APInt.h revision 193323
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_APINT_H
16#define LLVM_APINT_H
17
18#include "llvm/Support/DataTypes.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26  class Serializer;
27  class Deserializer;
28  class FoldingSetNodeID;
29  class raw_ostream;
30
31  template<typename T>
32  class SmallVectorImpl;
33
34  /* An unsigned host type used as a single part of a multi-part
35     bignum.  */
36  typedef uint64_t integerPart;
37
38  const unsigned int host_char_bit = 8;
39  const unsigned int integerPartWidth = host_char_bit *
40    static_cast<unsigned int>(sizeof(integerPart));
41
42//===----------------------------------------------------------------------===//
43//                              APInt Class
44//===----------------------------------------------------------------------===//
45
46/// APInt - This class represents arbitrary precision constant integral values.
47/// It is a functional replacement for common case unsigned integer type like
48/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50/// than 64-bits of precision. APInt provides a variety of arithmetic operators
51/// and methods to manipulate integer values of any bit-width. It supports both
52/// the typical integer arithmetic and comparison operations as well as bitwise
53/// manipulation.
54///
55/// The class has several invariants worth noting:
56///   * All bit, byte, and word positions are zero-based.
57///   * Once the bit width is set, it doesn't change except by the Truncate,
58///     SignExtend, or ZeroExtend operations.
59///   * All binary operators must be on APInt instances of the same bit width.
60///     Attempting to use these operators on instances with different bit
61///     widths will yield an assertion.
62///   * The value is stored canonically as an unsigned value. For operations
63///     where it makes a difference, there are both signed and unsigned variants
64///     of the operation. For example, sdiv and udiv. However, because the bit
65///     widths must be the same, operations such as Mul and Add produce the same
66///     results regardless of whether the values are interpreted as signed or
67///     not.
68///   * In general, the class tries to follow the style of computation that LLVM
69///     uses in its IR. This simplifies its use for LLVM.
70///
71/// @brief Class for arbitrary precision integers.
72class APInt {
73  unsigned BitWidth;      ///< The number of bits in this APInt.
74
75  /// This union is used to store the integer value. When the
76  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
77  union {
78    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
79    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
80  };
81
82  /// This enum is used to hold the constants we needed for APInt.
83  enum {
84    /// Bits in a word
85    APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
86                          CHAR_BIT,
87    /// Byte size of a word
88    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
89  };
90
91  /// This constructor is used only internally for speed of construction of
92  /// temporaries. It is unsafe for general use so it is not public.
93  /// @brief Fast internal constructor
94  APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
95
96  /// @returns true if the number of bits <= 64, false otherwise.
97  /// @brief Determine if this APInt just has one word to store value.
98  bool isSingleWord() const {
99    return BitWidth <= APINT_BITS_PER_WORD;
100  }
101
102  /// @returns the word position for the specified bit position.
103  /// @brief Determine which word a bit is in.
104  static unsigned whichWord(unsigned bitPosition) {
105    return bitPosition / APINT_BITS_PER_WORD;
106  }
107
108  /// @returns the bit position in a word for the specified bit position
109  /// in the APInt.
110  /// @brief Determine which bit in a word a bit is in.
111  static unsigned whichBit(unsigned bitPosition) {
112    return bitPosition % APINT_BITS_PER_WORD;
113  }
114
115  /// This method generates and returns a uint64_t (word) mask for a single
116  /// bit at a specific bit position. This is used to mask the bit in the
117  /// corresponding word.
118  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
119  /// @brief Get a single bit mask.
120  static uint64_t maskBit(unsigned bitPosition) {
121    return 1ULL << whichBit(bitPosition);
122  }
123
124  /// This method is used internally to clear the to "N" bits in the high order
125  /// word that are not used by the APInt. This is needed after the most
126  /// significant word is assigned a value to ensure that those bits are
127  /// zero'd out.
128  /// @brief Clear unused high order bits
129  APInt& clearUnusedBits() {
130    // Compute how many bits are used in the final word
131    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
132    if (wordBits == 0)
133      // If all bits are used, we want to leave the value alone. This also
134      // avoids the undefined behavior of >> when the shift is the same size as
135      // the word size (64).
136      return *this;
137
138    // Mask out the high bits.
139    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
140    if (isSingleWord())
141      VAL &= mask;
142    else
143      pVal[getNumWords() - 1] &= mask;
144    return *this;
145  }
146
147  /// @returns the corresponding word for the specified bit position.
148  /// @brief Get the word corresponding to a bit position
149  uint64_t getWord(unsigned bitPosition) const {
150    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
151  }
152
153  /// This is used by the constructors that take string arguments.
154  /// @brief Convert a char array into an APInt
155  void fromString(unsigned numBits, const char *strStart, unsigned slen,
156                  uint8_t radix);
157
158  /// This is used by the toString method to divide by the radix. It simply
159  /// provides a more convenient form of divide for internal use since KnuthDiv
160  /// has specific constraints on its inputs. If those constraints are not met
161  /// then it provides a simpler form of divide.
162  /// @brief An internal division function for dividing APInts.
163  static void divide(const APInt LHS, unsigned lhsWords,
164                     const APInt &RHS, unsigned rhsWords,
165                     APInt *Quotient, APInt *Remainder);
166
167  /// out-of-line slow case for inline constructor
168  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
169
170  /// out-of-line slow case for inline copy constructor
171  void initSlowCase(const APInt& that);
172
173  /// out-of-line slow case for shl
174  APInt shlSlowCase(unsigned shiftAmt) const;
175
176  /// out-of-line slow case for operator&
177  APInt AndSlowCase(const APInt& RHS) const;
178
179  /// out-of-line slow case for operator|
180  APInt OrSlowCase(const APInt& RHS) const;
181
182  /// out-of-line slow case for operator^
183  APInt XorSlowCase(const APInt& RHS) const;
184
185  /// out-of-line slow case for operator=
186  APInt& AssignSlowCase(const APInt& RHS);
187
188  /// out-of-line slow case for operator==
189  bool EqualSlowCase(const APInt& RHS) const;
190
191  /// out-of-line slow case for operator==
192  bool EqualSlowCase(uint64_t Val) const;
193
194  /// out-of-line slow case for countLeadingZeros
195  unsigned countLeadingZerosSlowCase() const;
196
197  /// out-of-line slow case for countTrailingOnes
198  unsigned countTrailingOnesSlowCase() const;
199
200  /// out-of-line slow case for countPopulation
201  unsigned countPopulationSlowCase() const;
202
203public:
204  /// @name Constructors
205  /// @{
206  /// If isSigned is true then val is treated as if it were a signed value
207  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
208  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
209  /// the range of val are zero filled).
210  /// @param numBits the bit width of the constructed APInt
211  /// @param val the initial value of the APInt
212  /// @param isSigned how to treat signedness of val
213  /// @brief Create a new APInt of numBits width, initialized as val.
214  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
215    : BitWidth(numBits), VAL(0) {
216    assert(BitWidth && "bitwidth too small");
217    if (isSingleWord())
218      VAL = val;
219    else
220      initSlowCase(numBits, val, isSigned);
221    clearUnusedBits();
222  }
223
224  /// Note that numWords can be smaller or larger than the corresponding bit
225  /// width but any extraneous bits will be dropped.
226  /// @param numBits the bit width of the constructed APInt
227  /// @param numWords the number of words in bigVal
228  /// @param bigVal a sequence of words to form the initial value of the APInt
229  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
230  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
231
232  /// This constructor interprets the slen characters starting at StrStart as
233  /// a string in the given radix. The interpretation stops when the first
234  /// character that is not suitable for the radix is encountered. Acceptable
235  /// radix values are 2, 8, 10 and 16. It is an error for the value implied by
236  /// the string to require more bits than numBits.
237  /// @param numBits the bit width of the constructed APInt
238  /// @param strStart the start of the string to be interpreted
239  /// @param slen the maximum number of characters to interpret
240  /// @param radix the radix to use for the conversion
241  /// @brief Construct an APInt from a string representation.
242  APInt(unsigned numBits, const char strStart[], unsigned slen, uint8_t radix);
243
244  /// Simply makes *this a copy of that.
245  /// @brief Copy Constructor.
246  APInt(const APInt& that)
247    : BitWidth(that.BitWidth), VAL(0) {
248    assert(BitWidth && "bitwidth too small");
249    if (isSingleWord())
250      VAL = that.VAL;
251    else
252      initSlowCase(that);
253  }
254
255  /// @brief Destructor.
256  ~APInt() {
257    if (!isSingleWord())
258      delete [] pVal;
259  }
260
261  /// Default constructor that creates an uninitialized APInt.  This is useful
262  ///  for object deserialization (pair this with the static method Read).
263  explicit APInt() : BitWidth(1) {}
264
265  /// Profile - Used to insert APInt objects, or objects that contain APInt
266  ///  objects, into FoldingSets.
267  void Profile(FoldingSetNodeID& id) const;
268
269  /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
270  void Emit(Serializer& S) const;
271
272  /// @brief Used by the Bitcode deserializer to deserialize APInts.
273  void Read(Deserializer& D);
274
275  /// @}
276  /// @name Value Tests
277  /// @{
278  /// This tests the high bit of this APInt to determine if it is set.
279  /// @returns true if this APInt is negative, false otherwise
280  /// @brief Determine sign of this APInt.
281  bool isNegative() const {
282    return (*this)[BitWidth - 1];
283  }
284
285  /// This tests the high bit of the APInt to determine if it is unset.
286  /// @brief Determine if this APInt Value is non-negative (>= 0)
287  bool isNonNegative() const {
288    return !isNegative();
289  }
290
291  /// This tests if the value of this APInt is positive (> 0). Note
292  /// that 0 is not a positive value.
293  /// @returns true if this APInt is positive.
294  /// @brief Determine if this APInt Value is positive.
295  bool isStrictlyPositive() const {
296    return isNonNegative() && (*this) != 0;
297  }
298
299  /// This checks to see if the value has all bits of the APInt are set or not.
300  /// @brief Determine if all bits are set
301  bool isAllOnesValue() const {
302    return countPopulation() == BitWidth;
303  }
304
305  /// This checks to see if the value of this APInt is the maximum unsigned
306  /// value for the APInt's bit width.
307  /// @brief Determine if this is the largest unsigned value.
308  bool isMaxValue() const {
309    return countPopulation() == BitWidth;
310  }
311
312  /// This checks to see if the value of this APInt is the maximum signed
313  /// value for the APInt's bit width.
314  /// @brief Determine if this is the largest signed value.
315  bool isMaxSignedValue() const {
316    return BitWidth == 1 ? VAL == 0 :
317                          !isNegative() && countPopulation() == BitWidth - 1;
318  }
319
320  /// This checks to see if the value of this APInt is the minimum unsigned
321  /// value for the APInt's bit width.
322  /// @brief Determine if this is the smallest unsigned value.
323  bool isMinValue() const {
324    return countPopulation() == 0;
325  }
326
327  /// This checks to see if the value of this APInt is the minimum signed
328  /// value for the APInt's bit width.
329  /// @brief Determine if this is the smallest signed value.
330  bool isMinSignedValue() const {
331    return BitWidth == 1 ? VAL == 1 :
332                           isNegative() && countPopulation() == 1;
333  }
334
335  /// @brief Check if this APInt has an N-bits unsigned integer value.
336  bool isIntN(unsigned N) const {
337    assert(N && "N == 0 ???");
338    if (N >= getBitWidth())
339      return true;
340
341    if (isSingleWord())
342      return VAL == (VAL & (~0ULL >> (64 - N)));
343    APInt Tmp(N, getNumWords(), pVal);
344    Tmp.zext(getBitWidth());
345    return Tmp == (*this);
346  }
347
348  /// @brief Check if this APInt has an N-bits signed integer value.
349  bool isSignedIntN(unsigned N) const {
350    assert(N && "N == 0 ???");
351    return getMinSignedBits() <= N;
352  }
353
354  /// @returns true if the argument APInt value is a power of two > 0.
355  bool isPowerOf2() const;
356
357  /// isSignBit - Return true if this is the value returned by getSignBit.
358  bool isSignBit() const { return isMinSignedValue(); }
359
360  /// This converts the APInt to a boolean value as a test against zero.
361  /// @brief Boolean conversion function.
362  bool getBoolValue() const {
363    return *this != 0;
364  }
365
366  /// getLimitedValue - If this value is smaller than the specified limit,
367  /// return it, otherwise return the limit value.  This causes the value
368  /// to saturate to the limit.
369  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
370    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
371      Limit :  getZExtValue();
372  }
373
374  /// @}
375  /// @name Value Generators
376  /// @{
377  /// @brief Gets maximum unsigned value of APInt for specific bit width.
378  static APInt getMaxValue(unsigned numBits) {
379    return APInt(numBits, 0).set();
380  }
381
382  /// @brief Gets maximum signed value of APInt for a specific bit width.
383  static APInt getSignedMaxValue(unsigned numBits) {
384    return APInt(numBits, 0).set().clear(numBits - 1);
385  }
386
387  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
388  static APInt getMinValue(unsigned numBits) {
389    return APInt(numBits, 0);
390  }
391
392  /// @brief Gets minimum signed value of APInt for a specific bit width.
393  static APInt getSignedMinValue(unsigned numBits) {
394    return APInt(numBits, 0).set(numBits - 1);
395  }
396
397  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
398  /// it helps code readability when we want to get a SignBit.
399  /// @brief Get the SignBit for a specific bit width.
400  static APInt getSignBit(unsigned BitWidth) {
401    return getSignedMinValue(BitWidth);
402  }
403
404  /// @returns the all-ones value for an APInt of the specified bit-width.
405  /// @brief Get the all-ones value.
406  static APInt getAllOnesValue(unsigned numBits) {
407    return APInt(numBits, 0).set();
408  }
409
410  /// @returns the '0' value for an APInt of the specified bit-width.
411  /// @brief Get the '0' value.
412  static APInt getNullValue(unsigned numBits) {
413    return APInt(numBits, 0);
414  }
415
416  /// Get an APInt with the same BitWidth as this APInt, just zero mask
417  /// the low bits and right shift to the least significant bit.
418  /// @returns the high "numBits" bits of this APInt.
419  APInt getHiBits(unsigned numBits) const;
420
421  /// Get an APInt with the same BitWidth as this APInt, just zero mask
422  /// the high bits.
423  /// @returns the low "numBits" bits of this APInt.
424  APInt getLoBits(unsigned numBits) const;
425
426  /// Constructs an APInt value that has a contiguous range of bits set. The
427  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
428  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
429  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
430  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
431  /// @param numBits the intended bit width of the result
432  /// @param loBit the index of the lowest bit set.
433  /// @param hiBit the index of the highest bit set.
434  /// @returns An APInt value with the requested bits set.
435  /// @brief Get a value with a block of bits set.
436  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
437    assert(hiBit <= numBits && "hiBit out of range");
438    assert(loBit < numBits && "loBit out of range");
439    if (hiBit < loBit)
440      return getLowBitsSet(numBits, hiBit) |
441             getHighBitsSet(numBits, numBits-loBit);
442    return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
443  }
444
445  /// Constructs an APInt value that has the top hiBitsSet bits set.
446  /// @param numBits the bitwidth of the result
447  /// @param hiBitsSet the number of high-order bits set in the result.
448  /// @brief Get a value with high bits set
449  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
450    assert(hiBitsSet <= numBits && "Too many bits to set!");
451    // Handle a degenerate case, to avoid shifting by word size
452    if (hiBitsSet == 0)
453      return APInt(numBits, 0);
454    unsigned shiftAmt = numBits - hiBitsSet;
455    // For small values, return quickly
456    if (numBits <= APINT_BITS_PER_WORD)
457      return APInt(numBits, ~0ULL << shiftAmt);
458    return (~APInt(numBits, 0)).shl(shiftAmt);
459  }
460
461  /// Constructs an APInt value that has the bottom loBitsSet bits set.
462  /// @param numBits the bitwidth of the result
463  /// @param loBitsSet the number of low-order bits set in the result.
464  /// @brief Get a value with low bits set
465  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
466    assert(loBitsSet <= numBits && "Too many bits to set!");
467    // Handle a degenerate case, to avoid shifting by word size
468    if (loBitsSet == 0)
469      return APInt(numBits, 0);
470    if (loBitsSet == APINT_BITS_PER_WORD)
471      return APInt(numBits, -1ULL);
472    // For small values, return quickly.
473    if (numBits < APINT_BITS_PER_WORD)
474      return APInt(numBits, (1ULL << loBitsSet) - 1);
475    return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
476  }
477
478  /// The hash value is computed as the sum of the words and the bit width.
479  /// @returns A hash value computed from the sum of the APInt words.
480  /// @brief Get a hash value based on this APInt
481  uint64_t getHashValue() const;
482
483  /// This function returns a pointer to the internal storage of the APInt.
484  /// This is useful for writing out the APInt in binary form without any
485  /// conversions.
486  const uint64_t* getRawData() const {
487    if (isSingleWord())
488      return &VAL;
489    return &pVal[0];
490  }
491
492  /// @}
493  /// @name Unary Operators
494  /// @{
495  /// @returns a new APInt value representing *this incremented by one
496  /// @brief Postfix increment operator.
497  const APInt operator++(int) {
498    APInt API(*this);
499    ++(*this);
500    return API;
501  }
502
503  /// @returns *this incremented by one
504  /// @brief Prefix increment operator.
505  APInt& operator++();
506
507  /// @returns a new APInt representing *this decremented by one.
508  /// @brief Postfix decrement operator.
509  const APInt operator--(int) {
510    APInt API(*this);
511    --(*this);
512    return API;
513  }
514
515  /// @returns *this decremented by one.
516  /// @brief Prefix decrement operator.
517  APInt& operator--();
518
519  /// Performs a bitwise complement operation on this APInt.
520  /// @returns an APInt that is the bitwise complement of *this
521  /// @brief Unary bitwise complement operator.
522  APInt operator~() const {
523    APInt Result(*this);
524    Result.flip();
525    return Result;
526  }
527
528  /// Negates *this using two's complement logic.
529  /// @returns An APInt value representing the negation of *this.
530  /// @brief Unary negation operator
531  APInt operator-() const {
532    return APInt(BitWidth, 0) - (*this);
533  }
534
535  /// Performs logical negation operation on this APInt.
536  /// @returns true if *this is zero, false otherwise.
537  /// @brief Logical negation operator.
538  bool operator!() const;
539
540  /// @}
541  /// @name Assignment Operators
542  /// @{
543  /// @returns *this after assignment of RHS.
544  /// @brief Copy assignment operator.
545  APInt& operator=(const APInt& RHS) {
546    // If the bitwidths are the same, we can avoid mucking with memory
547    if (isSingleWord() && RHS.isSingleWord()) {
548      VAL = RHS.VAL;
549      BitWidth = RHS.BitWidth;
550      return clearUnusedBits();
551    }
552
553    return AssignSlowCase(RHS);
554  }
555
556  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
557  /// the bit width, the excess bits are truncated. If the bit width is larger
558  /// than 64, the value is zero filled in the unspecified high order bits.
559  /// @returns *this after assignment of RHS value.
560  /// @brief Assignment operator.
561  APInt& operator=(uint64_t RHS);
562
563  /// Performs a bitwise AND operation on this APInt and RHS. The result is
564  /// assigned to *this.
565  /// @returns *this after ANDing with RHS.
566  /// @brief Bitwise AND assignment operator.
567  APInt& operator&=(const APInt& RHS);
568
569  /// Performs a bitwise OR operation on this APInt and RHS. The result is
570  /// assigned *this;
571  /// @returns *this after ORing with RHS.
572  /// @brief Bitwise OR assignment operator.
573  APInt& operator|=(const APInt& RHS);
574
575  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
576  /// assigned to *this.
577  /// @returns *this after XORing with RHS.
578  /// @brief Bitwise XOR assignment operator.
579  APInt& operator^=(const APInt& RHS);
580
581  /// Multiplies this APInt by RHS and assigns the result to *this.
582  /// @returns *this
583  /// @brief Multiplication assignment operator.
584  APInt& operator*=(const APInt& RHS);
585
586  /// Adds RHS to *this and assigns the result to *this.
587  /// @returns *this
588  /// @brief Addition assignment operator.
589  APInt& operator+=(const APInt& RHS);
590
591  /// Subtracts RHS from *this and assigns the result to *this.
592  /// @returns *this
593  /// @brief Subtraction assignment operator.
594  APInt& operator-=(const APInt& RHS);
595
596  /// Shifts *this left by shiftAmt and assigns the result to *this.
597  /// @returns *this after shifting left by shiftAmt
598  /// @brief Left-shift assignment function.
599  APInt& operator<<=(unsigned shiftAmt) {
600    *this = shl(shiftAmt);
601    return *this;
602  }
603
604  /// @}
605  /// @name Binary Operators
606  /// @{
607  /// Performs a bitwise AND operation on *this and RHS.
608  /// @returns An APInt value representing the bitwise AND of *this and RHS.
609  /// @brief Bitwise AND operator.
610  APInt operator&(const APInt& RHS) const {
611    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
612    if (isSingleWord())
613      return APInt(getBitWidth(), VAL & RHS.VAL);
614    return AndSlowCase(RHS);
615  }
616  APInt And(const APInt& RHS) const {
617    return this->operator&(RHS);
618  }
619
620  /// Performs a bitwise OR operation on *this and RHS.
621  /// @returns An APInt value representing the bitwise OR of *this and RHS.
622  /// @brief Bitwise OR operator.
623  APInt operator|(const APInt& RHS) const {
624    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
625    if (isSingleWord())
626      return APInt(getBitWidth(), VAL | RHS.VAL);
627    return OrSlowCase(RHS);
628  }
629  APInt Or(const APInt& RHS) const {
630    return this->operator|(RHS);
631  }
632
633  /// Performs a bitwise XOR operation on *this and RHS.
634  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
635  /// @brief Bitwise XOR operator.
636  APInt operator^(const APInt& RHS) const {
637    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
638    if (isSingleWord())
639      return APInt(BitWidth, VAL ^ RHS.VAL);
640    return XorSlowCase(RHS);
641  }
642  APInt Xor(const APInt& RHS) const {
643    return this->operator^(RHS);
644  }
645
646  /// Multiplies this APInt by RHS and returns the result.
647  /// @brief Multiplication operator.
648  APInt operator*(const APInt& RHS) const;
649
650  /// Adds RHS to this APInt and returns the result.
651  /// @brief Addition operator.
652  APInt operator+(const APInt& RHS) const;
653  APInt operator+(uint64_t RHS) const {
654    return (*this) + APInt(BitWidth, RHS);
655  }
656
657  /// Subtracts RHS from this APInt and returns the result.
658  /// @brief Subtraction operator.
659  APInt operator-(const APInt& RHS) const;
660  APInt operator-(uint64_t RHS) const {
661    return (*this) - APInt(BitWidth, RHS);
662  }
663
664  APInt operator<<(unsigned Bits) const {
665    return shl(Bits);
666  }
667
668  APInt operator<<(const APInt &Bits) const {
669    return shl(Bits);
670  }
671
672  /// Arithmetic right-shift this APInt by shiftAmt.
673  /// @brief Arithmetic right-shift function.
674  APInt ashr(unsigned shiftAmt) const;
675
676  /// Logical right-shift this APInt by shiftAmt.
677  /// @brief Logical right-shift function.
678  APInt lshr(unsigned shiftAmt) const;
679
680  /// Left-shift this APInt by shiftAmt.
681  /// @brief Left-shift function.
682  APInt shl(unsigned shiftAmt) const {
683    assert(shiftAmt <= BitWidth && "Invalid shift amount");
684    if (isSingleWord()) {
685      if (shiftAmt == BitWidth)
686        return APInt(BitWidth, 0); // avoid undefined shift results
687      return APInt(BitWidth, VAL << shiftAmt);
688    }
689    return shlSlowCase(shiftAmt);
690  }
691
692  /// @brief Rotate left by rotateAmt.
693  APInt rotl(unsigned rotateAmt) const;
694
695  /// @brief Rotate right by rotateAmt.
696  APInt rotr(unsigned rotateAmt) const;
697
698  /// Arithmetic right-shift this APInt by shiftAmt.
699  /// @brief Arithmetic right-shift function.
700  APInt ashr(const APInt &shiftAmt) const;
701
702  /// Logical right-shift this APInt by shiftAmt.
703  /// @brief Logical right-shift function.
704  APInt lshr(const APInt &shiftAmt) const;
705
706  /// Left-shift this APInt by shiftAmt.
707  /// @brief Left-shift function.
708  APInt shl(const APInt &shiftAmt) const;
709
710  /// @brief Rotate left by rotateAmt.
711  APInt rotl(const APInt &rotateAmt) const;
712
713  /// @brief Rotate right by rotateAmt.
714  APInt rotr(const APInt &rotateAmt) const;
715
716  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
717  /// RHS are treated as unsigned quantities for purposes of this division.
718  /// @returns a new APInt value containing the division result
719  /// @brief Unsigned division operation.
720  APInt udiv(const APInt& RHS) const;
721
722  /// Signed divide this APInt by APInt RHS.
723  /// @brief Signed division function for APInt.
724  APInt sdiv(const APInt& RHS) const {
725    if (isNegative())
726      if (RHS.isNegative())
727        return (-(*this)).udiv(-RHS);
728      else
729        return -((-(*this)).udiv(RHS));
730    else if (RHS.isNegative())
731      return -(this->udiv(-RHS));
732    return this->udiv(RHS);
733  }
734
735  /// Perform an unsigned remainder operation on this APInt with RHS being the
736  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
737  /// of this operation. Note that this is a true remainder operation and not
738  /// a modulo operation because the sign follows the sign of the dividend
739  /// which is *this.
740  /// @returns a new APInt value containing the remainder result
741  /// @brief Unsigned remainder operation.
742  APInt urem(const APInt& RHS) const;
743
744  /// Signed remainder operation on APInt.
745  /// @brief Function for signed remainder operation.
746  APInt srem(const APInt& RHS) const {
747    if (isNegative())
748      if (RHS.isNegative())
749        return -((-(*this)).urem(-RHS));
750      else
751        return -((-(*this)).urem(RHS));
752    else if (RHS.isNegative())
753      return this->urem(-RHS);
754    return this->urem(RHS);
755  }
756
757  /// Sometimes it is convenient to divide two APInt values and obtain both the
758  /// quotient and remainder. This function does both operations in the same
759  /// computation making it a little more efficient. The pair of input arguments
760  /// may overlap with the pair of output arguments. It is safe to call
761  /// udivrem(X, Y, X, Y), for example.
762  /// @brief Dual division/remainder interface.
763  static void udivrem(const APInt &LHS, const APInt &RHS,
764                      APInt &Quotient, APInt &Remainder);
765
766  static void sdivrem(const APInt &LHS, const APInt &RHS,
767                      APInt &Quotient, APInt &Remainder)
768  {
769    if (LHS.isNegative()) {
770      if (RHS.isNegative())
771        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
772      else
773        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
774      Quotient = -Quotient;
775      Remainder = -Remainder;
776    } else if (RHS.isNegative()) {
777      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
778      Quotient = -Quotient;
779    } else {
780      APInt::udivrem(LHS, RHS, Quotient, Remainder);
781    }
782  }
783
784  /// @returns the bit value at bitPosition
785  /// @brief Array-indexing support.
786  bool operator[](unsigned bitPosition) const;
787
788  /// @}
789  /// @name Comparison Operators
790  /// @{
791  /// Compares this APInt with RHS for the validity of the equality
792  /// relationship.
793  /// @brief Equality operator.
794  bool operator==(const APInt& RHS) const {
795    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
796    if (isSingleWord())
797      return VAL == RHS.VAL;
798    return EqualSlowCase(RHS);
799  }
800
801  /// Compares this APInt with a uint64_t for the validity of the equality
802  /// relationship.
803  /// @returns true if *this == Val
804  /// @brief Equality operator.
805  bool operator==(uint64_t Val) const {
806    if (isSingleWord())
807      return VAL == Val;
808    return EqualSlowCase(Val);
809  }
810
811  /// Compares this APInt with RHS for the validity of the equality
812  /// relationship.
813  /// @returns true if *this == Val
814  /// @brief Equality comparison.
815  bool eq(const APInt &RHS) const {
816    return (*this) == RHS;
817  }
818
819  /// Compares this APInt with RHS for the validity of the inequality
820  /// relationship.
821  /// @returns true if *this != Val
822  /// @brief Inequality operator.
823  bool operator!=(const APInt& RHS) const {
824    return !((*this) == RHS);
825  }
826
827  /// Compares this APInt with a uint64_t for the validity of the inequality
828  /// relationship.
829  /// @returns true if *this != Val
830  /// @brief Inequality operator.
831  bool operator!=(uint64_t Val) const {
832    return !((*this) == Val);
833  }
834
835  /// Compares this APInt with RHS for the validity of the inequality
836  /// relationship.
837  /// @returns true if *this != Val
838  /// @brief Inequality comparison
839  bool ne(const APInt &RHS) const {
840    return !((*this) == RHS);
841  }
842
843  /// Regards both *this and RHS as unsigned quantities and compares them for
844  /// the validity of the less-than relationship.
845  /// @returns true if *this < RHS when both are considered unsigned.
846  /// @brief Unsigned less than comparison
847  bool ult(const APInt& RHS) const;
848
849  /// Regards both *this and RHS as signed quantities and compares them for
850  /// validity of the less-than relationship.
851  /// @returns true if *this < RHS when both are considered signed.
852  /// @brief Signed less than comparison
853  bool slt(const APInt& RHS) const;
854
855  /// Regards both *this and RHS as unsigned quantities and compares them for
856  /// validity of the less-or-equal relationship.
857  /// @returns true if *this <= RHS when both are considered unsigned.
858  /// @brief Unsigned less or equal comparison
859  bool ule(const APInt& RHS) const {
860    return ult(RHS) || eq(RHS);
861  }
862
863  /// Regards both *this and RHS as signed quantities and compares them for
864  /// validity of the less-or-equal relationship.
865  /// @returns true if *this <= RHS when both are considered signed.
866  /// @brief Signed less or equal comparison
867  bool sle(const APInt& RHS) const {
868    return slt(RHS) || eq(RHS);
869  }
870
871  /// Regards both *this and RHS as unsigned quantities and compares them for
872  /// the validity of the greater-than relationship.
873  /// @returns true if *this > RHS when both are considered unsigned.
874  /// @brief Unsigned greather than comparison
875  bool ugt(const APInt& RHS) const {
876    return !ult(RHS) && !eq(RHS);
877  }
878
879  /// Regards both *this and RHS as signed quantities and compares them for
880  /// the validity of the greater-than relationship.
881  /// @returns true if *this > RHS when both are considered signed.
882  /// @brief Signed greather than comparison
883  bool sgt(const APInt& RHS) const {
884    return !slt(RHS) && !eq(RHS);
885  }
886
887  /// Regards both *this and RHS as unsigned quantities and compares them for
888  /// validity of the greater-or-equal relationship.
889  /// @returns true if *this >= RHS when both are considered unsigned.
890  /// @brief Unsigned greater or equal comparison
891  bool uge(const APInt& RHS) const {
892    return !ult(RHS);
893  }
894
895  /// Regards both *this and RHS as signed quantities and compares them for
896  /// validity of the greater-or-equal relationship.
897  /// @returns true if *this >= RHS when both are considered signed.
898  /// @brief Signed greather or equal comparison
899  bool sge(const APInt& RHS) const {
900    return !slt(RHS);
901  }
902
903  /// This operation tests if there are any pairs of corresponding bits
904  /// between this APInt and RHS that are both set.
905  bool intersects(const APInt &RHS) const {
906    return (*this & RHS) != 0;
907  }
908
909  /// @}
910  /// @name Resizing Operators
911  /// @{
912  /// Truncate the APInt to a specified width. It is an error to specify a width
913  /// that is greater than or equal to the current width.
914  /// @brief Truncate to new width.
915  APInt &trunc(unsigned width);
916
917  /// This operation sign extends the APInt to a new width. If the high order
918  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
919  /// It is an error to specify a width that is less than or equal to the
920  /// current width.
921  /// @brief Sign extend to a new width.
922  APInt &sext(unsigned width);
923
924  /// This operation zero extends the APInt to a new width. The high order bits
925  /// are filled with 0 bits.  It is an error to specify a width that is less
926  /// than or equal to the current width.
927  /// @brief Zero extend to a new width.
928  APInt &zext(unsigned width);
929
930  /// Make this APInt have the bit width given by \p width. The value is sign
931  /// extended, truncated, or left alone to make it that width.
932  /// @brief Sign extend or truncate to width
933  APInt &sextOrTrunc(unsigned width);
934
935  /// Make this APInt have the bit width given by \p width. The value is zero
936  /// extended, truncated, or left alone to make it that width.
937  /// @brief Zero extend or truncate to width
938  APInt &zextOrTrunc(unsigned width);
939
940  /// @}
941  /// @name Bit Manipulation Operators
942  /// @{
943  /// @brief Set every bit to 1.
944  APInt& set() {
945    if (isSingleWord()) {
946      VAL = -1ULL;
947      return clearUnusedBits();
948    }
949
950    // Set all the bits in all the words.
951    for (unsigned i = 0; i < getNumWords(); ++i)
952      pVal[i] = -1ULL;
953    // Clear the unused ones
954    return clearUnusedBits();
955  }
956
957  /// Set the given bit to 1 whose position is given as "bitPosition".
958  /// @brief Set a given bit to 1.
959  APInt& set(unsigned bitPosition);
960
961  /// @brief Set every bit to 0.
962  APInt& clear() {
963    if (isSingleWord())
964      VAL = 0;
965    else
966      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
967    return *this;
968  }
969
970  /// Set the given bit to 0 whose position is given as "bitPosition".
971  /// @brief Set a given bit to 0.
972  APInt& clear(unsigned bitPosition);
973
974  /// @brief Toggle every bit to its opposite value.
975  APInt& flip() {
976    if (isSingleWord()) {
977      VAL ^= -1ULL;
978      return clearUnusedBits();
979    }
980    for (unsigned i = 0; i < getNumWords(); ++i)
981      pVal[i] ^= -1ULL;
982    return clearUnusedBits();
983  }
984
985  /// Toggle a given bit to its opposite value whose position is given
986  /// as "bitPosition".
987  /// @brief Toggles a given bit to its opposite value.
988  APInt& flip(unsigned bitPosition);
989
990  /// @}
991  /// @name Value Characterization Functions
992  /// @{
993
994  /// @returns the total number of bits.
995  unsigned getBitWidth() const {
996    return BitWidth;
997  }
998
999  /// Here one word's bitwidth equals to that of uint64_t.
1000  /// @returns the number of words to hold the integer value of this APInt.
1001  /// @brief Get the number of words.
1002  unsigned getNumWords() const {
1003    return getNumWords(BitWidth);
1004  }
1005
1006  /// Here one word's bitwidth equals to that of uint64_t.
1007  /// @returns the number of words to hold the integer value with a
1008  /// given bit width.
1009  /// @brief Get the number of words.
1010  static unsigned getNumWords(unsigned BitWidth) {
1011    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1012  }
1013
1014  /// This function returns the number of active bits which is defined as the
1015  /// bit width minus the number of leading zeros. This is used in several
1016  /// computations to see how "wide" the value is.
1017  /// @brief Compute the number of active bits in the value
1018  unsigned getActiveBits() const {
1019    return BitWidth - countLeadingZeros();
1020  }
1021
1022  /// This function returns the number of active words in the value of this
1023  /// APInt. This is used in conjunction with getActiveData to extract the raw
1024  /// value of the APInt.
1025  unsigned getActiveWords() const {
1026    return whichWord(getActiveBits()-1) + 1;
1027  }
1028
1029  /// Computes the minimum bit width for this APInt while considering it to be
1030  /// a signed (and probably negative) value. If the value is not negative,
1031  /// this function returns the same value as getActiveBits()+1. Otherwise, it
1032  /// returns the smallest bit width that will retain the negative value. For
1033  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1034  /// for -1, this function will always return 1.
1035  /// @brief Get the minimum bit size for this signed APInt
1036  unsigned getMinSignedBits() const {
1037    if (isNegative())
1038      return BitWidth - countLeadingOnes() + 1;
1039    return getActiveBits()+1;
1040  }
1041
1042  /// This method attempts to return the value of this APInt as a zero extended
1043  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1044  /// uint64_t. Otherwise an assertion will result.
1045  /// @brief Get zero extended value
1046  uint64_t getZExtValue() const {
1047    if (isSingleWord())
1048      return VAL;
1049    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1050    return pVal[0];
1051  }
1052
1053  /// This method attempts to return the value of this APInt as a sign extended
1054  /// int64_t. The bit width must be <= 64 or the value must fit within an
1055  /// int64_t. Otherwise an assertion will result.
1056  /// @brief Get sign extended value
1057  int64_t getSExtValue() const {
1058    if (isSingleWord())
1059      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1060                     (APINT_BITS_PER_WORD - BitWidth);
1061    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1062    return int64_t(pVal[0]);
1063  }
1064
1065  /// This method determines how many bits are required to hold the APInt
1066  /// equivalent of the string given by \p str of length \p slen.
1067  /// @brief Get bits required for string value.
1068  static unsigned getBitsNeeded(const char* str, unsigned slen, uint8_t radix);
1069
1070  /// countLeadingZeros - This function is an APInt version of the
1071  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1072  /// of zeros from the most significant bit to the first one bit.
1073  /// @returns BitWidth if the value is zero.
1074  /// @returns the number of zeros from the most significant bit to the first
1075  /// one bits.
1076  unsigned countLeadingZeros() const {
1077    if (isSingleWord()) {
1078      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1079      return CountLeadingZeros_64(VAL) - unusedBits;
1080    }
1081    return countLeadingZerosSlowCase();
1082  }
1083
1084  /// countLeadingOnes - This function is an APInt version of the
1085  /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1086  /// of ones from the most significant bit to the first zero bit.
1087  /// @returns 0 if the high order bit is not set
1088  /// @returns the number of 1 bits from the most significant to the least
1089  /// @brief Count the number of leading one bits.
1090  unsigned countLeadingOnes() const;
1091
1092  /// countTrailingZeros - This function is an APInt version of the
1093  /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1094  /// the number of zeros from the least significant bit to the first set bit.
1095  /// @returns BitWidth if the value is zero.
1096  /// @returns the number of zeros from the least significant bit to the first
1097  /// one bit.
1098  /// @brief Count the number of trailing zero bits.
1099  unsigned countTrailingZeros() const;
1100
1101  /// countTrailingOnes - This function is an APInt version of the
1102  /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1103  /// the number of ones from the least significant bit to the first zero bit.
1104  /// @returns BitWidth if the value is all ones.
1105  /// @returns the number of ones from the least significant bit to the first
1106  /// zero bit.
1107  /// @brief Count the number of trailing one bits.
1108  unsigned countTrailingOnes() const {
1109    if (isSingleWord())
1110      return CountTrailingOnes_64(VAL);
1111    return countTrailingOnesSlowCase();
1112  }
1113
1114  /// countPopulation - This function is an APInt version of the
1115  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1116  /// of 1 bits in the APInt value.
1117  /// @returns 0 if the value is zero.
1118  /// @returns the number of set bits.
1119  /// @brief Count the number of bits set.
1120  unsigned countPopulation() const {
1121    if (isSingleWord())
1122      return CountPopulation_64(VAL);
1123    return countPopulationSlowCase();
1124  }
1125
1126  /// @}
1127  /// @name Conversion Functions
1128  /// @{
1129  void print(raw_ostream &OS, bool isSigned) const;
1130
1131  /// toString - Converts an APInt to a string and append it to Str.  Str is
1132  /// commonly a SmallString.
1133  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed) const;
1134
1135  /// Considers the APInt to be unsigned and converts it into a string in the
1136  /// radix given. The radix can be 2, 8, 10 or 16.
1137  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1138    toString(Str, Radix, false);
1139  }
1140
1141  /// Considers the APInt to be signed and converts it into a string in the
1142  /// radix given. The radix can be 2, 8, 10 or 16.
1143  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1144    toString(Str, Radix, true);
1145  }
1146
1147  /// toString - This returns the APInt as a std::string.  Note that this is an
1148  /// inefficient method.  It is better to pass in a SmallVector/SmallString
1149  /// to the methods above to avoid thrashing the heap for the string.
1150  std::string toString(unsigned Radix, bool Signed) const;
1151
1152
1153  /// @returns a byte-swapped representation of this APInt Value.
1154  APInt byteSwap() const;
1155
1156  /// @brief Converts this APInt to a double value.
1157  double roundToDouble(bool isSigned) const;
1158
1159  /// @brief Converts this unsigned APInt to a double value.
1160  double roundToDouble() const {
1161    return roundToDouble(false);
1162  }
1163
1164  /// @brief Converts this signed APInt to a double value.
1165  double signedRoundToDouble() const {
1166    return roundToDouble(true);
1167  }
1168
1169  /// The conversion does not do a translation from integer to double, it just
1170  /// re-interprets the bits as a double. Note that it is valid to do this on
1171  /// any bit width. Exactly 64 bits will be translated.
1172  /// @brief Converts APInt bits to a double
1173  double bitsToDouble() const {
1174    union {
1175      uint64_t I;
1176      double D;
1177    } T;
1178    T.I = (isSingleWord() ? VAL : pVal[0]);
1179    return T.D;
1180  }
1181
1182  /// The conversion does not do a translation from integer to float, it just
1183  /// re-interprets the bits as a float. Note that it is valid to do this on
1184  /// any bit width. Exactly 32 bits will be translated.
1185  /// @brief Converts APInt bits to a double
1186  float bitsToFloat() const {
1187    union {
1188      unsigned I;
1189      float F;
1190    } T;
1191    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1192    return T.F;
1193  }
1194
1195  /// The conversion does not do a translation from double to integer, it just
1196  /// re-interprets the bits of the double. Note that it is valid to do this on
1197  /// any bit width but bits from V may get truncated.
1198  /// @brief Converts a double to APInt bits.
1199  APInt& doubleToBits(double V) {
1200    union {
1201      uint64_t I;
1202      double D;
1203    } T;
1204    T.D = V;
1205    if (isSingleWord())
1206      VAL = T.I;
1207    else
1208      pVal[0] = T.I;
1209    return clearUnusedBits();
1210  }
1211
1212  /// The conversion does not do a translation from float to integer, it just
1213  /// re-interprets the bits of the float. Note that it is valid to do this on
1214  /// any bit width but bits from V may get truncated.
1215  /// @brief Converts a float to APInt bits.
1216  APInt& floatToBits(float V) {
1217    union {
1218      unsigned I;
1219      float F;
1220    } T;
1221    T.F = V;
1222    if (isSingleWord())
1223      VAL = T.I;
1224    else
1225      pVal[0] = T.I;
1226    return clearUnusedBits();
1227  }
1228
1229  /// @}
1230  /// @name Mathematics Operations
1231  /// @{
1232
1233  /// @returns the floor log base 2 of this APInt.
1234  unsigned logBase2() const {
1235    return BitWidth - 1 - countLeadingZeros();
1236  }
1237
1238  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1239  /// otherwise
1240  int32_t exactLogBase2() const {
1241    if (!isPowerOf2())
1242      return -1;
1243    return logBase2();
1244  }
1245
1246  /// @brief Compute the square root
1247  APInt sqrt() const;
1248
1249  /// If *this is < 0 then return -(*this), otherwise *this;
1250  /// @brief Get the absolute value;
1251  APInt abs() const {
1252    if (isNegative())
1253      return -(*this);
1254    return *this;
1255  }
1256
1257  /// @returns the multiplicative inverse for a given modulo.
1258  APInt multiplicativeInverse(const APInt& modulo) const;
1259
1260  /// @}
1261  /// @name Support for division by constant
1262  /// @{
1263
1264  /// Calculate the magic number for signed division by a constant.
1265  struct ms;
1266  ms magic() const;
1267
1268  /// Calculate the magic number for unsigned division by a constant.
1269  struct mu;
1270  mu magicu() const;
1271
1272  /// @}
1273  /// @name Building-block Operations for APInt and APFloat
1274  /// @{
1275
1276  // These building block operations operate on a representation of
1277  // arbitrary precision, two's-complement, bignum integer values.
1278  // They should be sufficient to implement APInt and APFloat bignum
1279  // requirements.  Inputs are generally a pointer to the base of an
1280  // array of integer parts, representing an unsigned bignum, and a
1281  // count of how many parts there are.
1282
1283  /// Sets the least significant part of a bignum to the input value,
1284  /// and zeroes out higher parts.  */
1285  static void tcSet(integerPart *, integerPart, unsigned int);
1286
1287  /// Assign one bignum to another.
1288  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1289
1290  /// Returns true if a bignum is zero, false otherwise.
1291  static bool tcIsZero(const integerPart *, unsigned int);
1292
1293  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1294  static int tcExtractBit(const integerPart *, unsigned int bit);
1295
1296  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1297  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1298  /// becomes the least significant bit of DST.  All high bits above
1299  /// srcBITS in DST are zero-filled.
1300  static void tcExtract(integerPart *, unsigned int dstCount,
1301                        const integerPart *,
1302                        unsigned int srcBits, unsigned int srcLSB);
1303
1304  /// Set the given bit of a bignum.  Zero-based.
1305  static void tcSetBit(integerPart *, unsigned int bit);
1306
1307  /// Returns the bit number of the least or most significant set bit
1308  /// of a number.  If the input number has no bits set -1U is
1309  /// returned.
1310  static unsigned int tcLSB(const integerPart *, unsigned int);
1311  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1312
1313  /// Negate a bignum in-place.
1314  static void tcNegate(integerPart *, unsigned int);
1315
1316  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1317  /// carry flag.
1318  static integerPart tcAdd(integerPart *, const integerPart *,
1319                           integerPart carry, unsigned);
1320
1321  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1322  /// carry flag.
1323  static integerPart tcSubtract(integerPart *, const integerPart *,
1324                                integerPart carry, unsigned);
1325
1326  ///  DST += SRC * MULTIPLIER + PART   if add is true
1327  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1328  ///
1329  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1330  ///  they must start at the same point, i.e. DST == SRC.
1331  ///
1332  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1333  ///  returned.  Otherwise DST is filled with the least significant
1334  ///  DSTPARTS parts of the result, and if all of the omitted higher
1335  ///  parts were zero return zero, otherwise overflow occurred and
1336  ///  return one.
1337  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1338                            integerPart multiplier, integerPart carry,
1339                            unsigned int srcParts, unsigned int dstParts,
1340                            bool add);
1341
1342  /// DST = LHS * RHS, where DST has the same width as the operands
1343  /// and is filled with the least significant parts of the result.
1344  /// Returns one if overflow occurred, otherwise zero.  DST must be
1345  /// disjoint from both operands.
1346  static int tcMultiply(integerPart *, const integerPart *,
1347                        const integerPart *, unsigned);
1348
1349  /// DST = LHS * RHS, where DST has width the sum of the widths of
1350  /// the operands.  No overflow occurs.  DST must be disjoint from
1351  /// both operands. Returns the number of parts required to hold the
1352  /// result.
1353  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1354                                     const integerPart *, unsigned, unsigned);
1355
1356  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1357  /// Otherwise set LHS to LHS / RHS with the fractional part
1358  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1359  ///
1360  ///  OLD_LHS = RHS * LHS + REMAINDER
1361  ///
1362  ///  SCRATCH is a bignum of the same size as the operands and result
1363  ///  for use by the routine; its contents need not be initialized
1364  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1365  ///  distinct.
1366  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1367                      integerPart *remainder, integerPart *scratch,
1368                      unsigned int parts);
1369
1370  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1371  /// There are no restrictions on COUNT.
1372  static void tcShiftLeft(integerPart *, unsigned int parts,
1373                          unsigned int count);
1374
1375  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1376  /// There are no restrictions on COUNT.
1377  static void tcShiftRight(integerPart *, unsigned int parts,
1378                           unsigned int count);
1379
1380  /// The obvious AND, OR and XOR and complement operations.
1381  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1382  static void tcOr(integerPart *, const integerPart *, unsigned int);
1383  static void tcXor(integerPart *, const integerPart *, unsigned int);
1384  static void tcComplement(integerPart *, unsigned int);
1385
1386  /// Comparison (unsigned) of two bignums.
1387  static int tcCompare(const integerPart *, const integerPart *,
1388                       unsigned int);
1389
1390  /// Increment a bignum in-place.  Return the carry flag.
1391  static integerPart tcIncrement(integerPart *, unsigned int);
1392
1393  /// Set the least significant BITS and clear the rest.
1394  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1395                                        unsigned int bits);
1396
1397  /// @brief debug method
1398  void dump() const;
1399
1400  /// @}
1401};
1402
1403/// Magic data for optimising signed division by a constant.
1404struct APInt::ms {
1405  APInt m;  ///< magic number
1406  unsigned s;  ///< shift amount
1407};
1408
1409/// Magic data for optimising unsigned division by a constant.
1410struct APInt::mu {
1411  APInt m;     ///< magic number
1412  bool a;      ///< add indicator
1413  unsigned s;  ///< shift amount
1414};
1415
1416inline bool operator==(uint64_t V1, const APInt& V2) {
1417  return V2 == V1;
1418}
1419
1420inline bool operator!=(uint64_t V1, const APInt& V2) {
1421  return V2 != V1;
1422}
1423
1424inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1425  I.print(OS, true);
1426  return OS;
1427}
1428
1429namespace APIntOps {
1430
1431/// @brief Determine the smaller of two APInts considered to be signed.
1432inline APInt smin(const APInt &A, const APInt &B) {
1433  return A.slt(B) ? A : B;
1434}
1435
1436/// @brief Determine the larger of two APInts considered to be signed.
1437inline APInt smax(const APInt &A, const APInt &B) {
1438  return A.sgt(B) ? A : B;
1439}
1440
1441/// @brief Determine the smaller of two APInts considered to be signed.
1442inline APInt umin(const APInt &A, const APInt &B) {
1443  return A.ult(B) ? A : B;
1444}
1445
1446/// @brief Determine the larger of two APInts considered to be unsigned.
1447inline APInt umax(const APInt &A, const APInt &B) {
1448  return A.ugt(B) ? A : B;
1449}
1450
1451/// @brief Check if the specified APInt has a N-bits unsigned integer value.
1452inline bool isIntN(unsigned N, const APInt& APIVal) {
1453  return APIVal.isIntN(N);
1454}
1455
1456/// @brief Check if the specified APInt has a N-bits signed integer value.
1457inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1458  return APIVal.isSignedIntN(N);
1459}
1460
1461/// @returns true if the argument APInt value is a sequence of ones
1462/// starting at the least significant bit with the remainder zero.
1463inline bool isMask(unsigned numBits, const APInt& APIVal) {
1464  return numBits <= APIVal.getBitWidth() &&
1465    APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1466}
1467
1468/// @returns true if the argument APInt value contains a sequence of ones
1469/// with the remainder zero.
1470inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1471  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1472}
1473
1474/// @returns a byte-swapped representation of the specified APInt Value.
1475inline APInt byteSwap(const APInt& APIVal) {
1476  return APIVal.byteSwap();
1477}
1478
1479/// @returns the floor log base 2 of the specified APInt value.
1480inline unsigned logBase2(const APInt& APIVal) {
1481  return APIVal.logBase2();
1482}
1483
1484/// GreatestCommonDivisor - This function returns the greatest common
1485/// divisor of the two APInt values using Euclid's algorithm.
1486/// @returns the greatest common divisor of Val1 and Val2
1487/// @brief Compute GCD of two APInt values.
1488APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1489
1490/// Treats the APInt as an unsigned value for conversion purposes.
1491/// @brief Converts the given APInt to a double value.
1492inline double RoundAPIntToDouble(const APInt& APIVal) {
1493  return APIVal.roundToDouble();
1494}
1495
1496/// Treats the APInt as a signed value for conversion purposes.
1497/// @brief Converts the given APInt to a double value.
1498inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1499  return APIVal.signedRoundToDouble();
1500}
1501
1502/// @brief Converts the given APInt to a float vlalue.
1503inline float RoundAPIntToFloat(const APInt& APIVal) {
1504  return float(RoundAPIntToDouble(APIVal));
1505}
1506
1507/// Treast the APInt as a signed value for conversion purposes.
1508/// @brief Converts the given APInt to a float value.
1509inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1510  return float(APIVal.signedRoundToDouble());
1511}
1512
1513/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1514/// @brief Converts the given double value into a APInt.
1515APInt RoundDoubleToAPInt(double Double, unsigned width);
1516
1517/// RoundFloatToAPInt - Converts a float value into an APInt value.
1518/// @brief Converts a float value into a APInt.
1519inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1520  return RoundDoubleToAPInt(double(Float), width);
1521}
1522
1523/// Arithmetic right-shift the APInt by shiftAmt.
1524/// @brief Arithmetic right-shift function.
1525inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1526  return LHS.ashr(shiftAmt);
1527}
1528
1529/// Logical right-shift the APInt by shiftAmt.
1530/// @brief Logical right-shift function.
1531inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1532  return LHS.lshr(shiftAmt);
1533}
1534
1535/// Left-shift the APInt by shiftAmt.
1536/// @brief Left-shift function.
1537inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1538  return LHS.shl(shiftAmt);
1539}
1540
1541/// Signed divide APInt LHS by APInt RHS.
1542/// @brief Signed division function for APInt.
1543inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1544  return LHS.sdiv(RHS);
1545}
1546
1547/// Unsigned divide APInt LHS by APInt RHS.
1548/// @brief Unsigned division function for APInt.
1549inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1550  return LHS.udiv(RHS);
1551}
1552
1553/// Signed remainder operation on APInt.
1554/// @brief Function for signed remainder operation.
1555inline APInt srem(const APInt& LHS, const APInt& RHS) {
1556  return LHS.srem(RHS);
1557}
1558
1559/// Unsigned remainder operation on APInt.
1560/// @brief Function for unsigned remainder operation.
1561inline APInt urem(const APInt& LHS, const APInt& RHS) {
1562  return LHS.urem(RHS);
1563}
1564
1565/// Performs multiplication on APInt values.
1566/// @brief Function for multiplication operation.
1567inline APInt mul(const APInt& LHS, const APInt& RHS) {
1568  return LHS * RHS;
1569}
1570
1571/// Performs addition on APInt values.
1572/// @brief Function for addition operation.
1573inline APInt add(const APInt& LHS, const APInt& RHS) {
1574  return LHS + RHS;
1575}
1576
1577/// Performs subtraction on APInt values.
1578/// @brief Function for subtraction operation.
1579inline APInt sub(const APInt& LHS, const APInt& RHS) {
1580  return LHS - RHS;
1581}
1582
1583/// Performs bitwise AND operation on APInt LHS and
1584/// APInt RHS.
1585/// @brief Bitwise AND function for APInt.
1586inline APInt And(const APInt& LHS, const APInt& RHS) {
1587  return LHS & RHS;
1588}
1589
1590/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1591/// @brief Bitwise OR function for APInt.
1592inline APInt Or(const APInt& LHS, const APInt& RHS) {
1593  return LHS | RHS;
1594}
1595
1596/// Performs bitwise XOR operation on APInt.
1597/// @brief Bitwise XOR function for APInt.
1598inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1599  return LHS ^ RHS;
1600}
1601
1602/// Performs a bitwise complement operation on APInt.
1603/// @brief Bitwise complement function.
1604inline APInt Not(const APInt& APIVal) {
1605  return ~APIVal;
1606}
1607
1608} // End of APIntOps namespace
1609
1610} // End of llvm namespace
1611
1612#endif
1613