Memory.cpp revision 360784
1//===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Target/Memory.h"
10#include "lldb/Target/Process.h"
11#include "lldb/Utility/DataBufferHeap.h"
12#include "lldb/Utility/Log.h"
13#include "lldb/Utility/RangeMap.h"
14#include "lldb/Utility/State.h"
15
16#include <cinttypes>
17#include <memory>
18
19using namespace lldb;
20using namespace lldb_private;
21
22// MemoryCache constructor
23MemoryCache::MemoryCache(Process &process)
24    : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
25      m_process(process),
26      m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}
27
28// Destructor
29MemoryCache::~MemoryCache() {}
30
31void MemoryCache::Clear(bool clear_invalid_ranges) {
32  std::lock_guard<std::recursive_mutex> guard(m_mutex);
33  m_L1_cache.clear();
34  m_L2_cache.clear();
35  if (clear_invalid_ranges)
36    m_invalid_ranges.Clear();
37  m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
38}
39
40void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
41                                 size_t src_len) {
42  AddL1CacheData(
43      addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
44}
45
46void MemoryCache::AddL1CacheData(lldb::addr_t addr,
47                                 const DataBufferSP &data_buffer_sp) {
48  std::lock_guard<std::recursive_mutex> guard(m_mutex);
49  m_L1_cache[addr] = data_buffer_sp;
50}
51
52void MemoryCache::Flush(addr_t addr, size_t size) {
53  if (size == 0)
54    return;
55
56  std::lock_guard<std::recursive_mutex> guard(m_mutex);
57
58  // Erase any blocks from the L1 cache that intersect with the flush range
59  if (!m_L1_cache.empty()) {
60    AddrRange flush_range(addr, size);
61    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
62    if (pos != m_L1_cache.begin()) {
63      --pos;
64    }
65    while (pos != m_L1_cache.end()) {
66      AddrRange chunk_range(pos->first, pos->second->GetByteSize());
67      if (!chunk_range.DoesIntersect(flush_range))
68        break;
69      pos = m_L1_cache.erase(pos);
70    }
71  }
72
73  if (!m_L2_cache.empty()) {
74    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
75    const addr_t end_addr = (addr + size - 1);
76    const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
77    const addr_t last_cache_line_addr =
78        end_addr - (end_addr % cache_line_byte_size);
79    // Watch for overflow where size will cause us to go off the end of the
80    // 64 bit address space
81    uint32_t num_cache_lines;
82    if (last_cache_line_addr >= first_cache_line_addr)
83      num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
84                         cache_line_byte_size) +
85                        1;
86    else
87      num_cache_lines =
88          (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;
89
90    uint32_t cache_idx = 0;
91    for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
92         curr_addr += cache_line_byte_size, ++cache_idx) {
93      BlockMap::iterator pos = m_L2_cache.find(curr_addr);
94      if (pos != m_L2_cache.end())
95        m_L2_cache.erase(pos);
96    }
97  }
98}
99
100void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
101                                  lldb::addr_t byte_size) {
102  if (byte_size > 0) {
103    std::lock_guard<std::recursive_mutex> guard(m_mutex);
104    InvalidRanges::Entry range(base_addr, byte_size);
105    m_invalid_ranges.Append(range);
106    m_invalid_ranges.Sort();
107  }
108}
109
110bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
111                                     lldb::addr_t byte_size) {
112  if (byte_size > 0) {
113    std::lock_guard<std::recursive_mutex> guard(m_mutex);
114    const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
115    if (idx != UINT32_MAX) {
116      const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
117      if (entry->GetRangeBase() == base_addr &&
118          entry->GetByteSize() == byte_size)
119        return m_invalid_ranges.RemoveEntrtAtIndex(idx);
120    }
121  }
122  return false;
123}
124
125size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
126                         Status &error) {
127  size_t bytes_left = dst_len;
128
129  // Check the L1 cache for a range that contain the entire memory read. If we
130  // find a range in the L1 cache that does, we use it. Else we fall back to
131  // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1
132  // cache contains chunks of memory that are not required to be
133  // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky
134  // when reading from them (no partial reads from the L1 cache).
135
136  std::lock_guard<std::recursive_mutex> guard(m_mutex);
137  if (!m_L1_cache.empty()) {
138    AddrRange read_range(addr, dst_len);
139    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
140    if (pos != m_L1_cache.begin()) {
141      --pos;
142    }
143    AddrRange chunk_range(pos->first, pos->second->GetByteSize());
144    if (chunk_range.Contains(read_range)) {
145      memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()),
146             dst_len);
147      return dst_len;
148    }
149  }
150
151  // If this memory read request is larger than the cache line size, then we
152  // (1) try to read as much of it at once as possible, and (2) don't add the
153  // data to the memory cache.  We don't want to split a big read up into more
154  // separate reads than necessary, and with a large memory read request, it is
155  // unlikely that the caller function will ask for the next
156  // 4 bytes after the large memory read - so there's little benefit to saving
157  // it in the cache.
158  if (dst && dst_len > m_L2_cache_line_byte_size) {
159    size_t bytes_read =
160        m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
161    // Add this non block sized range to the L1 cache if we actually read
162    // anything
163    if (bytes_read > 0)
164      AddL1CacheData(addr, dst, bytes_read);
165    return bytes_read;
166  }
167
168  if (dst && bytes_left > 0) {
169    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
170    uint8_t *dst_buf = (uint8_t *)dst;
171    addr_t curr_addr = addr - (addr % cache_line_byte_size);
172    addr_t cache_offset = addr - curr_addr;
173
174    while (bytes_left > 0) {
175      if (m_invalid_ranges.FindEntryThatContains(curr_addr)) {
176        error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
177                                       curr_addr);
178        return dst_len - bytes_left;
179      }
180
181      BlockMap::const_iterator pos = m_L2_cache.find(curr_addr);
182      BlockMap::const_iterator end = m_L2_cache.end();
183
184      if (pos != end) {
185        size_t curr_read_size = cache_line_byte_size - cache_offset;
186        if (curr_read_size > bytes_left)
187          curr_read_size = bytes_left;
188
189        memcpy(dst_buf + dst_len - bytes_left,
190               pos->second->GetBytes() + cache_offset, curr_read_size);
191
192        bytes_left -= curr_read_size;
193        curr_addr += curr_read_size + cache_offset;
194        cache_offset = 0;
195
196        if (bytes_left > 0) {
197          // Get sequential cache page hits
198          for (++pos; (pos != end) && (bytes_left > 0); ++pos) {
199            assert((curr_addr % cache_line_byte_size) == 0);
200
201            if (pos->first != curr_addr)
202              break;
203
204            curr_read_size = pos->second->GetByteSize();
205            if (curr_read_size > bytes_left)
206              curr_read_size = bytes_left;
207
208            memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(),
209                   curr_read_size);
210
211            bytes_left -= curr_read_size;
212            curr_addr += curr_read_size;
213
214            // We have a cache page that succeeded to read some bytes but not
215            // an entire page. If this happens, we must cap off how much data
216            // we are able to read...
217            if (pos->second->GetByteSize() != cache_line_byte_size)
218              return dst_len - bytes_left;
219          }
220        }
221      }
222
223      // We need to read from the process
224
225      if (bytes_left > 0) {
226        assert((curr_addr % cache_line_byte_size) == 0);
227        std::unique_ptr<DataBufferHeap> data_buffer_heap_up(
228            new DataBufferHeap(cache_line_byte_size, 0));
229        size_t process_bytes_read = m_process.ReadMemoryFromInferior(
230            curr_addr, data_buffer_heap_up->GetBytes(),
231            data_buffer_heap_up->GetByteSize(), error);
232        if (process_bytes_read == 0)
233          return dst_len - bytes_left;
234
235        if (process_bytes_read != cache_line_byte_size)
236          data_buffer_heap_up->SetByteSize(process_bytes_read);
237        m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_up.release());
238        // We have read data and put it into the cache, continue through the
239        // loop again to get the data out of the cache...
240      }
241    }
242  }
243
244  return dst_len - bytes_left;
245}
246
247AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
248                               uint32_t permissions, uint32_t chunk_size)
249    : m_range(addr, byte_size), m_permissions(permissions),
250      m_chunk_size(chunk_size)
251{
252  // The entire address range is free to start with.
253  m_free_blocks.Append(m_range);
254  assert(byte_size > chunk_size);
255}
256
257AllocatedBlock::~AllocatedBlock() {}
258
259lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
260  // We must return something valid for zero bytes.
261  if (size == 0)
262    size = 1;
263  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
264
265  const size_t free_count = m_free_blocks.GetSize();
266  for (size_t i=0; i<free_count; ++i)
267  {
268    auto &free_block = m_free_blocks.GetEntryRef(i);
269    const lldb::addr_t range_size = free_block.GetByteSize();
270    if (range_size >= size)
271    {
272      // We found a free block that is big enough for our data. Figure out how
273      // many chunks we will need and calculate the resulting block size we
274      // will reserve.
275      addr_t addr = free_block.GetRangeBase();
276      size_t num_chunks = CalculateChunksNeededForSize(size);
277      lldb::addr_t block_size = num_chunks * m_chunk_size;
278      lldb::addr_t bytes_left = range_size - block_size;
279      if (bytes_left == 0)
280      {
281        // The newly allocated block will take all of the bytes in this
282        // available block, so we can just add it to the allocated ranges and
283        // remove the range from the free ranges.
284        m_reserved_blocks.Insert(free_block, false);
285        m_free_blocks.RemoveEntryAtIndex(i);
286      }
287      else
288      {
289        // Make the new allocated range and add it to the allocated ranges.
290        Range<lldb::addr_t, uint32_t> reserved_block(free_block);
291        reserved_block.SetByteSize(block_size);
292        // Insert the reserved range and don't combine it with other blocks in
293        // the reserved blocks list.
294        m_reserved_blocks.Insert(reserved_block, false);
295        // Adjust the free range in place since we won't change the sorted
296        // ordering of the m_free_blocks list.
297        free_block.SetRangeBase(reserved_block.GetRangeEnd());
298        free_block.SetByteSize(bytes_left);
299      }
300      LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
301      return addr;
302    }
303  }
304
305  LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
306            LLDB_INVALID_ADDRESS);
307  return LLDB_INVALID_ADDRESS;
308}
309
310bool AllocatedBlock::FreeBlock(addr_t addr) {
311  bool success = false;
312  auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
313  if (entry_idx != UINT32_MAX)
314  {
315    m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
316    m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
317    success = true;
318  }
319  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
320  LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
321  return success;
322}
323
324AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
325    : m_process(process), m_mutex(), m_memory_map() {}
326
327AllocatedMemoryCache::~AllocatedMemoryCache() {}
328
329void AllocatedMemoryCache::Clear() {
330  std::lock_guard<std::recursive_mutex> guard(m_mutex);
331  if (m_process.IsAlive()) {
332    PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
333    for (pos = m_memory_map.begin(); pos != end; ++pos)
334      m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
335  }
336  m_memory_map.clear();
337}
338
339AllocatedMemoryCache::AllocatedBlockSP
340AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
341                                   uint32_t chunk_size, Status &error) {
342  AllocatedBlockSP block_sp;
343  const size_t page_size = 4096;
344  const size_t num_pages = (byte_size + page_size - 1) / page_size;
345  const size_t page_byte_size = num_pages * page_size;
346
347  addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
348
349  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
350  if (log) {
351    LLDB_LOGF(log,
352              "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
353              ", permissions = %s) => 0x%16.16" PRIx64,
354              (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
355              (uint64_t)addr);
356  }
357
358  if (addr != LLDB_INVALID_ADDRESS) {
359    block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
360                                                permissions, chunk_size);
361    m_memory_map.insert(std::make_pair(permissions, block_sp));
362  }
363  return block_sp;
364}
365
366lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
367                                                  uint32_t permissions,
368                                                  Status &error) {
369  std::lock_guard<std::recursive_mutex> guard(m_mutex);
370
371  addr_t addr = LLDB_INVALID_ADDRESS;
372  std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
373      range = m_memory_map.equal_range(permissions);
374
375  for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
376       ++pos) {
377    addr = (*pos).second->ReserveBlock(byte_size);
378    if (addr != LLDB_INVALID_ADDRESS)
379      break;
380  }
381
382  if (addr == LLDB_INVALID_ADDRESS) {
383    AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));
384
385    if (block_sp)
386      addr = block_sp->ReserveBlock(byte_size);
387  }
388  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
389  LLDB_LOGF(log,
390            "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
391            ", permissions = %s) => 0x%16.16" PRIx64,
392            (uint32_t)byte_size, GetPermissionsAsCString(permissions),
393            (uint64_t)addr);
394  return addr;
395}
396
397bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
398  std::lock_guard<std::recursive_mutex> guard(m_mutex);
399
400  PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
401  bool success = false;
402  for (pos = m_memory_map.begin(); pos != end; ++pos) {
403    if (pos->second->Contains(addr)) {
404      success = pos->second->FreeBlock(addr);
405      break;
406    }
407  }
408  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
409  LLDB_LOGF(log,
410            "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
411            ") => %i",
412            (uint64_t)addr, success);
413  return success;
414}
415