any bit width but bits from V may get truncated.
1286  /// @brief Converts a double to APInt bits.
1287  APInt& doubleToBits(double V) {
1288    union {
1289      uint64_t I;
1290      double D;
1291    } T;
1292    T.D = V;
1293    if (isSingleWord())
1294      VAL = T.I;
1295    else
1296      pVal[0] = T.I;
1297    return clearUnusedBits();
1298  }
1299
1300  /// The conversion does not do a translation from float to integer, it just
1301  /// re-interprets the bits of the float. Note that it is valid to do this on
1302  /// any bit width but bits from V may get truncated.
1303  /// @brief Converts a float to APInt bits.
1304  APInt& floatToBits(float V) {
1305    union {
1306      unsigned I;
1307      float F;
1308    } T;
1309    T.F = V;
1310    if (isSingleWord())
1311      VAL = T.I;
1312    else
1313      pVal[0] = T.I;
1314    return clearUnusedBits();
1315  }
1316
1317  /// @}
1318  /// @name Mathematics Operations
1319  /// @{
1320
1321  /// @returns the floor log base 2 of this APInt.
1322  unsigned logBase2() const {
1323    return BitWidth - 1 - countLeadingZeros();
1324  }
1325
1326  /// @returns the ceil log base 2 of this APInt.
1327  unsigned ceilLogBase2() const {
1328    return BitWidth - (*this - 1).countLeadingZeros();
1329  }
1330
1331  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1332  /// otherwise
1333  int32_t exactLogBase2() const {
1334    if (!isPowerOf2())
1335      return -1;
1336    return logBase2();
1337  }
1338
1339  /// @brief Compute the square root
1340  APInt sqrt() const;
1341
1342  /// If *this is < 0 then return -(*this), otherwise *this;
1343  /// @brief Get the absolute value;
1344  APInt abs() const {
1345    if (isNegative())
1346      return -(*this);
1347    return *this;
1348  }
1349
1350  /// @returns the multiplicative inverse for a given modulo.
1351  APInt multiplicativeInverse(const APInt& modulo) const;
1352
1353  /// @}
1354  /// @name Support for division by constant
1355  /// @{
1356
1357  /// Calculate the magic number for signed division by a constant.
1358  struct ms;
1359  ms magic() const;
1360
1361  /// Calculate the magic number for unsigned division by a constant.
1362  struct mu;
1363  mu magicu() const;
1364
1365  /// @}
1366  /// @name Building-block Operations for APInt and APFloat
1367  /// @{
1368
1369  // These building block operations operate on a representation of
1370  // arbitrary precision, two's-complement, bignum integer values.
1371  // They should be sufficient to implement APInt and APFloat bignum
1372  // requirements.  Inputs are generally a pointer to the base of an
1373  // array of integer parts, representing an unsigned bignum, and a
1374  // count of how many parts there are.
1375
1376  /// Sets the least significant part of a bignum to the input value,
1377  /// and zeroes out higher parts.  */
1378  static void tcSet(integerPart *, integerPart, unsigned int);
1379
1380  /// Assign one bignum to another.
1381  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1382
1383  /// Returns true if a bignum is zero, false otherwise.
1384  static bool tcIsZero(const integerPart *, unsigned int);
1385
1386  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1387  static int tcExtractBit(const integerPart *, unsigned int bit);
1388
1389  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1390  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1391  /// becomes the least significant bit of DST.  All high bits above
1392  /// srcBITS in DST are zero-filled.
1393  static void tcExtract(integerPart *, unsigned int dstCount,
1394                        const integerPart *,
1395                        unsigned int srcBits, unsigned int srcLSB);
1396
1397  /// Set the given bit of a bignum.  Zero-based.
1398  static void tcSetBit(integerPart *, unsigned int bit);
1399
1400  /// Clear the given bit of a bignum.  Zero-based.
1401  static void tcClearBit(integerPart *, unsigned int bit);
1402
1403  /// Returns the bit number of the least or most significant set bit
1404  /// of a number.  If the input number has no bits set -1U is
1405  /// returned.
1406  static unsigned int tcLSB(const integerPart *, unsigned int);
1407  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1408
1409  /// Negate a bignum in-place.
1410  static void tcNegate(integerPart *, unsigned int);
1411
1412  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1413  /// carry flag.
1414  static integerPart tcAdd(integerPart *, const integerPart *,
1415                           integerPart carry, unsigned);
1416
1417  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1418  /// carry flag.
1419  static integerPart tcSubtract(integerPart *, const integerPart *,
1420                                integerPart carry, unsigned);
1421
1422  ///  DST += SRC * MULTIPLIER + PART   if add is true
1423  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1424  ///
1425  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1426  ///  they must start at the same point, i.e. DST == SRC.
1427  ///
1428  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1429  ///  returned.  Otherwise DST is filled with the least significant
1430  ///  DSTPARTS parts of the result, and if all of the omitted higher
1431  ///  parts were zero return zero, otherwise overflow occurred and
1432  ///  return one.
1433  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1434                            integerPart multiplier, integerPart carry,
1435                            unsigned int srcParts, unsigned int dstParts,
1436                            bool add);
1437
1438  /// DST = LHS * RHS, where DST has the same width as the operands
1439  /// and is filled with the least significant parts of the result.
1440  /// Returns one if overflow occurred, otherwise zero.  DST must be
1441  /// disjoint from both operands.
1442  static int tcMultiply(integerPart *, const integerPart *,
1443                        const integerPart *, unsigned);
1444
1445  /// DST = LHS * RHS, where DST has width the sum of the widths of
1446  /// the operands.  No overflow occurs.  DST must be disjoint from
1447  /// both operands. Returns the number of parts required to hold the
1448  /// result.
1449  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1450                                     const integerPart *, unsigned, unsigned);
1451
1452  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1453  /// Otherwise set LHS to LHS / RHS with the fractional part
1454  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1455  ///
1456  ///  OLD_LHS = RHS * LHS + REMAINDER
1457  ///
1458  ///  SCRATCH is a bignum of the same size as the operands and result
1459  ///  for use by the routine; its contents need not be initialized
1460  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1461  ///  distinct.
1462  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1463                      integerPart *remainder, integerPart *scratch,
1464                      unsigned int parts);
1465
1466  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1467  /// There are no restrictions on COUNT.
1468  static void tcShiftLeft(integerPart *, unsigned int parts,
1469                          unsigned int count);
1470
1471  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1472  /// There are no restrictions on COUNT.
1473  static void tcShiftRight(integerPart *, unsigned int parts,
1474                           unsigned int count);
1475
1476  /// The obvious AND, OR and XOR and complement operations.
1477  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1478  static void tcOr(integerPart *, const integerPart *, unsigned int);
1479  static void tcXor(integerPart *, const integerPart *, unsigned int);
1480  static void tcComplement(integerPart *, unsigned int);
1481
1482  /// Comparison (unsigned) of two bignums.
1483  static int tcCompare(const integerPart *, const integerPart *,
1484                       unsigned int);
1485
1486  /// Increment a bignum in-place.  Return the carry flag.
1487  static integerPart tcIncrement(integerPart *, unsigned int);
1488
1489  /// Set the least significant BITS and clear the rest.
1490  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1491                                        unsigned int bits);
1492
1493  /// @brief debug method
1494  void dump() const;
1495
1496  /// @}
1497};
1498
1499/// Magic data for optimising signed division by a constant.
1500struct APInt::ms {
1501  APInt m;  ///< magic number
1502  unsigned s;  ///< shift amount
1503};
1504
1505/// Magic data for optimising unsigned division by a constant.
1506struct APInt::mu {
1507  APInt m;     ///< magic number
1508  bool a;      ///< add indicator
1509  unsigned s;  ///< shift amount
1510};
1511
1512inline bool operator==(uint64_t V1, const APInt& V2) {
1513  return V2 == V1;
1514}
1515
1516inline bool operator!=(uint64_t V1, const APInt& V2) {
1517  return V2 != V1;
1518}
1519
1520inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1521  I.print(OS, true);
1522  return OS;
1523}
1524
1525namespace APIntOps {
1526
1527/// @brief Determine the smaller of two APInts considered to be signed.
1528inline APInt smin(const APInt &A, const APInt &B) {
1529  return A.slt(B) ? A : B;
1530}
1531
1532/// @brief Determine the larger of two APInts considered to be signed.
1533inline APInt smax(const APInt &A, const APInt &B) {
1534  return A.sgt(B) ? A : B;
1535}
1536
1537/// @brief Determine the smaller of two APInts considered to be signed.
1538inline APInt umin(const APInt &A, const APInt &B) {
1539  return A.ult(B) ? A : B;
1540}
1541
1542/// @brief Determine the larger of two APInts considered to be unsigned.
1543inline APInt umax(const APInt &A, const APInt &B) {
1544  return A.ugt(B) ? A : B;
1545}
1546
1547/// @brief Check if the specified APInt has a N-bits unsigned integer value.
1548inline bool isIntN(unsigned N, const APInt& APIVal) {
1549  return APIVal.isIntN(N);
1550}
1551
1552/// @brief Check if the specified APInt has a N-bits signed integer value.
1553inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1554  return APIVal.isSignedIntN(N);
1555}
1556
1557/// @returns true if the argument APInt value is a sequence of ones
1558/// starting at the least significant bit with the remainder zero.
1559inline bool isMask(unsigned numBits, const APInt& APIVal) {
1560  return numBits <= APIVal.getBitWidth() &&
1561    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1562}
1563
1564/// @returns true if the argument APInt value contains a sequence of ones
1565/// with the remainder zero.
1566inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1567  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1568}
1569
1570/// @returns a byte-swapped representation of the specified APInt Value.
1571inline APInt byteSwap(const APInt& APIVal) {
1572  return APIVal.byteSwap();
1573}
1574
1575/// @returns the floor log base 2 of the specified APInt value.
1576inline unsigned logBase2(const APInt& APIVal) {
1577  return APIVal.logBase2();
1578}
1579
1580/// GreatestCommonDivisor - This function returns the greatest common
1581/// divisor of the two APInt values using Euclid's algorithm.
1582/// @returns the greatest common divisor of Val1 and Val2
1583/// @brief Compute GCD of two APInt values.
1584APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1585
1586/// Treats the APInt as an unsigned value for conversion purposes.
1587/// @brief Converts the given APInt to a double value.
1588inline double RoundAPIntToDouble(const APInt& APIVal) {
1589  return APIVal.roundToDouble();
1590}
1591
1592/// Treats the APInt as a signed value for conversion purposes.
1593/// @brief Converts the given APInt to a double value.
1594inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1595  return APIVal.signedRoundToDouble();
1596}
1597
1598/// @brief Converts the given APInt to a float vlalue.
1599inline float RoundAPIntToFloat(const APInt& APIVal) {
1600  return float(RoundAPIntToDouble(APIVal));
1601}
1602
1603/// Treast the APInt as a signed value for conversion purposes.
1604/// @brief Converts the given APInt to a float value.
1605inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1606  return float(APIVal.signedRoundToDouble());
1607}
1608
1609/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1610/// @brief Converts the given double value into a APInt.
1611APInt RoundDoubleToAPInt(double Double, unsigned width);
1612
1613/// RoundFloatToAPInt - Converts a float value into an APInt value.
1614/// @brief Converts a float value into a APInt.
1615inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1616  return RoundDoubleToAPInt(double(Float), width);
1617}
1618
1619/// Arithmetic right-shift the APInt by shiftAmt.
1620/// @brief Arithmetic right-shift function.
1621inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1622  return LHS.ashr(shiftAmt);
1623}
1624
1625/// Logical right-shift the APInt by shiftAmt.
1626/// @brief Logical right-shift function.
1627inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1628  return LHS.lshr(shiftAmt);
1629}
1630
1631/// Left-shift the APInt by shiftAmt.
1632/// @brief Left-shift function.
1633inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1634  return LHS.shl(shiftAmt);
1635}
1636
1637/// Signed divide APInt LHS by APInt RHS.
1638/// @brief Signed division function for APInt.
1639inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1640  return LHS.sdiv(RHS);
1641}
1642
1643/// Unsigned divide APInt LHS by APInt RHS.
1644/// @brief Unsigned division function for APInt.
1645inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1646  return LHS.udiv(RHS);
1647}
1648
1649/// Signed remainder operation on APInt.
1650/// @brief Function for signed remainder operation.
1651inline APInt srem(const APInt& LHS, const APInt& RHS) {
1652  return LHS.srem(RHS);
1653}
1654
1655/// Unsigned remainder operation on APInt.
1656/// @brief Function for unsigned remainder operation.
1657inline APInt urem(const APInt& LHS, const APInt& RHS) {
1658  return LHS.urem(RHS);
1659}
1660
1661/// Performs multiplication on APInt values.
1662/// @brief Function for multiplication operation.
1663inline APInt mul(const APInt& LHS, const APInt& RHS) {
1664  return LHS * RHS;
1665}
1666
1667/// Performs addition on APInt values.
1668/// @brief Function for addition operation.
1669inline APInt add(const APInt& LHS, const APInt& RHS) {
1670  return LHS + RHS;
1671}
1672
1673/// Performs subtraction on APInt values.
1674/// @brief Function for subtraction operation.
1675inline APInt sub(const APInt& LHS, const APInt& RHS) {
1676  return LHS - RHS;
1677}
1678
1679/// Performs bitwise AND operation on APInt LHS and
1680/// APInt RHS.
1681/// @brief Bitwise AND function for APInt.
1682inline APInt And(const APInt& LHS, const APInt& RHS) {
1683  return LHS & RHS;
1684}
1685
1686/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1687/// @brief Bitwise OR function for APInt.
1688inline APInt Or(const APInt& LHS, const APInt& RHS) {
1689  return LHS | RHS;
1690}
1691
1692/// Performs bitwise XOR operation on APInt.
1693/// @brief Bitwise XOR function for APInt.
1694inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1695  return LHS ^ RHS;
1696}
1697
1698/// Performs a bitwise complement operation on APInt.
1699/// @brief Bitwise complement function.
1700inline APInt Not(const APInt& APIVal) {
1701  return ~APIVal;
1702}
1703
1704} // End of APIntOps namespace
1705
1706} // End of llvm namespace
1707
1708#endif
1709