DataExtractor.cpp revision 360784
1//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Utility/DataExtractor.h"
10
11#include "lldb/lldb-defines.h"
12#include "lldb/lldb-enumerations.h"
13#include "lldb/lldb-forward.h"
14#include "lldb/lldb-types.h"
15
16#include "lldb/Utility/DataBuffer.h"
17#include "lldb/Utility/DataBufferHeap.h"
18#include "lldb/Utility/Endian.h"
19#include "lldb/Utility/LLDBAssert.h"
20#include "lldb/Utility/Log.h"
21#include "lldb/Utility/Stream.h"
22#include "lldb/Utility/StreamString.h"
23#include "lldb/Utility/UUID.h"
24
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MD5.h"
28#include "llvm/Support/MathExtras.h"
29
30#include <algorithm>
31#include <array>
32#include <cassert>
33#include <cstdint>
34#include <string>
35
36#include <ctype.h>
37#include <inttypes.h>
38#include <string.h>
39
40using namespace lldb;
41using namespace lldb_private;
42
43static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44  uint16_t value;
45  memcpy(&value, ptr + offset, 2);
46  return value;
47}
48
49static inline uint32_t ReadInt32(const unsigned char *ptr,
50                                 offset_t offset = 0) {
51  uint32_t value;
52  memcpy(&value, ptr + offset, 4);
53  return value;
54}
55
56static inline uint64_t ReadInt64(const unsigned char *ptr,
57                                 offset_t offset = 0) {
58  uint64_t value;
59  memcpy(&value, ptr + offset, 8);
60  return value;
61}
62
63static inline uint16_t ReadInt16(const void *ptr) {
64  uint16_t value;
65  memcpy(&value, ptr, 2);
66  return value;
67}
68
69static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70                                     offset_t offset) {
71  uint16_t value;
72  memcpy(&value, ptr + offset, 2);
73  return llvm::ByteSwap_16(value);
74}
75
76static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77                                     offset_t offset) {
78  uint32_t value;
79  memcpy(&value, ptr + offset, 4);
80  return llvm::ByteSwap_32(value);
81}
82
83static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84                                     offset_t offset) {
85  uint64_t value;
86  memcpy(&value, ptr + offset, 8);
87  return llvm::ByteSwap_64(value);
88}
89
90static inline uint16_t ReadSwapInt16(const void *ptr) {
91  uint16_t value;
92  memcpy(&value, ptr, 2);
93  return llvm::ByteSwap_16(value);
94}
95
96static inline uint32_t ReadSwapInt32(const void *ptr) {
97  uint32_t value;
98  memcpy(&value, ptr, 4);
99  return llvm::ByteSwap_32(value);
100}
101
102static inline uint64_t ReadSwapInt64(const void *ptr) {
103  uint64_t value;
104  memcpy(&value, ptr, 8);
105  return llvm::ByteSwap_64(value);
106}
107
108static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109                                    ByteOrder byte_order) {
110  uint64_t res = 0;
111  if (byte_order == eByteOrderBig)
112    for (size_t i = 0; i < byte_size; ++i)
113      res = (res << 8) | data[i];
114  else {
115    assert(byte_order == eByteOrderLittle);
116    for (size_t i = 0; i < byte_size; ++i)
117      res = (res << 8) | data[byte_size - 1 - i];
118  }
119  return res;
120}
121
122DataExtractor::DataExtractor()
123    : m_start(nullptr), m_end(nullptr),
124      m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125      m_data_sp(), m_target_byte_size(1) {}
126
127// This constructor allows us to use data that is owned by someone else. The
128// data must stay around as long as this object is valid.
129DataExtractor::DataExtractor(const void *data, offset_t length,
130                             ByteOrder endian, uint32_t addr_size,
131                             uint32_t target_byte_size /*=1*/)
132    : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133      m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134      m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135      m_target_byte_size(target_byte_size) {
136  assert(addr_size == 4 || addr_size == 8);
137}
138
139// Make a shared pointer reference to the shared data in "data_sp" and set the
140// endian swapping setting to "swap", and the address size to "addr_size". The
141// shared data reference will ensure the data lives as long as any
142// DataExtractor objects exist that have a reference to this data.
143DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144                             uint32_t addr_size,
145                             uint32_t target_byte_size /*=1*/)
146    : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
147      m_addr_size(addr_size), m_data_sp(),
148      m_target_byte_size(target_byte_size) {
149  assert(addr_size == 4 || addr_size == 8);
150  SetData(data_sp);
151}
152
153// Initialize this object with a subset of the data bytes in "data". If "data"
154// contains shared data, then a reference to this shared data will added and
155// the shared data will stay around as long as any object contains a reference
156// to that data. The endian swap and address size settings are copied from
157// "data".
158DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
159                             offset_t length, uint32_t target_byte_size /*=1*/)
160    : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
161      m_addr_size(data.m_addr_size), m_data_sp(),
162      m_target_byte_size(target_byte_size) {
163  assert(m_addr_size == 4 || m_addr_size == 8);
164  if (data.ValidOffset(offset)) {
165    offset_t bytes_available = data.GetByteSize() - offset;
166    if (length > bytes_available)
167      length = bytes_available;
168    SetData(data, offset, length);
169  }
170}
171
172DataExtractor::DataExtractor(const DataExtractor &rhs)
173    : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
174      m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
175      m_target_byte_size(rhs.m_target_byte_size) {
176  assert(m_addr_size == 4 || m_addr_size == 8);
177}
178
179// Assignment operator
180const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
181  if (this != &rhs) {
182    m_start = rhs.m_start;
183    m_end = rhs.m_end;
184    m_byte_order = rhs.m_byte_order;
185    m_addr_size = rhs.m_addr_size;
186    m_data_sp = rhs.m_data_sp;
187  }
188  return *this;
189}
190
191DataExtractor::~DataExtractor() = default;
192
193// Clears the object contents back to a default invalid state, and release any
194// references to shared data that this object may contain.
195void DataExtractor::Clear() {
196  m_start = nullptr;
197  m_end = nullptr;
198  m_byte_order = endian::InlHostByteOrder();
199  m_addr_size = sizeof(void *);
200  m_data_sp.reset();
201}
202
203// If this object contains shared data, this function returns the offset into
204// that shared data. Else zero is returned.
205size_t DataExtractor::GetSharedDataOffset() const {
206  if (m_start != nullptr) {
207    const DataBuffer *data = m_data_sp.get();
208    if (data != nullptr) {
209      const uint8_t *data_bytes = data->GetBytes();
210      if (data_bytes != nullptr) {
211        assert(m_start >= data_bytes);
212        return m_start - data_bytes;
213      }
214    }
215  }
216  return 0;
217}
218
219// Set the data with which this object will extract from to data starting at
220// BYTES and set the length of the data to LENGTH bytes long. The data is
221// externally owned must be around at least as long as this object points to
222// the data. No copy of the data is made, this object just refers to this data
223// and can extract from it. If this object refers to any shared data upon
224// entry, the reference to that data will be released. Is SWAP is set to true,
225// any data extracted will be endian swapped.
226lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
227                                      ByteOrder endian) {
228  m_byte_order = endian;
229  m_data_sp.reset();
230  if (bytes == nullptr || length == 0) {
231    m_start = nullptr;
232    m_end = nullptr;
233  } else {
234    m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
235    m_end = m_start + length;
236  }
237  return GetByteSize();
238}
239
240// Assign the data for this object to be a subrange in "data" starting
241// "data_offset" bytes into "data" and ending "data_length" bytes later. If
242// "data_offset" is not a valid offset into "data", then this object will
243// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
244// large, the length will be capped at the number of bytes remaining in "data".
245// If "data" contains a shared pointer to other data, then a ref counted
246// pointer to that data will be made in this object. If "data" doesn't contain
247// a shared pointer to data, then the bytes referred to in "data" will need to
248// exist at least as long as this object refers to those bytes. The address
249// size and endian swap settings are copied from the current values in "data".
250lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
251                                      offset_t data_offset,
252                                      offset_t data_length) {
253  m_addr_size = data.m_addr_size;
254  assert(m_addr_size == 4 || m_addr_size == 8);
255  // If "data" contains shared pointer to data, then we can use that
256  if (data.m_data_sp) {
257    m_byte_order = data.m_byte_order;
258    return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
259                   data_length);
260  }
261
262  // We have a DataExtractor object that just has a pointer to bytes
263  if (data.ValidOffset(data_offset)) {
264    if (data_length > data.GetByteSize() - data_offset)
265      data_length = data.GetByteSize() - data_offset;
266    return SetData(data.GetDataStart() + data_offset, data_length,
267                   data.GetByteOrder());
268  }
269  return 0;
270}
271
272// Assign the data for this object to be a subrange of the shared data in
273// "data_sp" starting "data_offset" bytes into "data_sp" and ending
274// "data_length" bytes later. If "data_offset" is not a valid offset into
275// "data_sp", then this object will contain no bytes. If "data_offset" is
276// within "data_sp" yet "data_length" is too large, the length will be capped
277// at the number of bytes remaining in "data_sp". A ref counted pointer to the
278// data in "data_sp" will be made in this object IF the number of bytes this
279// object refers to in greater than zero (if at least one byte was available
280// starting at "data_offset") to ensure the data stays around as long as it is
281// needed. The address size and endian swap settings will remain unchanged from
282// their current settings.
283lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
284                                      offset_t data_offset,
285                                      offset_t data_length) {
286  m_start = m_end = nullptr;
287
288  if (data_length > 0) {
289    m_data_sp = data_sp;
290    if (data_sp) {
291      const size_t data_size = data_sp->GetByteSize();
292      if (data_offset < data_size) {
293        m_start = data_sp->GetBytes() + data_offset;
294        const size_t bytes_left = data_size - data_offset;
295        // Cap the length of we asked for too many
296        if (data_length <= bytes_left)
297          m_end = m_start + data_length; // We got all the bytes we wanted
298        else
299          m_end = m_start + bytes_left; // Not all the bytes requested were
300                                        // available in the shared data
301      }
302    }
303  }
304
305  size_t new_size = GetByteSize();
306
307  // Don't hold a shared pointer to the data buffer if we don't share any valid
308  // bytes in the shared buffer.
309  if (new_size == 0)
310    m_data_sp.reset();
311
312  return new_size;
313}
314
315// Extract a single unsigned char from the binary data and update the offset
316// pointed to by "offset_ptr".
317//
318// RETURNS the byte that was extracted, or zero on failure.
319uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
320  const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
321  if (data)
322    return *data;
323  return 0;
324}
325
326// Extract "count" unsigned chars from the binary data and update the offset
327// pointed to by "offset_ptr". The extracted data is copied into "dst".
328//
329// RETURNS the non-nullptr buffer pointer upon successful extraction of
330// all the requested bytes, or nullptr when the data is not available in the
331// buffer due to being out of bounds, or insufficient data.
332void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
333                           uint32_t count) const {
334  const uint8_t *data =
335      static_cast<const uint8_t *>(GetData(offset_ptr, count));
336  if (data) {
337    // Copy the data into the buffer
338    memcpy(dst, data, count);
339    // Return a non-nullptr pointer to the converted data as an indicator of
340    // success
341    return dst;
342  }
343  return nullptr;
344}
345
346// Extract a single uint16_t from the data and update the offset pointed to by
347// "offset_ptr".
348//
349// RETURNS the uint16_t that was extracted, or zero on failure.
350uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
351  uint16_t val = 0;
352  const uint8_t *data =
353      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
354  if (data) {
355    if (m_byte_order != endian::InlHostByteOrder())
356      val = ReadSwapInt16(data);
357    else
358      val = ReadInt16(data);
359  }
360  return val;
361}
362
363uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
364  uint16_t val;
365  if (m_byte_order == endian::InlHostByteOrder())
366    val = ReadInt16(m_start, *offset_ptr);
367  else
368    val = ReadSwapInt16(m_start, *offset_ptr);
369  *offset_ptr += sizeof(val);
370  return val;
371}
372
373uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
374  uint32_t val;
375  if (m_byte_order == endian::InlHostByteOrder())
376    val = ReadInt32(m_start, *offset_ptr);
377  else
378    val = ReadSwapInt32(m_start, *offset_ptr);
379  *offset_ptr += sizeof(val);
380  return val;
381}
382
383uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
384  uint64_t val;
385  if (m_byte_order == endian::InlHostByteOrder())
386    val = ReadInt64(m_start, *offset_ptr);
387  else
388    val = ReadSwapInt64(m_start, *offset_ptr);
389  *offset_ptr += sizeof(val);
390  return val;
391}
392
393// Extract "count" uint16_t values from the binary data and update the offset
394// pointed to by "offset_ptr". The extracted data is copied into "dst".
395//
396// RETURNS the non-nullptr buffer pointer upon successful extraction of
397// all the requested bytes, or nullptr when the data is not available in the
398// buffer due to being out of bounds, or insufficient data.
399void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
400                            uint32_t count) const {
401  const size_t src_size = sizeof(uint16_t) * count;
402  const uint16_t *src =
403      static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
404  if (src) {
405    if (m_byte_order != endian::InlHostByteOrder()) {
406      uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
407      uint16_t *dst_end = dst_pos + count;
408      const uint16_t *src_pos = src;
409      while (dst_pos < dst_end) {
410        *dst_pos = ReadSwapInt16(src_pos);
411        ++dst_pos;
412        ++src_pos;
413      }
414    } else {
415      memcpy(void_dst, src, src_size);
416    }
417    // Return a non-nullptr pointer to the converted data as an indicator of
418    // success
419    return void_dst;
420  }
421  return nullptr;
422}
423
424// Extract a single uint32_t from the data and update the offset pointed to by
425// "offset_ptr".
426//
427// RETURNS the uint32_t that was extracted, or zero on failure.
428uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
429  uint32_t val = 0;
430  const uint8_t *data =
431      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
432  if (data) {
433    if (m_byte_order != endian::InlHostByteOrder()) {
434      val = ReadSwapInt32(data);
435    } else {
436      memcpy(&val, data, 4);
437    }
438  }
439  return val;
440}
441
442// Extract "count" uint32_t values from the binary data and update the offset
443// pointed to by "offset_ptr". The extracted data is copied into "dst".
444//
445// RETURNS the non-nullptr buffer pointer upon successful extraction of
446// all the requested bytes, or nullptr when the data is not available in the
447// buffer due to being out of bounds, or insufficient data.
448void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
449                            uint32_t count) const {
450  const size_t src_size = sizeof(uint32_t) * count;
451  const uint32_t *src =
452      static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
453  if (src) {
454    if (m_byte_order != endian::InlHostByteOrder()) {
455      uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
456      uint32_t *dst_end = dst_pos + count;
457      const uint32_t *src_pos = src;
458      while (dst_pos < dst_end) {
459        *dst_pos = ReadSwapInt32(src_pos);
460        ++dst_pos;
461        ++src_pos;
462      }
463    } else {
464      memcpy(void_dst, src, src_size);
465    }
466    // Return a non-nullptr pointer to the converted data as an indicator of
467    // success
468    return void_dst;
469  }
470  return nullptr;
471}
472
473// Extract a single uint64_t from the data and update the offset pointed to by
474// "offset_ptr".
475//
476// RETURNS the uint64_t that was extracted, or zero on failure.
477uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
478  uint64_t val = 0;
479  const uint8_t *data =
480      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
481  if (data) {
482    if (m_byte_order != endian::InlHostByteOrder()) {
483      val = ReadSwapInt64(data);
484    } else {
485      memcpy(&val, data, 8);
486    }
487  }
488  return val;
489}
490
491// GetU64
492//
493// Get multiple consecutive 64 bit values. Return true if the entire read
494// succeeds and increment the offset pointed to by offset_ptr, else return
495// false and leave the offset pointed to by offset_ptr unchanged.
496void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
497                            uint32_t count) const {
498  const size_t src_size = sizeof(uint64_t) * count;
499  const uint64_t *src =
500      static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
501  if (src) {
502    if (m_byte_order != endian::InlHostByteOrder()) {
503      uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
504      uint64_t *dst_end = dst_pos + count;
505      const uint64_t *src_pos = src;
506      while (dst_pos < dst_end) {
507        *dst_pos = ReadSwapInt64(src_pos);
508        ++dst_pos;
509        ++src_pos;
510      }
511    } else {
512      memcpy(void_dst, src, src_size);
513    }
514    // Return a non-nullptr pointer to the converted data as an indicator of
515    // success
516    return void_dst;
517  }
518  return nullptr;
519}
520
521uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
522                                  size_t byte_size) const {
523  lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
524  return GetMaxU64(offset_ptr, byte_size);
525}
526
527uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
528                                  size_t byte_size) const {
529  lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
530  switch (byte_size) {
531  case 1:
532    return GetU8(offset_ptr);
533  case 2:
534    return GetU16(offset_ptr);
535  case 4:
536    return GetU32(offset_ptr);
537  case 8:
538    return GetU64(offset_ptr);
539  default: {
540    // General case.
541    const uint8_t *data =
542        static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
543    if (data == nullptr)
544      return 0;
545    return ReadMaxInt64(data, byte_size, m_byte_order);
546  }
547  }
548  return 0;
549}
550
551uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
552                                            size_t byte_size) const {
553  switch (byte_size) {
554  case 1:
555    return GetU8_unchecked(offset_ptr);
556  case 2:
557    return GetU16_unchecked(offset_ptr);
558  case 4:
559    return GetU32_unchecked(offset_ptr);
560  case 8:
561    return GetU64_unchecked(offset_ptr);
562  default: {
563    uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
564    *offset_ptr += byte_size;
565    return res;
566  }
567  }
568  return 0;
569}
570
571int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
572  uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
573  return llvm::SignExtend64(u64, 8 * byte_size);
574}
575
576uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
577                                          uint32_t bitfield_bit_size,
578                                          uint32_t bitfield_bit_offset) const {
579  assert(bitfield_bit_size <= 64);
580  uint64_t uval64 = GetMaxU64(offset_ptr, size);
581
582  if (bitfield_bit_size == 0)
583    return uval64;
584
585  int32_t lsbcount = bitfield_bit_offset;
586  if (m_byte_order == eByteOrderBig)
587    lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
588
589  if (lsbcount > 0)
590    uval64 >>= lsbcount;
591
592  uint64_t bitfield_mask =
593      (bitfield_bit_size == 64
594           ? std::numeric_limits<uint64_t>::max()
595           : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
596  if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
597    return uval64;
598
599  uval64 &= bitfield_mask;
600
601  return uval64;
602}
603
604int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
605                                         uint32_t bitfield_bit_size,
606                                         uint32_t bitfield_bit_offset) const {
607  int64_t sval64 = GetMaxS64(offset_ptr, size);
608  if (bitfield_bit_size > 0) {
609    int32_t lsbcount = bitfield_bit_offset;
610    if (m_byte_order == eByteOrderBig)
611      lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
612    if (lsbcount > 0)
613      sval64 >>= lsbcount;
614    uint64_t bitfield_mask =
615        ((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
616    sval64 &= bitfield_mask;
617    // sign extend if needed
618    if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
619      sval64 |= ~bitfield_mask;
620  }
621  return sval64;
622}
623
624float DataExtractor::GetFloat(offset_t *offset_ptr) const {
625  typedef float float_type;
626  float_type val = 0.0;
627  const size_t src_size = sizeof(float_type);
628  const float_type *src =
629      static_cast<const float_type *>(GetData(offset_ptr, src_size));
630  if (src) {
631    if (m_byte_order != endian::InlHostByteOrder()) {
632      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
633      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
634      for (size_t i = 0; i < sizeof(float_type); ++i)
635        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
636    } else {
637      val = *src;
638    }
639  }
640  return val;
641}
642
643double DataExtractor::GetDouble(offset_t *offset_ptr) const {
644  typedef double float_type;
645  float_type val = 0.0;
646  const size_t src_size = sizeof(float_type);
647  const float_type *src =
648      static_cast<const float_type *>(GetData(offset_ptr, src_size));
649  if (src) {
650    if (m_byte_order != endian::InlHostByteOrder()) {
651      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
652      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
653      for (size_t i = 0; i < sizeof(float_type); ++i)
654        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
655    } else {
656      val = *src;
657    }
658  }
659  return val;
660}
661
662long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
663  long double val = 0.0;
664#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
665    defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
666  *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
667                                     endian::InlHostByteOrder());
668#else
669  *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
670                                     sizeof(val), endian::InlHostByteOrder());
671#endif
672  return val;
673}
674
675// Extract a single address from the data and update the offset pointed to by
676// "offset_ptr". The size of the extracted address comes from the
677// "this->m_addr_size" member variable and should be set correctly prior to
678// extracting any address values.
679//
680// RETURNS the address that was extracted, or zero on failure.
681uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
682  assert(m_addr_size == 4 || m_addr_size == 8);
683  return GetMaxU64(offset_ptr, m_addr_size);
684}
685
686uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
687  assert(m_addr_size == 4 || m_addr_size == 8);
688  return GetMaxU64_unchecked(offset_ptr, m_addr_size);
689}
690
691// Extract a single pointer from the data and update the offset pointed to by
692// "offset_ptr". The size of the extracted pointer comes from the
693// "this->m_addr_size" member variable and should be set correctly prior to
694// extracting any pointer values.
695//
696// RETURNS the pointer that was extracted, or zero on failure.
697uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
698  assert(m_addr_size == 4 || m_addr_size == 8);
699  return GetMaxU64(offset_ptr, m_addr_size);
700}
701
702size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
703                                   ByteOrder dst_byte_order, void *dst) const {
704  const uint8_t *src = PeekData(offset, length);
705  if (src) {
706    if (dst_byte_order != GetByteOrder()) {
707      // Validate that only a word- or register-sized dst is byte swapped
708      assert(length == 1 || length == 2 || length == 4 || length == 8 ||
709             length == 10 || length == 16 || length == 32);
710
711      for (uint32_t i = 0; i < length; ++i)
712        (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
713    } else
714      ::memcpy(dst, src, length);
715    return length;
716  }
717  return 0;
718}
719
720// Extract data as it exists in target memory
721lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
722                                       void *dst) const {
723  const uint8_t *src = PeekData(offset, length);
724  if (src) {
725    ::memcpy(dst, src, length);
726    return length;
727  }
728  return 0;
729}
730
731// Extract data and swap if needed when doing the copy
732lldb::offset_t
733DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
734                                   void *dst_void_ptr, offset_t dst_len,
735                                   ByteOrder dst_byte_order) const {
736  // Validate the source info
737  if (!ValidOffsetForDataOfSize(src_offset, src_len))
738    assert(ValidOffsetForDataOfSize(src_offset, src_len));
739  assert(src_len > 0);
740  assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
741
742  // Validate the destination info
743  assert(dst_void_ptr != nullptr);
744  assert(dst_len > 0);
745  assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
746
747  // Validate that only a word- or register-sized dst is byte swapped
748  assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
749         dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
750         dst_len == 32);
751
752  // Must have valid byte orders set in this object and for destination
753  if (!(dst_byte_order == eByteOrderBig ||
754        dst_byte_order == eByteOrderLittle) ||
755      !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
756    return 0;
757
758  uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
759  const uint8_t *src = PeekData(src_offset, src_len);
760  if (src) {
761    if (dst_len >= src_len) {
762      // We are copying the entire value from src into dst. Calculate how many,
763      // if any, zeroes we need for the most significant bytes if "dst_len" is
764      // greater than "src_len"...
765      const size_t num_zeroes = dst_len - src_len;
766      if (dst_byte_order == eByteOrderBig) {
767        // Big endian, so we lead with zeroes...
768        if (num_zeroes > 0)
769          ::memset(dst, 0, num_zeroes);
770        // Then either copy or swap the rest
771        if (m_byte_order == eByteOrderBig) {
772          ::memcpy(dst + num_zeroes, src, src_len);
773        } else {
774          for (uint32_t i = 0; i < src_len; ++i)
775            dst[i + num_zeroes] = src[src_len - 1 - i];
776        }
777      } else {
778        // Little endian destination, so we lead the value bytes
779        if (m_byte_order == eByteOrderBig) {
780          for (uint32_t i = 0; i < src_len; ++i)
781            dst[i] = src[src_len - 1 - i];
782        } else {
783          ::memcpy(dst, src, src_len);
784        }
785        // And zero the rest...
786        if (num_zeroes > 0)
787          ::memset(dst + src_len, 0, num_zeroes);
788      }
789      return src_len;
790    } else {
791      // We are only copying some of the value from src into dst..
792
793      if (dst_byte_order == eByteOrderBig) {
794        // Big endian dst
795        if (m_byte_order == eByteOrderBig) {
796          // Big endian dst, with big endian src
797          ::memcpy(dst, src + (src_len - dst_len), dst_len);
798        } else {
799          // Big endian dst, with little endian src
800          for (uint32_t i = 0; i < dst_len; ++i)
801            dst[i] = src[dst_len - 1 - i];
802        }
803      } else {
804        // Little endian dst
805        if (m_byte_order == eByteOrderBig) {
806          // Little endian dst, with big endian src
807          for (uint32_t i = 0; i < dst_len; ++i)
808            dst[i] = src[src_len - 1 - i];
809        } else {
810          // Little endian dst, with big endian src
811          ::memcpy(dst, src, dst_len);
812        }
813      }
814      return dst_len;
815    }
816  }
817  return 0;
818}
819
820// Extracts a variable length NULL terminated C string from the data at the
821// offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
822// the offset of the byte that follows the NULL terminator byte.
823//
824// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
825// non-zero and there aren't enough available bytes, nullptr will be returned
826// and "offset_ptr" will not be updated.
827const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
828  const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
829  // Already at the end of the data.
830  if (!start)
831    return nullptr;
832
833  const char *end = reinterpret_cast<const char *>(m_end);
834
835  // Check all bytes for a null terminator that terminates a C string.
836  const char *terminator_or_end = std::find(start, end, '\0');
837
838  // We didn't find a null terminator, so return nullptr to indicate that there
839  // is no valid C string at that offset.
840  if (terminator_or_end == end)
841    return nullptr;
842
843  // Update offset_ptr for the caller to point to the data behind the
844  // terminator (which is 1 byte long).
845  *offset_ptr += (terminator_or_end - start + 1UL);
846  return start;
847}
848
849// Extracts a NULL terminated C string from the fixed length field of length
850// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
851// updated with the offset of the byte that follows the fixed length field.
852//
853// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
854// plus the length of the field is out of bounds, or if the field does not
855// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
856// will not be updated.
857const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
858  const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
859  if (cstr != nullptr) {
860    if (memchr(cstr, '\0', len) == nullptr) {
861      return nullptr;
862    }
863    *offset_ptr += len;
864    return cstr;
865  }
866  return nullptr;
867}
868
869// Peeks at a string in the contained data. No verification is done to make
870// sure the entire string lies within the bounds of this object's data, only
871// "offset" is verified to be a valid offset.
872//
873// Returns a valid C string pointer if "offset" is a valid offset in this
874// object's data, else nullptr is returned.
875const char *DataExtractor::PeekCStr(offset_t offset) const {
876  return reinterpret_cast<const char *>(PeekData(offset, 1));
877}
878
879// Extracts an unsigned LEB128 number from this object's data starting at the
880// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
881// will be updated with the offset of the byte following the last extracted
882// byte.
883//
884// Returned the extracted integer value.
885uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
886  const uint8_t *src = PeekData(*offset_ptr, 1);
887  if (src == nullptr)
888    return 0;
889
890  const uint8_t *end = m_end;
891
892  if (src < end) {
893    uint64_t result = *src++;
894    if (result >= 0x80) {
895      result &= 0x7f;
896      int shift = 7;
897      while (src < end) {
898        uint8_t byte = *src++;
899        result |= static_cast<uint64_t>(byte & 0x7f) << shift;
900        if ((byte & 0x80) == 0)
901          break;
902        shift += 7;
903      }
904    }
905    *offset_ptr = src - m_start;
906    return result;
907  }
908
909  return 0;
910}
911
912// Extracts an signed LEB128 number from this object's data starting at the
913// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
914// will be updated with the offset of the byte following the last extracted
915// byte.
916//
917// Returned the extracted integer value.
918int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
919  const uint8_t *src = PeekData(*offset_ptr, 1);
920  if (src == nullptr)
921    return 0;
922
923  const uint8_t *end = m_end;
924
925  if (src < end) {
926    int64_t result = 0;
927    int shift = 0;
928    int size = sizeof(int64_t) * 8;
929
930    uint8_t byte = 0;
931    int bytecount = 0;
932
933    while (src < end) {
934      bytecount++;
935      byte = *src++;
936      result |= static_cast<int64_t>(byte & 0x7f) << shift;
937      shift += 7;
938      if ((byte & 0x80) == 0)
939        break;
940    }
941
942    // Sign bit of byte is 2nd high order bit (0x40)
943    if (shift < size && (byte & 0x40))
944      result |= -(1 << shift);
945
946    *offset_ptr += bytecount;
947    return result;
948  }
949  return 0;
950}
951
952// Skips a ULEB128 number (signed or unsigned) from this object's data starting
953// at the offset pointed to by "offset_ptr". The offset pointed to by
954// "offset_ptr" will be updated with the offset of the byte following the last
955// extracted byte.
956//
957// Returns the number of bytes consumed during the extraction.
958uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
959  uint32_t bytes_consumed = 0;
960  const uint8_t *src = PeekData(*offset_ptr, 1);
961  if (src == nullptr)
962    return 0;
963
964  const uint8_t *end = m_end;
965
966  if (src < end) {
967    const uint8_t *src_pos = src;
968    while ((src_pos < end) && (*src_pos++ & 0x80))
969      ++bytes_consumed;
970    *offset_ptr += src_pos - src;
971  }
972  return bytes_consumed;
973}
974
975// Dumps bytes from this object's data to the stream "s" starting
976// "start_offset" bytes into this data, and ending with the byte before
977// "end_offset". "base_addr" will be added to the offset into the dumped data
978// when showing the offset into the data in the output information.
979// "num_per_line" objects of type "type" will be dumped with the option to
980// override the format for each object with "type_format". "type_format" is a
981// printf style formatting string. If "type_format" is nullptr, then an
982// appropriate format string will be used for the supplied "type". If the
983// stream "s" is nullptr, then the output will be send to Log().
984lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
985                                       offset_t length, uint64_t base_addr,
986                                       uint32_t num_per_line,
987                                       DataExtractor::Type type) const {
988  if (log == nullptr)
989    return start_offset;
990
991  offset_t offset;
992  offset_t end_offset;
993  uint32_t count;
994  StreamString sstr;
995  for (offset = start_offset, end_offset = offset + length, count = 0;
996       ValidOffset(offset) && offset < end_offset; ++count) {
997    if ((count % num_per_line) == 0) {
998      // Print out any previous string
999      if (sstr.GetSize() > 0) {
1000        log->PutString(sstr.GetString());
1001        sstr.Clear();
1002      }
1003      // Reset string offset and fill the current line string with address:
1004      if (base_addr != LLDB_INVALID_ADDRESS)
1005        sstr.Printf("0x%8.8" PRIx64 ":",
1006                    static_cast<uint64_t>(base_addr + (offset - start_offset)));
1007    }
1008
1009    switch (type) {
1010    case TypeUInt8:
1011      sstr.Printf(" %2.2x", GetU8(&offset));
1012      break;
1013    case TypeChar: {
1014      char ch = GetU8(&offset);
1015      sstr.Printf(" %c", isprint(ch) ? ch : ' ');
1016    } break;
1017    case TypeUInt16:
1018      sstr.Printf(" %4.4x", GetU16(&offset));
1019      break;
1020    case TypeUInt32:
1021      sstr.Printf(" %8.8x", GetU32(&offset));
1022      break;
1023    case TypeUInt64:
1024      sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
1025      break;
1026    case TypePointer:
1027      sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
1028      break;
1029    case TypeULEB128:
1030      sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
1031      break;
1032    case TypeSLEB128:
1033      sstr.Printf(" %" PRId64, GetSLEB128(&offset));
1034      break;
1035    }
1036  }
1037
1038  if (!sstr.Empty())
1039    log->PutString(sstr.GetString());
1040
1041  return offset; // Return the offset at which we ended up
1042}
1043
1044size_t DataExtractor::Copy(DataExtractor &dest_data) const {
1045  if (m_data_sp) {
1046    // we can pass along the SP to the data
1047    dest_data.SetData(m_data_sp);
1048  } else {
1049    const uint8_t *base_ptr = m_start;
1050    size_t data_size = GetByteSize();
1051    dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
1052  }
1053  return GetByteSize();
1054}
1055
1056bool DataExtractor::Append(DataExtractor &rhs) {
1057  if (rhs.GetByteOrder() != GetByteOrder())
1058    return false;
1059
1060  if (rhs.GetByteSize() == 0)
1061    return true;
1062
1063  if (GetByteSize() == 0)
1064    return (rhs.Copy(*this) > 0);
1065
1066  size_t bytes = GetByteSize() + rhs.GetByteSize();
1067
1068  DataBufferHeap *buffer_heap_ptr = nullptr;
1069  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1070
1071  if (!buffer_sp || buffer_heap_ptr == nullptr)
1072    return false;
1073
1074  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1075
1076  memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1077  memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
1078
1079  SetData(buffer_sp);
1080
1081  return true;
1082}
1083
1084bool DataExtractor::Append(void *buf, offset_t length) {
1085  if (buf == nullptr)
1086    return false;
1087
1088  if (length == 0)
1089    return true;
1090
1091  size_t bytes = GetByteSize() + length;
1092
1093  DataBufferHeap *buffer_heap_ptr = nullptr;
1094  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1095
1096  if (!buffer_sp || buffer_heap_ptr == nullptr)
1097    return false;
1098
1099  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1100
1101  if (GetByteSize() > 0)
1102    memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1103
1104  memcpy(bytes_ptr + GetByteSize(), buf, length);
1105
1106  SetData(buffer_sp);
1107
1108  return true;
1109}
1110
1111void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1112                             uint64_t max_data) {
1113  if (max_data == 0)
1114    max_data = GetByteSize();
1115  else
1116    max_data = std::min(max_data, GetByteSize());
1117
1118  llvm::MD5 md5;
1119
1120  const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1121  md5.update(data);
1122
1123  llvm::MD5::MD5Result result;
1124  md5.final(result);
1125
1126  dest.clear();
1127  dest.append(result.Bytes.begin(), result.Bytes.end());
1128}
1129