Writer.cpp revision 363496
1//===- Writer.cpp ---------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Writer.h"
10#include "AArch64ErrataFix.h"
11#include "ARMErrataFix.h"
12#include "CallGraphSort.h"
13#include "Config.h"
14#include "LinkerScript.h"
15#include "MapFile.h"
16#include "OutputSections.h"
17#include "Relocations.h"
18#include "SymbolTable.h"
19#include "Symbols.h"
20#include "SyntheticSections.h"
21#include "Target.h"
22#include "lld/Common/Filesystem.h"
23#include "lld/Common/Memory.h"
24#include "lld/Common/Strings.h"
25#include "lld/Common/Threads.h"
26#include "llvm/ADT/StringMap.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/Support/RandomNumberGenerator.h"
29#include "llvm/Support/SHA1.h"
30#include "llvm/Support/xxhash.h"
31#include <climits>
32
33using namespace llvm;
34using namespace llvm::ELF;
35using namespace llvm::object;
36using namespace llvm::support;
37using namespace llvm::support::endian;
38
39namespace lld {
40namespace elf {
41namespace {
42// The writer writes a SymbolTable result to a file.
43template <class ELFT> class Writer {
44public:
45  Writer() : buffer(errorHandler().outputBuffer) {}
46  using Elf_Shdr = typename ELFT::Shdr;
47  using Elf_Ehdr = typename ELFT::Ehdr;
48  using Elf_Phdr = typename ELFT::Phdr;
49
50  void run();
51
52private:
53  void copyLocalSymbols();
54  void addSectionSymbols();
55  void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
56  void sortSections();
57  void resolveShfLinkOrder();
58  void finalizeAddressDependentContent();
59  void sortInputSections();
60  void finalizeSections();
61  void checkExecuteOnly();
62  void setReservedSymbolSections();
63
64  std::vector<PhdrEntry *> createPhdrs(Partition &part);
65  void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
66                         unsigned pFlags);
67  void assignFileOffsets();
68  void assignFileOffsetsBinary();
69  void setPhdrs(Partition &part);
70  void checkSections();
71  void fixSectionAlignments();
72  void openFile();
73  void writeTrapInstr();
74  void writeHeader();
75  void writeSections();
76  void writeSectionsBinary();
77  void writeBuildId();
78
79  std::unique_ptr<FileOutputBuffer> &buffer;
80
81  void addRelIpltSymbols();
82  void addStartEndSymbols();
83  void addStartStopSymbols(OutputSection *sec);
84
85  uint64_t fileSize;
86  uint64_t sectionHeaderOff;
87};
88} // anonymous namespace
89
90static bool isSectionPrefix(StringRef prefix, StringRef name) {
91  return name.startswith(prefix) || name == prefix.drop_back();
92}
93
94StringRef getOutputSectionName(const InputSectionBase *s) {
95  if (config->relocatable)
96    return s->name;
97
98  // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
99  // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
100  // technically required, but not doing it is odd). This code guarantees that.
101  if (auto *isec = dyn_cast<InputSection>(s)) {
102    if (InputSectionBase *rel = isec->getRelocatedSection()) {
103      OutputSection *out = rel->getOutputSection();
104      if (s->type == SHT_RELA)
105        return saver.save(".rela" + out->name);
106      return saver.save(".rel" + out->name);
107    }
108  }
109
110  // This check is for -z keep-text-section-prefix.  This option separates text
111  // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
112  // ".text.exit".
113  // When enabled, this allows identifying the hot code region (.text.hot) in
114  // the final binary which can be selectively mapped to huge pages or mlocked,
115  // for instance.
116  if (config->zKeepTextSectionPrefix)
117    for (StringRef v :
118         {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
119      if (isSectionPrefix(v, s->name))
120        return v.drop_back();
121
122  for (StringRef v :
123       {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
124        ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
125        ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
126    if (isSectionPrefix(v, s->name))
127      return v.drop_back();
128
129  // CommonSection is identified as "COMMON" in linker scripts.
130  // By default, it should go to .bss section.
131  if (s->name == "COMMON")
132    return ".bss";
133
134  return s->name;
135}
136
137static bool needsInterpSection() {
138  return !config->relocatable && !config->shared &&
139         !config->dynamicLinker.empty() && script->needsInterpSection();
140}
141
142template <class ELFT> void writeResult() { Writer<ELFT>().run(); }
143
144static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
145  llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
146    if (p->p_type != PT_LOAD)
147      return false;
148    if (!p->firstSec)
149      return true;
150    uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
151    return size == 0;
152  });
153}
154
155void copySectionsIntoPartitions() {
156  std::vector<InputSectionBase *> newSections;
157  for (unsigned part = 2; part != partitions.size() + 1; ++part) {
158    for (InputSectionBase *s : inputSections) {
159      if (!(s->flags & SHF_ALLOC) || !s->isLive())
160        continue;
161      InputSectionBase *copy;
162      if (s->type == SHT_NOTE)
163        copy = make<InputSection>(cast<InputSection>(*s));
164      else if (auto *es = dyn_cast<EhInputSection>(s))
165        copy = make<EhInputSection>(*es);
166      else
167        continue;
168      copy->partition = part;
169      newSections.push_back(copy);
170    }
171  }
172
173  inputSections.insert(inputSections.end(), newSections.begin(),
174                       newSections.end());
175}
176
177void combineEhSections() {
178  for (InputSectionBase *&s : inputSections) {
179    // Ignore dead sections and the partition end marker (.part.end),
180    // whose partition number is out of bounds.
181    if (!s->isLive() || s->partition == 255)
182      continue;
183
184    Partition &part = s->getPartition();
185    if (auto *es = dyn_cast<EhInputSection>(s)) {
186      part.ehFrame->addSection(es);
187      s = nullptr;
188    } else if (s->kind() == SectionBase::Regular && part.armExidx &&
189               part.armExidx->addSection(cast<InputSection>(s))) {
190      s = nullptr;
191    }
192  }
193
194  std::vector<InputSectionBase *> &v = inputSections;
195  v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
196}
197
198static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
199                                   uint64_t val, uint8_t stOther = STV_HIDDEN,
200                                   uint8_t binding = STB_GLOBAL) {
201  Symbol *s = symtab->find(name);
202  if (!s || s->isDefined())
203    return nullptr;
204
205  s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
206                     /*size=*/0, sec});
207  return cast<Defined>(s);
208}
209
210static Defined *addAbsolute(StringRef name) {
211  Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
212                                          STT_NOTYPE, 0, 0, nullptr});
213  return cast<Defined>(sym);
214}
215
216// The linker is expected to define some symbols depending on
217// the linking result. This function defines such symbols.
218void addReservedSymbols() {
219  if (config->emachine == EM_MIPS) {
220    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
221    // so that it points to an absolute address which by default is relative
222    // to GOT. Default offset is 0x7ff0.
223    // See "Global Data Symbols" in Chapter 6 in the following document:
224    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
225    ElfSym::mipsGp = addAbsolute("_gp");
226
227    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
228    // start of function and 'gp' pointer into GOT.
229    if (symtab->find("_gp_disp"))
230      ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
231
232    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
233    // pointer. This symbol is used in the code generated by .cpload pseudo-op
234    // in case of using -mno-shared option.
235    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
236    if (symtab->find("__gnu_local_gp"))
237      ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
238  } else if (config->emachine == EM_PPC) {
239    // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
240    // support Small Data Area, define it arbitrarily as 0.
241    addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
242  }
243
244  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
245  // combines the typical ELF GOT with the small data sections. It commonly
246  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
247  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
248  // represent the TOC base which is offset by 0x8000 bytes from the start of
249  // the .got section.
250  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
251  // correctness of some relocations depends on its value.
252  StringRef gotSymName =
253      (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
254
255  if (Symbol *s = symtab->find(gotSymName)) {
256    if (s->isDefined()) {
257      error(toString(s->file) + " cannot redefine linker defined symbol '" +
258            gotSymName + "'");
259      return;
260    }
261
262    uint64_t gotOff = 0;
263    if (config->emachine == EM_PPC64)
264      gotOff = 0x8000;
265
266    s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
267                       STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
268    ElfSym::globalOffsetTable = cast<Defined>(s);
269  }
270
271  // __ehdr_start is the location of ELF file headers. Note that we define
272  // this symbol unconditionally even when using a linker script, which
273  // differs from the behavior implemented by GNU linker which only define
274  // this symbol if ELF headers are in the memory mapped segment.
275  addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
276
277  // __executable_start is not documented, but the expectation of at
278  // least the Android libc is that it points to the ELF header.
279  addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
280
281  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
282  // each DSO. The address of the symbol doesn't matter as long as they are
283  // different in different DSOs, so we chose the start address of the DSO.
284  addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
285
286  // If linker script do layout we do not need to create any standard symbols.
287  if (script->hasSectionsCommand)
288    return;
289
290  auto add = [](StringRef s, int64_t pos) {
291    return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
292  };
293
294  ElfSym::bss = add("__bss_start", 0);
295  ElfSym::end1 = add("end", -1);
296  ElfSym::end2 = add("_end", -1);
297  ElfSym::etext1 = add("etext", -1);
298  ElfSym::etext2 = add("_etext", -1);
299  ElfSym::edata1 = add("edata", -1);
300  ElfSym::edata2 = add("_edata", -1);
301}
302
303static OutputSection *findSection(StringRef name, unsigned partition = 1) {
304  for (BaseCommand *base : script->sectionCommands)
305    if (auto *sec = dyn_cast<OutputSection>(base))
306      if (sec->name == name && sec->partition == partition)
307        return sec;
308  return nullptr;
309}
310
311template <class ELFT> void createSyntheticSections() {
312  // Initialize all pointers with NULL. This is needed because
313  // you can call lld::elf::main more than once as a library.
314  memset(&Out::first, 0, sizeof(Out));
315
316  // Add the .interp section first because it is not a SyntheticSection.
317  // The removeUnusedSyntheticSections() function relies on the
318  // SyntheticSections coming last.
319  if (needsInterpSection()) {
320    for (size_t i = 1; i <= partitions.size(); ++i) {
321      InputSection *sec = createInterpSection();
322      sec->partition = i;
323      inputSections.push_back(sec);
324    }
325  }
326
327  auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
328
329  in.shStrTab = make<StringTableSection>(".shstrtab", false);
330
331  Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
332  Out::programHeaders->alignment = config->wordsize;
333
334  if (config->strip != StripPolicy::All) {
335    in.strTab = make<StringTableSection>(".strtab", false);
336    in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
337    in.symTabShndx = make<SymtabShndxSection>();
338  }
339
340  in.bss = make<BssSection>(".bss", 0, 1);
341  add(in.bss);
342
343  // If there is a SECTIONS command and a .data.rel.ro section name use name
344  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
345  // This makes sure our relro is contiguous.
346  bool hasDataRelRo =
347      script->hasSectionsCommand && findSection(".data.rel.ro", 0);
348  in.bssRelRo =
349      make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
350  add(in.bssRelRo);
351
352  // Add MIPS-specific sections.
353  if (config->emachine == EM_MIPS) {
354    if (!config->shared && config->hasDynSymTab) {
355      in.mipsRldMap = make<MipsRldMapSection>();
356      add(in.mipsRldMap);
357    }
358    if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
359      add(sec);
360    if (auto *sec = MipsOptionsSection<ELFT>::create())
361      add(sec);
362    if (auto *sec = MipsReginfoSection<ELFT>::create())
363      add(sec);
364  }
365
366  StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
367
368  for (Partition &part : partitions) {
369    auto add = [&](SyntheticSection *sec) {
370      sec->partition = part.getNumber();
371      inputSections.push_back(sec);
372    };
373
374    if (!part.name.empty()) {
375      part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
376      part.elfHeader->name = part.name;
377      add(part.elfHeader);
378
379      part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
380      add(part.programHeaders);
381    }
382
383    if (config->buildId != BuildIdKind::None) {
384      part.buildId = make<BuildIdSection>();
385      add(part.buildId);
386    }
387
388    part.dynStrTab = make<StringTableSection>(".dynstr", true);
389    part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
390    part.dynamic = make<DynamicSection<ELFT>>();
391    if (config->androidPackDynRelocs)
392      part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
393    else
394      part.relaDyn =
395          make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
396
397    if (config->hasDynSymTab) {
398      part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
399      add(part.dynSymTab);
400
401      part.verSym = make<VersionTableSection>();
402      add(part.verSym);
403
404      if (!namedVersionDefs().empty()) {
405        part.verDef = make<VersionDefinitionSection>();
406        add(part.verDef);
407      }
408
409      part.verNeed = make<VersionNeedSection<ELFT>>();
410      add(part.verNeed);
411
412      if (config->gnuHash) {
413        part.gnuHashTab = make<GnuHashTableSection>();
414        add(part.gnuHashTab);
415      }
416
417      if (config->sysvHash) {
418        part.hashTab = make<HashTableSection>();
419        add(part.hashTab);
420      }
421
422      add(part.dynamic);
423      add(part.dynStrTab);
424      add(part.relaDyn);
425    }
426
427    if (config->relrPackDynRelocs) {
428      part.relrDyn = make<RelrSection<ELFT>>();
429      add(part.relrDyn);
430    }
431
432    if (!config->relocatable) {
433      if (config->ehFrameHdr) {
434        part.ehFrameHdr = make<EhFrameHeader>();
435        add(part.ehFrameHdr);
436      }
437      part.ehFrame = make<EhFrameSection>();
438      add(part.ehFrame);
439    }
440
441    if (config->emachine == EM_ARM && !config->relocatable) {
442      // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
443      // InputSections.
444      part.armExidx = make<ARMExidxSyntheticSection>();
445      add(part.armExidx);
446    }
447  }
448
449  if (partitions.size() != 1) {
450    // Create the partition end marker. This needs to be in partition number 255
451    // so that it is sorted after all other partitions. It also has other
452    // special handling (see createPhdrs() and combineEhSections()).
453    in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
454    in.partEnd->partition = 255;
455    add(in.partEnd);
456
457    in.partIndex = make<PartitionIndexSection>();
458    addOptionalRegular("__part_index_begin", in.partIndex, 0);
459    addOptionalRegular("__part_index_end", in.partIndex,
460                       in.partIndex->getSize());
461    add(in.partIndex);
462  }
463
464  // Add .got. MIPS' .got is so different from the other archs,
465  // it has its own class.
466  if (config->emachine == EM_MIPS) {
467    in.mipsGot = make<MipsGotSection>();
468    add(in.mipsGot);
469  } else {
470    in.got = make<GotSection>();
471    add(in.got);
472  }
473
474  if (config->emachine == EM_PPC) {
475    in.ppc32Got2 = make<PPC32Got2Section>();
476    add(in.ppc32Got2);
477  }
478
479  if (config->emachine == EM_PPC64) {
480    in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
481    add(in.ppc64LongBranchTarget);
482  }
483
484  in.gotPlt = make<GotPltSection>();
485  add(in.gotPlt);
486  in.igotPlt = make<IgotPltSection>();
487  add(in.igotPlt);
488
489  // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
490  // it as a relocation and ensure the referenced section is created.
491  if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
492    if (target->gotBaseSymInGotPlt)
493      in.gotPlt->hasGotPltOffRel = true;
494    else
495      in.got->hasGotOffRel = true;
496  }
497
498  if (config->gdbIndex)
499    add(GdbIndexSection::create<ELFT>());
500
501  // We always need to add rel[a].plt to output if it has entries.
502  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
503  in.relaPlt = make<RelocationSection<ELFT>>(
504      config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
505  add(in.relaPlt);
506
507  // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
508  // relocations are processed last by the dynamic loader. We cannot place the
509  // iplt section in .rel.dyn when Android relocation packing is enabled because
510  // that would cause a section type mismatch. However, because the Android
511  // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
512  // behaviour by placing the iplt section in .rel.plt.
513  in.relaIplt = make<RelocationSection<ELFT>>(
514      config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
515      /*sort=*/false);
516  add(in.relaIplt);
517
518  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
519      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
520    in.ibtPlt = make<IBTPltSection>();
521    add(in.ibtPlt);
522  }
523
524  in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
525                                      : make<PltSection>();
526  add(in.plt);
527  in.iplt = make<IpltSection>();
528  add(in.iplt);
529
530  if (config->andFeatures)
531    add(make<GnuPropertySection>());
532
533  // .note.GNU-stack is always added when we are creating a re-linkable
534  // object file. Other linkers are using the presence of this marker
535  // section to control the executable-ness of the stack area, but that
536  // is irrelevant these days. Stack area should always be non-executable
537  // by default. So we emit this section unconditionally.
538  if (config->relocatable)
539    add(make<GnuStackSection>());
540
541  if (in.symTab)
542    add(in.symTab);
543  if (in.symTabShndx)
544    add(in.symTabShndx);
545  add(in.shStrTab);
546  if (in.strTab)
547    add(in.strTab);
548}
549
550// The main function of the writer.
551template <class ELFT> void Writer<ELFT>::run() {
552  if (config->discard != DiscardPolicy::All)
553    copyLocalSymbols();
554
555  if (config->copyRelocs)
556    addSectionSymbols();
557
558  // Now that we have a complete set of output sections. This function
559  // completes section contents. For example, we need to add strings
560  // to the string table, and add entries to .got and .plt.
561  // finalizeSections does that.
562  finalizeSections();
563  checkExecuteOnly();
564  if (errorCount())
565    return;
566
567  // If -compressed-debug-sections is specified, we need to compress
568  // .debug_* sections. Do it right now because it changes the size of
569  // output sections.
570  for (OutputSection *sec : outputSections)
571    sec->maybeCompress<ELFT>();
572
573  if (script->hasSectionsCommand)
574    script->allocateHeaders(mainPart->phdrs);
575
576  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
577  // 0 sized region. This has to be done late since only after assignAddresses
578  // we know the size of the sections.
579  for (Partition &part : partitions)
580    removeEmptyPTLoad(part.phdrs);
581
582  if (!config->oFormatBinary)
583    assignFileOffsets();
584  else
585    assignFileOffsetsBinary();
586
587  for (Partition &part : partitions)
588    setPhdrs(part);
589
590  if (config->relocatable)
591    for (OutputSection *sec : outputSections)
592      sec->addr = 0;
593
594  if (config->checkSections)
595    checkSections();
596
597  // It does not make sense try to open the file if we have error already.
598  if (errorCount())
599    return;
600  // Write the result down to a file.
601  openFile();
602  if (errorCount())
603    return;
604
605  if (!config->oFormatBinary) {
606    if (config->zSeparate != SeparateSegmentKind::None)
607      writeTrapInstr();
608    writeHeader();
609    writeSections();
610  } else {
611    writeSectionsBinary();
612  }
613
614  // Backfill .note.gnu.build-id section content. This is done at last
615  // because the content is usually a hash value of the entire output file.
616  writeBuildId();
617  if (errorCount())
618    return;
619
620  // Handle -Map and -cref options.
621  writeMapFile();
622  writeCrossReferenceTable();
623  if (errorCount())
624    return;
625
626  if (auto e = buffer->commit())
627    error("failed to write to the output file: " + toString(std::move(e)));
628}
629
630static bool shouldKeepInSymtab(const Defined &sym) {
631  if (sym.isSection())
632    return false;
633
634  if (config->discard == DiscardPolicy::None)
635    return true;
636
637  // If -emit-reloc is given, all symbols including local ones need to be
638  // copied because they may be referenced by relocations.
639  if (config->emitRelocs)
640    return true;
641
642  // In ELF assembly .L symbols are normally discarded by the assembler.
643  // If the assembler fails to do so, the linker discards them if
644  // * --discard-locals is used.
645  // * The symbol is in a SHF_MERGE section, which is normally the reason for
646  //   the assembler keeping the .L symbol.
647  StringRef name = sym.getName();
648  bool isLocal = name.startswith(".L") || name.empty();
649  if (!isLocal)
650    return true;
651
652  if (config->discard == DiscardPolicy::Locals)
653    return false;
654
655  SectionBase *sec = sym.section;
656  return !sec || !(sec->flags & SHF_MERGE);
657}
658
659static bool includeInSymtab(const Symbol &b) {
660  if (!b.isLocal() && !b.isUsedInRegularObj)
661    return false;
662
663  if (auto *d = dyn_cast<Defined>(&b)) {
664    // Always include absolute symbols.
665    SectionBase *sec = d->section;
666    if (!sec)
667      return true;
668    sec = sec->repl;
669
670    // Exclude symbols pointing to garbage-collected sections.
671    if (isa<InputSectionBase>(sec) && !sec->isLive())
672      return false;
673
674    if (auto *s = dyn_cast<MergeInputSection>(sec))
675      if (!s->getSectionPiece(d->value)->live)
676        return false;
677    return true;
678  }
679  return b.used;
680}
681
682// Local symbols are not in the linker's symbol table. This function scans
683// each object file's symbol table to copy local symbols to the output.
684template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
685  if (!in.symTab)
686    return;
687  for (InputFile *file : objectFiles) {
688    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
689    for (Symbol *b : f->getLocalSymbols()) {
690      if (!b->isLocal())
691        fatal(toString(f) +
692              ": broken object: getLocalSymbols returns a non-local symbol");
693      auto *dr = dyn_cast<Defined>(b);
694
695      // No reason to keep local undefined symbol in symtab.
696      if (!dr)
697        continue;
698      if (!includeInSymtab(*b))
699        continue;
700      if (!shouldKeepInSymtab(*dr))
701        continue;
702      in.symTab->addSymbol(b);
703    }
704  }
705}
706
707// Create a section symbol for each output section so that we can represent
708// relocations that point to the section. If we know that no relocation is
709// referring to a section (that happens if the section is a synthetic one), we
710// don't create a section symbol for that section.
711template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
712  for (BaseCommand *base : script->sectionCommands) {
713    auto *sec = dyn_cast<OutputSection>(base);
714    if (!sec)
715      continue;
716    auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
717      if (auto *isd = dyn_cast<InputSectionDescription>(base))
718        return !isd->sections.empty();
719      return false;
720    });
721    if (i == sec->sectionCommands.end())
722      continue;
723    InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
724
725    // Relocations are not using REL[A] section symbols.
726    if (isec->type == SHT_REL || isec->type == SHT_RELA)
727      continue;
728
729    // Unlike other synthetic sections, mergeable output sections contain data
730    // copied from input sections, and there may be a relocation pointing to its
731    // contents if -r or -emit-reloc are given.
732    if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
733      continue;
734
735    auto *sym =
736        make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
737                      /*value=*/0, /*size=*/0, isec);
738    in.symTab->addSymbol(sym);
739  }
740}
741
742// Today's loaders have a feature to make segments read-only after
743// processing dynamic relocations to enhance security. PT_GNU_RELRO
744// is defined for that.
745//
746// This function returns true if a section needs to be put into a
747// PT_GNU_RELRO segment.
748static bool isRelroSection(const OutputSection *sec) {
749  if (!config->zRelro)
750    return false;
751
752  uint64_t flags = sec->flags;
753
754  // Non-allocatable or non-writable sections don't need RELRO because
755  // they are not writable or not even mapped to memory in the first place.
756  // RELRO is for sections that are essentially read-only but need to
757  // be writable only at process startup to allow dynamic linker to
758  // apply relocations.
759  if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
760    return false;
761
762  // Once initialized, TLS data segments are used as data templates
763  // for a thread-local storage. For each new thread, runtime
764  // allocates memory for a TLS and copy templates there. No thread
765  // are supposed to use templates directly. Thus, it can be in RELRO.
766  if (flags & SHF_TLS)
767    return true;
768
769  // .init_array, .preinit_array and .fini_array contain pointers to
770  // functions that are executed on process startup or exit. These
771  // pointers are set by the static linker, and they are not expected
772  // to change at runtime. But if you are an attacker, you could do
773  // interesting things by manipulating pointers in .fini_array, for
774  // example. So they are put into RELRO.
775  uint32_t type = sec->type;
776  if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
777      type == SHT_PREINIT_ARRAY)
778    return true;
779
780  // .got contains pointers to external symbols. They are resolved by
781  // the dynamic linker when a module is loaded into memory, and after
782  // that they are not expected to change. So, it can be in RELRO.
783  if (in.got && sec == in.got->getParent())
784    return true;
785
786  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
787  // through r2 register, which is reserved for that purpose. Since r2 is used
788  // for accessing .got as well, .got and .toc need to be close enough in the
789  // virtual address space. Usually, .toc comes just after .got. Since we place
790  // .got into RELRO, .toc needs to be placed into RELRO too.
791  if (sec->name.equals(".toc"))
792    return true;
793
794  // .got.plt contains pointers to external function symbols. They are
795  // by default resolved lazily, so we usually cannot put it into RELRO.
796  // However, if "-z now" is given, the lazy symbol resolution is
797  // disabled, which enables us to put it into RELRO.
798  if (sec == in.gotPlt->getParent())
799    return config->zNow;
800
801  // .dynamic section contains data for the dynamic linker, and
802  // there's no need to write to it at runtime, so it's better to put
803  // it into RELRO.
804  if (sec->name == ".dynamic")
805    return true;
806
807  // Sections with some special names are put into RELRO. This is a
808  // bit unfortunate because section names shouldn't be significant in
809  // ELF in spirit. But in reality many linker features depend on
810  // magic section names.
811  StringRef s = sec->name;
812  return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
813         s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
814         s == ".openbsd.randomdata";
815}
816
817// We compute a rank for each section. The rank indicates where the
818// section should be placed in the file.  Instead of using simple
819// numbers (0,1,2...), we use a series of flags. One for each decision
820// point when placing the section.
821// Using flags has two key properties:
822// * It is easy to check if a give branch was taken.
823// * It is easy two see how similar two ranks are (see getRankProximity).
824enum RankFlags {
825  RF_NOT_ADDR_SET = 1 << 27,
826  RF_NOT_ALLOC = 1 << 26,
827  RF_PARTITION = 1 << 18, // Partition number (8 bits)
828  RF_NOT_PART_EHDR = 1 << 17,
829  RF_NOT_PART_PHDR = 1 << 16,
830  RF_NOT_INTERP = 1 << 15,
831  RF_NOT_NOTE = 1 << 14,
832  RF_WRITE = 1 << 13,
833  RF_EXEC_WRITE = 1 << 12,
834  RF_EXEC = 1 << 11,
835  RF_RODATA = 1 << 10,
836  RF_NOT_RELRO = 1 << 9,
837  RF_NOT_TLS = 1 << 8,
838  RF_BSS = 1 << 7,
839  RF_PPC_NOT_TOCBSS = 1 << 6,
840  RF_PPC_TOCL = 1 << 5,
841  RF_PPC_TOC = 1 << 4,
842  RF_PPC_GOT = 1 << 3,
843  RF_PPC_BRANCH_LT = 1 << 2,
844  RF_MIPS_GPREL = 1 << 1,
845  RF_MIPS_NOT_GOT = 1 << 0
846};
847
848static unsigned getSectionRank(const OutputSection *sec) {
849  unsigned rank = sec->partition * RF_PARTITION;
850
851  // We want to put section specified by -T option first, so we
852  // can start assigning VA starting from them later.
853  if (config->sectionStartMap.count(sec->name))
854    return rank;
855  rank |= RF_NOT_ADDR_SET;
856
857  // Allocatable sections go first to reduce the total PT_LOAD size and
858  // so debug info doesn't change addresses in actual code.
859  if (!(sec->flags & SHF_ALLOC))
860    return rank | RF_NOT_ALLOC;
861
862  if (sec->type == SHT_LLVM_PART_EHDR)
863    return rank;
864  rank |= RF_NOT_PART_EHDR;
865
866  if (sec->type == SHT_LLVM_PART_PHDR)
867    return rank;
868  rank |= RF_NOT_PART_PHDR;
869
870  // Put .interp first because some loaders want to see that section
871  // on the first page of the executable file when loaded into memory.
872  if (sec->name == ".interp")
873    return rank;
874  rank |= RF_NOT_INTERP;
875
876  // Put .note sections (which make up one PT_NOTE) at the beginning so that
877  // they are likely to be included in a core file even if core file size is
878  // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
879  // included in a core to match core files with executables.
880  if (sec->type == SHT_NOTE)
881    return rank;
882  rank |= RF_NOT_NOTE;
883
884  // Sort sections based on their access permission in the following
885  // order: R, RX, RWX, RW.  This order is based on the following
886  // considerations:
887  // * Read-only sections come first such that they go in the
888  //   PT_LOAD covering the program headers at the start of the file.
889  // * Read-only, executable sections come next.
890  // * Writable, executable sections follow such that .plt on
891  //   architectures where it needs to be writable will be placed
892  //   between .text and .data.
893  // * Writable sections come last, such that .bss lands at the very
894  //   end of the last PT_LOAD.
895  bool isExec = sec->flags & SHF_EXECINSTR;
896  bool isWrite = sec->flags & SHF_WRITE;
897
898  if (isExec) {
899    if (isWrite)
900      rank |= RF_EXEC_WRITE;
901    else
902      rank |= RF_EXEC;
903  } else if (isWrite) {
904    rank |= RF_WRITE;
905  } else if (sec->type == SHT_PROGBITS) {
906    // Make non-executable and non-writable PROGBITS sections (e.g .rodata
907    // .eh_frame) closer to .text. They likely contain PC or GOT relative
908    // relocations and there could be relocation overflow if other huge sections
909    // (.dynstr .dynsym) were placed in between.
910    rank |= RF_RODATA;
911  }
912
913  // Place RelRo sections first. After considering SHT_NOBITS below, the
914  // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
915  // where | marks where page alignment happens. An alternative ordering is
916  // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
917  // waste more bytes due to 2 alignment places.
918  if (!isRelroSection(sec))
919    rank |= RF_NOT_RELRO;
920
921  // If we got here we know that both A and B are in the same PT_LOAD.
922
923  // The TLS initialization block needs to be a single contiguous block in a R/W
924  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
925  // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
926  // after PROGBITS.
927  if (!(sec->flags & SHF_TLS))
928    rank |= RF_NOT_TLS;
929
930  // Within TLS sections, or within other RelRo sections, or within non-RelRo
931  // sections, place non-NOBITS sections first.
932  if (sec->type == SHT_NOBITS)
933    rank |= RF_BSS;
934
935  // Some architectures have additional ordering restrictions for sections
936  // within the same PT_LOAD.
937  if (config->emachine == EM_PPC64) {
938    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
939    // that we would like to make sure appear is a specific order to maximize
940    // their coverage by a single signed 16-bit offset from the TOC base
941    // pointer. Conversely, the special .tocbss section should be first among
942    // all SHT_NOBITS sections. This will put it next to the loaded special
943    // PPC64 sections (and, thus, within reach of the TOC base pointer).
944    StringRef name = sec->name;
945    if (name != ".tocbss")
946      rank |= RF_PPC_NOT_TOCBSS;
947
948    if (name == ".toc1")
949      rank |= RF_PPC_TOCL;
950
951    if (name == ".toc")
952      rank |= RF_PPC_TOC;
953
954    if (name == ".got")
955      rank |= RF_PPC_GOT;
956
957    if (name == ".branch_lt")
958      rank |= RF_PPC_BRANCH_LT;
959  }
960
961  if (config->emachine == EM_MIPS) {
962    // All sections with SHF_MIPS_GPREL flag should be grouped together
963    // because data in these sections is addressable with a gp relative address.
964    if (sec->flags & SHF_MIPS_GPREL)
965      rank |= RF_MIPS_GPREL;
966
967    if (sec->name != ".got")
968      rank |= RF_MIPS_NOT_GOT;
969  }
970
971  return rank;
972}
973
974static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
975  const OutputSection *a = cast<OutputSection>(aCmd);
976  const OutputSection *b = cast<OutputSection>(bCmd);
977
978  if (a->sortRank != b->sortRank)
979    return a->sortRank < b->sortRank;
980
981  if (!(a->sortRank & RF_NOT_ADDR_SET))
982    return config->sectionStartMap.lookup(a->name) <
983           config->sectionStartMap.lookup(b->name);
984  return false;
985}
986
987void PhdrEntry::add(OutputSection *sec) {
988  lastSec = sec;
989  if (!firstSec)
990    firstSec = sec;
991  p_align = std::max(p_align, sec->alignment);
992  if (p_type == PT_LOAD)
993    sec->ptLoad = this;
994}
995
996// The beginning and the ending of .rel[a].plt section are marked
997// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
998// executable. The runtime needs these symbols in order to resolve
999// all IRELATIVE relocs on startup. For dynamic executables, we don't
1000// need these symbols, since IRELATIVE relocs are resolved through GOT
1001// and PLT. For details, see http://www.airs.com/blog/archives/403.
1002template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1003  if (config->relocatable || needsInterpSection())
1004    return;
1005
1006  // By default, __rela_iplt_{start,end} belong to a dummy section 0
1007  // because .rela.plt might be empty and thus removed from output.
1008  // We'll override Out::elfHeader with In.relaIplt later when we are
1009  // sure that .rela.plt exists in output.
1010  ElfSym::relaIpltStart = addOptionalRegular(
1011      config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1012      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1013
1014  ElfSym::relaIpltEnd = addOptionalRegular(
1015      config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1016      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1017}
1018
1019template <class ELFT>
1020void Writer<ELFT>::forEachRelSec(
1021    llvm::function_ref<void(InputSectionBase &)> fn) {
1022  // Scan all relocations. Each relocation goes through a series
1023  // of tests to determine if it needs special treatment, such as
1024  // creating GOT, PLT, copy relocations, etc.
1025  // Note that relocations for non-alloc sections are directly
1026  // processed by InputSection::relocateNonAlloc.
1027  for (InputSectionBase *isec : inputSections)
1028    if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1029      fn(*isec);
1030  for (Partition &part : partitions) {
1031    for (EhInputSection *es : part.ehFrame->sections)
1032      fn(*es);
1033    if (part.armExidx && part.armExidx->isLive())
1034      for (InputSection *ex : part.armExidx->exidxSections)
1035        fn(*ex);
1036  }
1037}
1038
1039// This function generates assignments for predefined symbols (e.g. _end or
1040// _etext) and inserts them into the commands sequence to be processed at the
1041// appropriate time. This ensures that the value is going to be correct by the
1042// time any references to these symbols are processed and is equivalent to
1043// defining these symbols explicitly in the linker script.
1044template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1045  if (ElfSym::globalOffsetTable) {
1046    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1047    // to the start of the .got or .got.plt section.
1048    InputSection *gotSection = in.gotPlt;
1049    if (!target->gotBaseSymInGotPlt)
1050      gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1051                              : cast<InputSection>(in.got);
1052    ElfSym::globalOffsetTable->section = gotSection;
1053  }
1054
1055  // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1056  if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1057    ElfSym::relaIpltStart->section = in.relaIplt;
1058    ElfSym::relaIpltEnd->section = in.relaIplt;
1059    ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1060  }
1061
1062  PhdrEntry *last = nullptr;
1063  PhdrEntry *lastRO = nullptr;
1064
1065  for (Partition &part : partitions) {
1066    for (PhdrEntry *p : part.phdrs) {
1067      if (p->p_type != PT_LOAD)
1068        continue;
1069      last = p;
1070      if (!(p->p_flags & PF_W))
1071        lastRO = p;
1072    }
1073  }
1074
1075  if (lastRO) {
1076    // _etext is the first location after the last read-only loadable segment.
1077    if (ElfSym::etext1)
1078      ElfSym::etext1->section = lastRO->lastSec;
1079    if (ElfSym::etext2)
1080      ElfSym::etext2->section = lastRO->lastSec;
1081  }
1082
1083  if (last) {
1084    // _edata points to the end of the last mapped initialized section.
1085    OutputSection *edata = nullptr;
1086    for (OutputSection *os : outputSections) {
1087      if (os->type != SHT_NOBITS)
1088        edata = os;
1089      if (os == last->lastSec)
1090        break;
1091    }
1092
1093    if (ElfSym::edata1)
1094      ElfSym::edata1->section = edata;
1095    if (ElfSym::edata2)
1096      ElfSym::edata2->section = edata;
1097
1098    // _end is the first location after the uninitialized data region.
1099    if (ElfSym::end1)
1100      ElfSym::end1->section = last->lastSec;
1101    if (ElfSym::end2)
1102      ElfSym::end2->section = last->lastSec;
1103  }
1104
1105  if (ElfSym::bss)
1106    ElfSym::bss->section = findSection(".bss");
1107
1108  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1109  // be equal to the _gp symbol's value.
1110  if (ElfSym::mipsGp) {
1111    // Find GP-relative section with the lowest address
1112    // and use this address to calculate default _gp value.
1113    for (OutputSection *os : outputSections) {
1114      if (os->flags & SHF_MIPS_GPREL) {
1115        ElfSym::mipsGp->section = os;
1116        ElfSym::mipsGp->value = 0x7ff0;
1117        break;
1118      }
1119    }
1120  }
1121}
1122
1123// We want to find how similar two ranks are.
1124// The more branches in getSectionRank that match, the more similar they are.
1125// Since each branch corresponds to a bit flag, we can just use
1126// countLeadingZeros.
1127static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1128  return countLeadingZeros(a->sortRank ^ b->sortRank);
1129}
1130
1131static int getRankProximity(OutputSection *a, BaseCommand *b) {
1132  auto *sec = dyn_cast<OutputSection>(b);
1133  return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1134}
1135
1136// When placing orphan sections, we want to place them after symbol assignments
1137// so that an orphan after
1138//   begin_foo = .;
1139//   foo : { *(foo) }
1140//   end_foo = .;
1141// doesn't break the intended meaning of the begin/end symbols.
1142// We don't want to go over sections since findOrphanPos is the
1143// one in charge of deciding the order of the sections.
1144// We don't want to go over changes to '.', since doing so in
1145//  rx_sec : { *(rx_sec) }
1146//  . = ALIGN(0x1000);
1147//  /* The RW PT_LOAD starts here*/
1148//  rw_sec : { *(rw_sec) }
1149// would mean that the RW PT_LOAD would become unaligned.
1150static bool shouldSkip(BaseCommand *cmd) {
1151  if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1152    return assign->name != ".";
1153  return false;
1154}
1155
1156// We want to place orphan sections so that they share as much
1157// characteristics with their neighbors as possible. For example, if
1158// both are rw, or both are tls.
1159static std::vector<BaseCommand *>::iterator
1160findOrphanPos(std::vector<BaseCommand *>::iterator b,
1161              std::vector<BaseCommand *>::iterator e) {
1162  OutputSection *sec = cast<OutputSection>(*e);
1163
1164  // Find the first element that has as close a rank as possible.
1165  auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1166    return getRankProximity(sec, a) < getRankProximity(sec, b);
1167  });
1168  if (i == e)
1169    return e;
1170
1171  // Consider all existing sections with the same proximity.
1172  int proximity = getRankProximity(sec, *i);
1173  for (; i != e; ++i) {
1174    auto *curSec = dyn_cast<OutputSection>(*i);
1175    if (!curSec || !curSec->hasInputSections)
1176      continue;
1177    if (getRankProximity(sec, curSec) != proximity ||
1178        sec->sortRank < curSec->sortRank)
1179      break;
1180  }
1181
1182  auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1183    auto *os = dyn_cast<OutputSection>(cmd);
1184    return os && os->hasInputSections;
1185  };
1186  auto j = std::find_if(llvm::make_reverse_iterator(i),
1187                        llvm::make_reverse_iterator(b),
1188                        isOutputSecWithInputSections);
1189  i = j.base();
1190
1191  // As a special case, if the orphan section is the last section, put
1192  // it at the very end, past any other commands.
1193  // This matches bfd's behavior and is convenient when the linker script fully
1194  // specifies the start of the file, but doesn't care about the end (the non
1195  // alloc sections for example).
1196  auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1197  if (nextSec == e)
1198    return e;
1199
1200  while (i != e && shouldSkip(*i))
1201    ++i;
1202  return i;
1203}
1204
1205// Builds section order for handling --symbol-ordering-file.
1206static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1207  DenseMap<const InputSectionBase *, int> sectionOrder;
1208  // Use the rarely used option -call-graph-ordering-file to sort sections.
1209  if (!config->callGraphProfile.empty())
1210    return computeCallGraphProfileOrder();
1211
1212  if (config->symbolOrderingFile.empty())
1213    return sectionOrder;
1214
1215  struct SymbolOrderEntry {
1216    int priority;
1217    bool present;
1218  };
1219
1220  // Build a map from symbols to their priorities. Symbols that didn't
1221  // appear in the symbol ordering file have the lowest priority 0.
1222  // All explicitly mentioned symbols have negative (higher) priorities.
1223  DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1224  int priority = -config->symbolOrderingFile.size();
1225  for (StringRef s : config->symbolOrderingFile)
1226    symbolOrder.insert({s, {priority++, false}});
1227
1228  // Build a map from sections to their priorities.
1229  auto addSym = [&](Symbol &sym) {
1230    auto it = symbolOrder.find(sym.getName());
1231    if (it == symbolOrder.end())
1232      return;
1233    SymbolOrderEntry &ent = it->second;
1234    ent.present = true;
1235
1236    maybeWarnUnorderableSymbol(&sym);
1237
1238    if (auto *d = dyn_cast<Defined>(&sym)) {
1239      if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1240        int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1241        priority = std::min(priority, ent.priority);
1242      }
1243    }
1244  };
1245
1246  // We want both global and local symbols. We get the global ones from the
1247  // symbol table and iterate the object files for the local ones.
1248  for (Symbol *sym : symtab->symbols())
1249    if (!sym->isLazy())
1250      addSym(*sym);
1251
1252  for (InputFile *file : objectFiles)
1253    for (Symbol *sym : file->getSymbols())
1254      if (sym->isLocal())
1255        addSym(*sym);
1256
1257  if (config->warnSymbolOrdering)
1258    for (auto orderEntry : symbolOrder)
1259      if (!orderEntry.second.present)
1260        warn("symbol ordering file: no such symbol: " + orderEntry.first);
1261
1262  return sectionOrder;
1263}
1264
1265// Sorts the sections in ISD according to the provided section order.
1266static void
1267sortISDBySectionOrder(InputSectionDescription *isd,
1268                      const DenseMap<const InputSectionBase *, int> &order) {
1269  std::vector<InputSection *> unorderedSections;
1270  std::vector<std::pair<InputSection *, int>> orderedSections;
1271  uint64_t unorderedSize = 0;
1272
1273  for (InputSection *isec : isd->sections) {
1274    auto i = order.find(isec);
1275    if (i == order.end()) {
1276      unorderedSections.push_back(isec);
1277      unorderedSize += isec->getSize();
1278      continue;
1279    }
1280    orderedSections.push_back({isec, i->second});
1281  }
1282  llvm::sort(orderedSections, llvm::less_second());
1283
1284  // Find an insertion point for the ordered section list in the unordered
1285  // section list. On targets with limited-range branches, this is the mid-point
1286  // of the unordered section list. This decreases the likelihood that a range
1287  // extension thunk will be needed to enter or exit the ordered region. If the
1288  // ordered section list is a list of hot functions, we can generally expect
1289  // the ordered functions to be called more often than the unordered functions,
1290  // making it more likely that any particular call will be within range, and
1291  // therefore reducing the number of thunks required.
1292  //
1293  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1294  // If the layout is:
1295  //
1296  // 8MB hot
1297  // 32MB cold
1298  //
1299  // only the first 8-16MB of the cold code (depending on which hot function it
1300  // is actually calling) can call the hot code without a range extension thunk.
1301  // However, if we use this layout:
1302  //
1303  // 16MB cold
1304  // 8MB hot
1305  // 16MB cold
1306  //
1307  // both the last 8-16MB of the first block of cold code and the first 8-16MB
1308  // of the second block of cold code can call the hot code without a thunk. So
1309  // we effectively double the amount of code that could potentially call into
1310  // the hot code without a thunk.
1311  size_t insPt = 0;
1312  if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1313    uint64_t unorderedPos = 0;
1314    for (; insPt != unorderedSections.size(); ++insPt) {
1315      unorderedPos += unorderedSections[insPt]->getSize();
1316      if (unorderedPos > unorderedSize / 2)
1317        break;
1318    }
1319  }
1320
1321  isd->sections.clear();
1322  for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1323    isd->sections.push_back(isec);
1324  for (std::pair<InputSection *, int> p : orderedSections)
1325    isd->sections.push_back(p.first);
1326  for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1327    isd->sections.push_back(isec);
1328}
1329
1330static void sortSection(OutputSection *sec,
1331                        const DenseMap<const InputSectionBase *, int> &order) {
1332  StringRef name = sec->name;
1333
1334  // Sort input sections by section name suffixes for
1335  // __attribute__((init_priority(N))).
1336  if (name == ".init_array" || name == ".fini_array") {
1337    if (!script->hasSectionsCommand)
1338      sec->sortInitFini();
1339    return;
1340  }
1341
1342  // Sort input sections by the special rule for .ctors and .dtors.
1343  if (name == ".ctors" || name == ".dtors") {
1344    if (!script->hasSectionsCommand)
1345      sec->sortCtorsDtors();
1346    return;
1347  }
1348
1349  // Never sort these.
1350  if (name == ".init" || name == ".fini")
1351    return;
1352
1353  // .toc is allocated just after .got and is accessed using GOT-relative
1354  // relocations. Object files compiled with small code model have an
1355  // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1356  // To reduce the risk of relocation overflow, .toc contents are sorted so that
1357  // sections having smaller relocation offsets are at beginning of .toc
1358  if (config->emachine == EM_PPC64 && name == ".toc") {
1359    if (script->hasSectionsCommand)
1360      return;
1361    assert(sec->sectionCommands.size() == 1);
1362    auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1363    llvm::stable_sort(isd->sections,
1364                      [](const InputSection *a, const InputSection *b) -> bool {
1365                        return a->file->ppc64SmallCodeModelTocRelocs &&
1366                               !b->file->ppc64SmallCodeModelTocRelocs;
1367                      });
1368    return;
1369  }
1370
1371  // Sort input sections by priority using the list provided
1372  // by --symbol-ordering-file.
1373  if (!order.empty())
1374    for (BaseCommand *b : sec->sectionCommands)
1375      if (auto *isd = dyn_cast<InputSectionDescription>(b))
1376        sortISDBySectionOrder(isd, order);
1377}
1378
1379// If no layout was provided by linker script, we want to apply default
1380// sorting for special input sections. This also handles --symbol-ordering-file.
1381template <class ELFT> void Writer<ELFT>::sortInputSections() {
1382  // Build the order once since it is expensive.
1383  DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1384  for (BaseCommand *base : script->sectionCommands)
1385    if (auto *sec = dyn_cast<OutputSection>(base))
1386      sortSection(sec, order);
1387}
1388
1389template <class ELFT> void Writer<ELFT>::sortSections() {
1390  script->adjustSectionsBeforeSorting();
1391
1392  // Don't sort if using -r. It is not necessary and we want to preserve the
1393  // relative order for SHF_LINK_ORDER sections.
1394  if (config->relocatable)
1395    return;
1396
1397  sortInputSections();
1398
1399  for (BaseCommand *base : script->sectionCommands) {
1400    auto *os = dyn_cast<OutputSection>(base);
1401    if (!os)
1402      continue;
1403    os->sortRank = getSectionRank(os);
1404
1405    // We want to assign rude approximation values to outSecOff fields
1406    // to know the relative order of the input sections. We use it for
1407    // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1408    uint64_t i = 0;
1409    for (InputSection *sec : getInputSections(os))
1410      sec->outSecOff = i++;
1411  }
1412
1413  if (!script->hasSectionsCommand) {
1414    // We know that all the OutputSections are contiguous in this case.
1415    auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1416    std::stable_sort(
1417        llvm::find_if(script->sectionCommands, isSection),
1418        llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1419        compareSections);
1420    return;
1421  }
1422
1423  // Orphan sections are sections present in the input files which are
1424  // not explicitly placed into the output file by the linker script.
1425  //
1426  // The sections in the linker script are already in the correct
1427  // order. We have to figuere out where to insert the orphan
1428  // sections.
1429  //
1430  // The order of the sections in the script is arbitrary and may not agree with
1431  // compareSections. This means that we cannot easily define a strict weak
1432  // ordering. To see why, consider a comparison of a section in the script and
1433  // one not in the script. We have a two simple options:
1434  // * Make them equivalent (a is not less than b, and b is not less than a).
1435  //   The problem is then that equivalence has to be transitive and we can
1436  //   have sections a, b and c with only b in a script and a less than c
1437  //   which breaks this property.
1438  // * Use compareSectionsNonScript. Given that the script order doesn't have
1439  //   to match, we can end up with sections a, b, c, d where b and c are in the
1440  //   script and c is compareSectionsNonScript less than b. In which case d
1441  //   can be equivalent to c, a to b and d < a. As a concrete example:
1442  //   .a (rx) # not in script
1443  //   .b (rx) # in script
1444  //   .c (ro) # in script
1445  //   .d (ro) # not in script
1446  //
1447  // The way we define an order then is:
1448  // *  Sort only the orphan sections. They are in the end right now.
1449  // *  Move each orphan section to its preferred position. We try
1450  //    to put each section in the last position where it can share
1451  //    a PT_LOAD.
1452  //
1453  // There is some ambiguity as to where exactly a new entry should be
1454  // inserted, because Commands contains not only output section
1455  // commands but also other types of commands such as symbol assignment
1456  // expressions. There's no correct answer here due to the lack of the
1457  // formal specification of the linker script. We use heuristics to
1458  // determine whether a new output command should be added before or
1459  // after another commands. For the details, look at shouldSkip
1460  // function.
1461
1462  auto i = script->sectionCommands.begin();
1463  auto e = script->sectionCommands.end();
1464  auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1465    if (auto *sec = dyn_cast<OutputSection>(base))
1466      return sec->sectionIndex == UINT32_MAX;
1467    return false;
1468  });
1469
1470  // Sort the orphan sections.
1471  std::stable_sort(nonScriptI, e, compareSections);
1472
1473  // As a horrible special case, skip the first . assignment if it is before any
1474  // section. We do this because it is common to set a load address by starting
1475  // the script with ". = 0xabcd" and the expectation is that every section is
1476  // after that.
1477  auto firstSectionOrDotAssignment =
1478      std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1479  if (firstSectionOrDotAssignment != e &&
1480      isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1481    ++firstSectionOrDotAssignment;
1482  i = firstSectionOrDotAssignment;
1483
1484  while (nonScriptI != e) {
1485    auto pos = findOrphanPos(i, nonScriptI);
1486    OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1487
1488    // As an optimization, find all sections with the same sort rank
1489    // and insert them with one rotate.
1490    unsigned rank = orphan->sortRank;
1491    auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1492      return cast<OutputSection>(cmd)->sortRank != rank;
1493    });
1494    std::rotate(pos, nonScriptI, end);
1495    nonScriptI = end;
1496  }
1497
1498  script->adjustSectionsAfterSorting();
1499}
1500
1501static bool compareByFilePosition(InputSection *a, InputSection *b) {
1502  InputSection *la = a->getLinkOrderDep();
1503  InputSection *lb = b->getLinkOrderDep();
1504  OutputSection *aOut = la->getParent();
1505  OutputSection *bOut = lb->getParent();
1506
1507  if (aOut != bOut)
1508    return aOut->sectionIndex < bOut->sectionIndex;
1509  return la->outSecOff < lb->outSecOff;
1510}
1511
1512template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1513  for (OutputSection *sec : outputSections) {
1514    if (!(sec->flags & SHF_LINK_ORDER))
1515      continue;
1516
1517    // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1518    // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1519    if (!config->relocatable && config->emachine == EM_ARM &&
1520        sec->type == SHT_ARM_EXIDX)
1521      continue;
1522
1523    // Link order may be distributed across several InputSectionDescriptions
1524    // but sort must consider them all at once.
1525    std::vector<InputSection **> scriptSections;
1526    std::vector<InputSection *> sections;
1527    bool started = false, stopped = false;
1528    for (BaseCommand *base : sec->sectionCommands) {
1529      if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
1530        for (InputSection *&isec : isd->sections) {
1531          if (!(isec->flags & SHF_LINK_ORDER)) {
1532            if (started)
1533              stopped = true;
1534          } else if (stopped) {
1535            error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name +
1536                  " are not contiguous");
1537          } else {
1538            started = true;
1539
1540            scriptSections.push_back(&isec);
1541            sections.push_back(isec);
1542
1543            InputSection *link = isec->getLinkOrderDep();
1544            if (!link->getParent())
1545              error(toString(isec) + ": sh_link points to discarded section " +
1546                    toString(link));
1547          }
1548        }
1549      } else if (started) {
1550        stopped = true;
1551      }
1552    }
1553
1554    if (errorCount())
1555      continue;
1556
1557    llvm::stable_sort(sections, compareByFilePosition);
1558
1559    for (int i = 0, n = sections.size(); i < n; ++i)
1560      *scriptSections[i] = sections[i];
1561  }
1562}
1563
1564// We need to generate and finalize the content that depends on the address of
1565// InputSections. As the generation of the content may also alter InputSection
1566// addresses we must converge to a fixed point. We do that here. See the comment
1567// in Writer<ELFT>::finalizeSections().
1568template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1569  ThunkCreator tc;
1570  AArch64Err843419Patcher a64p;
1571  ARMErr657417Patcher a32p;
1572  script->assignAddresses();
1573
1574  int assignPasses = 0;
1575  for (;;) {
1576    bool changed = target->needsThunks && tc.createThunks(outputSections);
1577
1578    // With Thunk Size much smaller than branch range we expect to
1579    // converge quickly; if we get to 10 something has gone wrong.
1580    if (changed && tc.pass >= 10) {
1581      error("thunk creation not converged");
1582      break;
1583    }
1584
1585    if (config->fixCortexA53Errata843419) {
1586      if (changed)
1587        script->assignAddresses();
1588      changed |= a64p.createFixes();
1589    }
1590    if (config->fixCortexA8) {
1591      if (changed)
1592        script->assignAddresses();
1593      changed |= a32p.createFixes();
1594    }
1595
1596    if (in.mipsGot)
1597      in.mipsGot->updateAllocSize();
1598
1599    for (Partition &part : partitions) {
1600      changed |= part.relaDyn->updateAllocSize();
1601      if (part.relrDyn)
1602        changed |= part.relrDyn->updateAllocSize();
1603    }
1604
1605    const Defined *changedSym = script->assignAddresses();
1606    if (!changed) {
1607      // Some symbols may be dependent on section addresses. When we break the
1608      // loop, the symbol values are finalized because a previous
1609      // assignAddresses() finalized section addresses.
1610      if (!changedSym)
1611        break;
1612      if (++assignPasses == 5) {
1613        errorOrWarn("assignment to symbol " + toString(*changedSym) +
1614                    " does not converge");
1615        break;
1616      }
1617    }
1618  }
1619}
1620
1621static void finalizeSynthetic(SyntheticSection *sec) {
1622  if (sec && sec->isNeeded() && sec->getParent())
1623    sec->finalizeContents();
1624}
1625
1626// In order to allow users to manipulate linker-synthesized sections,
1627// we had to add synthetic sections to the input section list early,
1628// even before we make decisions whether they are needed. This allows
1629// users to write scripts like this: ".mygot : { .got }".
1630//
1631// Doing it has an unintended side effects. If it turns out that we
1632// don't need a .got (for example) at all because there's no
1633// relocation that needs a .got, we don't want to emit .got.
1634//
1635// To deal with the above problem, this function is called after
1636// scanRelocations is called to remove synthetic sections that turn
1637// out to be empty.
1638static void removeUnusedSyntheticSections() {
1639  // All input synthetic sections that can be empty are placed after
1640  // all regular ones. We iterate over them all and exit at first
1641  // non-synthetic.
1642  for (InputSectionBase *s : llvm::reverse(inputSections)) {
1643    SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1644    if (!ss)
1645      return;
1646    OutputSection *os = ss->getParent();
1647    if (!os || ss->isNeeded())
1648      continue;
1649
1650    // If we reach here, then SS is an unused synthetic section and we want to
1651    // remove it from corresponding input section description of output section.
1652    for (BaseCommand *b : os->sectionCommands)
1653      if (auto *isd = dyn_cast<InputSectionDescription>(b))
1654        llvm::erase_if(isd->sections,
1655                       [=](InputSection *isec) { return isec == ss; });
1656  }
1657}
1658
1659// Create output section objects and add them to OutputSections.
1660template <class ELFT> void Writer<ELFT>::finalizeSections() {
1661  Out::preinitArray = findSection(".preinit_array");
1662  Out::initArray = findSection(".init_array");
1663  Out::finiArray = findSection(".fini_array");
1664
1665  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1666  // symbols for sections, so that the runtime can get the start and end
1667  // addresses of each section by section name. Add such symbols.
1668  if (!config->relocatable) {
1669    addStartEndSymbols();
1670    for (BaseCommand *base : script->sectionCommands)
1671      if (auto *sec = dyn_cast<OutputSection>(base))
1672        addStartStopSymbols(sec);
1673  }
1674
1675  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1676  // It should be okay as no one seems to care about the type.
1677  // Even the author of gold doesn't remember why gold behaves that way.
1678  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1679  if (mainPart->dynamic->parent)
1680    symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1681                              STV_HIDDEN, STT_NOTYPE,
1682                              /*value=*/0, /*size=*/0, mainPart->dynamic});
1683
1684  // Define __rel[a]_iplt_{start,end} symbols if needed.
1685  addRelIpltSymbols();
1686
1687  // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1688  // should only be defined in an executable. If .sdata does not exist, its
1689  // value/section does not matter but it has to be relative, so set its
1690  // st_shndx arbitrarily to 1 (Out::elfHeader).
1691  if (config->emachine == EM_RISCV && !config->shared) {
1692    OutputSection *sec = findSection(".sdata");
1693    ElfSym::riscvGlobalPointer =
1694        addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1695                           0x800, STV_DEFAULT, STB_GLOBAL);
1696  }
1697
1698  if (config->emachine == EM_X86_64) {
1699    // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1700    // way that:
1701    //
1702    // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1703    // computes 0.
1704    // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1705    // the TLS block).
1706    //
1707    // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1708    // an absolute symbol of zero. This is different from GNU linkers which
1709    // define _TLS_MODULE_BASE_ relative to the first TLS section.
1710    Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1711    if (s && s->isUndefined()) {
1712      s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1713                         STT_TLS, /*value=*/0, 0,
1714                         /*section=*/nullptr});
1715      ElfSym::tlsModuleBase = cast<Defined>(s);
1716    }
1717  }
1718
1719  // This responsible for splitting up .eh_frame section into
1720  // pieces. The relocation scan uses those pieces, so this has to be
1721  // earlier.
1722  for (Partition &part : partitions)
1723    finalizeSynthetic(part.ehFrame);
1724
1725  for (Symbol *sym : symtab->symbols())
1726    sym->isPreemptible = computeIsPreemptible(*sym);
1727
1728  // Change values of linker-script-defined symbols from placeholders (assigned
1729  // by declareSymbols) to actual definitions.
1730  script->processSymbolAssignments();
1731
1732  // Scan relocations. This must be done after every symbol is declared so that
1733  // we can correctly decide if a dynamic relocation is needed. This is called
1734  // after processSymbolAssignments() because it needs to know whether a
1735  // linker-script-defined symbol is absolute.
1736  if (!config->relocatable) {
1737    forEachRelSec(scanRelocations<ELFT>);
1738    reportUndefinedSymbols<ELFT>();
1739  }
1740
1741  if (in.plt && in.plt->isNeeded())
1742    in.plt->addSymbols();
1743  if (in.iplt && in.iplt->isNeeded())
1744    in.iplt->addSymbols();
1745
1746  if (!config->allowShlibUndefined) {
1747    // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1748    // entries are seen. These cases would otherwise lead to runtime errors
1749    // reported by the dynamic linker.
1750    //
1751    // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1752    // catch more cases. That is too much for us. Our approach resembles the one
1753    // used in ld.gold, achieves a good balance to be useful but not too smart.
1754    for (SharedFile *file : sharedFiles)
1755      file->allNeededIsKnown =
1756          llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1757            return symtab->soNames.count(needed);
1758          });
1759
1760    for (Symbol *sym : symtab->symbols())
1761      if (sym->isUndefined() && !sym->isWeak())
1762        if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1763          if (f->allNeededIsKnown)
1764            error(toString(f) + ": undefined reference to " + toString(*sym));
1765  }
1766
1767  // Now that we have defined all possible global symbols including linker-
1768  // synthesized ones. Visit all symbols to give the finishing touches.
1769  for (Symbol *sym : symtab->symbols()) {
1770    if (!includeInSymtab(*sym))
1771      continue;
1772    if (in.symTab)
1773      in.symTab->addSymbol(sym);
1774
1775    if (sym->includeInDynsym()) {
1776      partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1777      if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1778        if (file->isNeeded && !sym->isUndefined())
1779          addVerneed(sym);
1780    }
1781  }
1782
1783  // We also need to scan the dynamic relocation tables of the other partitions
1784  // and add any referenced symbols to the partition's dynsym.
1785  for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1786    DenseSet<Symbol *> syms;
1787    for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1788      syms.insert(e.sym);
1789    for (DynamicReloc &reloc : part.relaDyn->relocs)
1790      if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
1791        part.dynSymTab->addSymbol(reloc.sym);
1792  }
1793
1794  // Do not proceed if there was an undefined symbol.
1795  if (errorCount())
1796    return;
1797
1798  if (in.mipsGot)
1799    in.mipsGot->build();
1800
1801  removeUnusedSyntheticSections();
1802
1803  sortSections();
1804
1805  // Now that we have the final list, create a list of all the
1806  // OutputSections for convenience.
1807  for (BaseCommand *base : script->sectionCommands)
1808    if (auto *sec = dyn_cast<OutputSection>(base))
1809      outputSections.push_back(sec);
1810
1811  // Prefer command line supplied address over other constraints.
1812  for (OutputSection *sec : outputSections) {
1813    auto i = config->sectionStartMap.find(sec->name);
1814    if (i != config->sectionStartMap.end())
1815      sec->addrExpr = [=] { return i->second; };
1816  }
1817
1818  // This is a bit of a hack. A value of 0 means undef, so we set it
1819  // to 1 to make __ehdr_start defined. The section number is not
1820  // particularly relevant.
1821  Out::elfHeader->sectionIndex = 1;
1822
1823  for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
1824    OutputSection *sec = outputSections[i];
1825    sec->sectionIndex = i + 1;
1826    sec->shName = in.shStrTab->addString(sec->name);
1827  }
1828
1829  // Binary and relocatable output does not have PHDRS.
1830  // The headers have to be created before finalize as that can influence the
1831  // image base and the dynamic section on mips includes the image base.
1832  if (!config->relocatable && !config->oFormatBinary) {
1833    for (Partition &part : partitions) {
1834      part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
1835                                              : createPhdrs(part);
1836      if (config->emachine == EM_ARM) {
1837        // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1838        addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
1839      }
1840      if (config->emachine == EM_MIPS) {
1841        // Add separate segments for MIPS-specific sections.
1842        addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
1843        addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
1844        addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
1845      }
1846    }
1847    Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
1848
1849    // Find the TLS segment. This happens before the section layout loop so that
1850    // Android relocation packing can look up TLS symbol addresses. We only need
1851    // to care about the main partition here because all TLS symbols were moved
1852    // to the main partition (see MarkLive.cpp).
1853    for (PhdrEntry *p : mainPart->phdrs)
1854      if (p->p_type == PT_TLS)
1855        Out::tlsPhdr = p;
1856  }
1857
1858  // Some symbols are defined in term of program headers. Now that we
1859  // have the headers, we can find out which sections they point to.
1860  setReservedSymbolSections();
1861
1862  finalizeSynthetic(in.bss);
1863  finalizeSynthetic(in.bssRelRo);
1864  finalizeSynthetic(in.symTabShndx);
1865  finalizeSynthetic(in.shStrTab);
1866  finalizeSynthetic(in.strTab);
1867  finalizeSynthetic(in.got);
1868  finalizeSynthetic(in.mipsGot);
1869  finalizeSynthetic(in.igotPlt);
1870  finalizeSynthetic(in.gotPlt);
1871  finalizeSynthetic(in.relaIplt);
1872  finalizeSynthetic(in.relaPlt);
1873  finalizeSynthetic(in.plt);
1874  finalizeSynthetic(in.iplt);
1875  finalizeSynthetic(in.ppc32Got2);
1876  finalizeSynthetic(in.partIndex);
1877
1878  // Dynamic section must be the last one in this list and dynamic
1879  // symbol table section (dynSymTab) must be the first one.
1880  for (Partition &part : partitions) {
1881    finalizeSynthetic(part.armExidx);
1882    finalizeSynthetic(part.dynSymTab);
1883    finalizeSynthetic(part.gnuHashTab);
1884    finalizeSynthetic(part.hashTab);
1885    finalizeSynthetic(part.verDef);
1886    finalizeSynthetic(part.relaDyn);
1887    finalizeSynthetic(part.relrDyn);
1888    finalizeSynthetic(part.ehFrameHdr);
1889    finalizeSynthetic(part.verSym);
1890    finalizeSynthetic(part.verNeed);
1891    finalizeSynthetic(part.dynamic);
1892  }
1893
1894  if (!script->hasSectionsCommand && !config->relocatable)
1895    fixSectionAlignments();
1896
1897  // SHFLinkOrder processing must be processed after relative section placements are
1898  // known but before addresses are allocated.
1899  resolveShfLinkOrder();
1900  if (errorCount())
1901    return;
1902
1903  // This is used to:
1904  // 1) Create "thunks":
1905  //    Jump instructions in many ISAs have small displacements, and therefore
1906  //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
1907  //    JAL instruction can target only +-1 MiB from PC. It is a linker's
1908  //    responsibility to create and insert small pieces of code between
1909  //    sections to extend the ranges if jump targets are out of range. Such
1910  //    code pieces are called "thunks".
1911  //
1912  //    We add thunks at this stage. We couldn't do this before this point
1913  //    because this is the earliest point where we know sizes of sections and
1914  //    their layouts (that are needed to determine if jump targets are in
1915  //    range).
1916  //
1917  // 2) Update the sections. We need to generate content that depends on the
1918  //    address of InputSections. For example, MIPS GOT section content or
1919  //    android packed relocations sections content.
1920  //
1921  // 3) Assign the final values for the linker script symbols. Linker scripts
1922  //    sometimes using forward symbol declarations. We want to set the correct
1923  //    values. They also might change after adding the thunks.
1924  finalizeAddressDependentContent();
1925
1926  // finalizeAddressDependentContent may have added local symbols to the static symbol table.
1927  finalizeSynthetic(in.symTab);
1928  finalizeSynthetic(in.ppc64LongBranchTarget);
1929
1930  // Fill other section headers. The dynamic table is finalized
1931  // at the end because some tags like RELSZ depend on result
1932  // of finalizing other sections.
1933  for (OutputSection *sec : outputSections)
1934    sec->finalize();
1935}
1936
1937// Ensure data sections are not mixed with executable sections when
1938// -execute-only is used. -execute-only is a feature to make pages executable
1939// but not readable, and the feature is currently supported only on AArch64.
1940template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1941  if (!config->executeOnly)
1942    return;
1943
1944  for (OutputSection *os : outputSections)
1945    if (os->flags & SHF_EXECINSTR)
1946      for (InputSection *isec : getInputSections(os))
1947        if (!(isec->flags & SHF_EXECINSTR))
1948          error("cannot place " + toString(isec) + " into " + toString(os->name) +
1949                ": -execute-only does not support intermingling data and code");
1950}
1951
1952// The linker is expected to define SECNAME_start and SECNAME_end
1953// symbols for a few sections. This function defines them.
1954template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1955  // If a section does not exist, there's ambiguity as to how we
1956  // define _start and _end symbols for an init/fini section. Since
1957  // the loader assume that the symbols are always defined, we need to
1958  // always define them. But what value? The loader iterates over all
1959  // pointers between _start and _end to run global ctors/dtors, so if
1960  // the section is empty, their symbol values don't actually matter
1961  // as long as _start and _end point to the same location.
1962  //
1963  // That said, we don't want to set the symbols to 0 (which is
1964  // probably the simplest value) because that could cause some
1965  // program to fail to link due to relocation overflow, if their
1966  // program text is above 2 GiB. We use the address of the .text
1967  // section instead to prevent that failure.
1968  //
1969  // In rare situations, the .text section may not exist. If that's the
1970  // case, use the image base address as a last resort.
1971  OutputSection *Default = findSection(".text");
1972  if (!Default)
1973    Default = Out::elfHeader;
1974
1975  auto define = [=](StringRef start, StringRef end, OutputSection *os) {
1976    if (os) {
1977      addOptionalRegular(start, os, 0);
1978      addOptionalRegular(end, os, -1);
1979    } else {
1980      addOptionalRegular(start, Default, 0);
1981      addOptionalRegular(end, Default, 0);
1982    }
1983  };
1984
1985  define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
1986  define("__init_array_start", "__init_array_end", Out::initArray);
1987  define("__fini_array_start", "__fini_array_end", Out::finiArray);
1988
1989  if (OutputSection *sec = findSection(".ARM.exidx"))
1990    define("__exidx_start", "__exidx_end", sec);
1991}
1992
1993// If a section name is valid as a C identifier (which is rare because of
1994// the leading '.'), linkers are expected to define __start_<secname> and
1995// __stop_<secname> symbols. They are at beginning and end of the section,
1996// respectively. This is not requested by the ELF standard, but GNU ld and
1997// gold provide the feature, and used by many programs.
1998template <class ELFT>
1999void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2000  StringRef s = sec->name;
2001  if (!isValidCIdentifier(s))
2002    return;
2003  addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
2004  addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
2005}
2006
2007static bool needsPtLoad(OutputSection *sec) {
2008  if (!(sec->flags & SHF_ALLOC) || sec->noload)
2009    return false;
2010
2011  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2012  // responsible for allocating space for them, not the PT_LOAD that
2013  // contains the TLS initialization image.
2014  if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2015    return false;
2016  return true;
2017}
2018
2019// Linker scripts are responsible for aligning addresses. Unfortunately, most
2020// linker scripts are designed for creating two PT_LOADs only, one RX and one
2021// RW. This means that there is no alignment in the RO to RX transition and we
2022// cannot create a PT_LOAD there.
2023static uint64_t computeFlags(uint64_t flags) {
2024  if (config->omagic)
2025    return PF_R | PF_W | PF_X;
2026  if (config->executeOnly && (flags & PF_X))
2027    return flags & ~PF_R;
2028  if (config->singleRoRx && !(flags & PF_W))
2029    return flags | PF_X;
2030  return flags;
2031}
2032
2033// Decide which program headers to create and which sections to include in each
2034// one.
2035template <class ELFT>
2036std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2037  std::vector<PhdrEntry *> ret;
2038  auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2039    ret.push_back(make<PhdrEntry>(type, flags));
2040    return ret.back();
2041  };
2042
2043  unsigned partNo = part.getNumber();
2044  bool isMain = partNo == 1;
2045
2046  // Add the first PT_LOAD segment for regular output sections.
2047  uint64_t flags = computeFlags(PF_R);
2048  PhdrEntry *load = nullptr;
2049
2050  // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2051  // PT_LOAD.
2052  if (!config->nmagic && !config->omagic) {
2053    // The first phdr entry is PT_PHDR which describes the program header
2054    // itself.
2055    if (isMain)
2056      addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2057    else
2058      addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2059
2060    // PT_INTERP must be the second entry if exists.
2061    if (OutputSection *cmd = findSection(".interp", partNo))
2062      addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2063
2064    // Add the headers. We will remove them if they don't fit.
2065    // In the other partitions the headers are ordinary sections, so they don't
2066    // need to be added here.
2067    if (isMain) {
2068      load = addHdr(PT_LOAD, flags);
2069      load->add(Out::elfHeader);
2070      load->add(Out::programHeaders);
2071    }
2072  }
2073
2074  // PT_GNU_RELRO includes all sections that should be marked as
2075  // read-only by dynamic linker after processing relocations.
2076  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2077  // an error message if more than one PT_GNU_RELRO PHDR is required.
2078  PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2079  bool inRelroPhdr = false;
2080  OutputSection *relroEnd = nullptr;
2081  for (OutputSection *sec : outputSections) {
2082    if (sec->partition != partNo || !needsPtLoad(sec))
2083      continue;
2084    if (isRelroSection(sec)) {
2085      inRelroPhdr = true;
2086      if (!relroEnd)
2087        relRo->add(sec);
2088      else
2089        error("section: " + sec->name + " is not contiguous with other relro" +
2090              " sections");
2091    } else if (inRelroPhdr) {
2092      inRelroPhdr = false;
2093      relroEnd = sec;
2094    }
2095  }
2096
2097  for (OutputSection *sec : outputSections) {
2098    if (!(sec->flags & SHF_ALLOC))
2099      break;
2100    if (!needsPtLoad(sec))
2101      continue;
2102
2103    // Normally, sections in partitions other than the current partition are
2104    // ignored. But partition number 255 is a special case: it contains the
2105    // partition end marker (.part.end). It needs to be added to the main
2106    // partition so that a segment is created for it in the main partition,
2107    // which will cause the dynamic loader to reserve space for the other
2108    // partitions.
2109    if (sec->partition != partNo) {
2110      if (isMain && sec->partition == 255)
2111        addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2112      continue;
2113    }
2114
2115    // Segments are contiguous memory regions that has the same attributes
2116    // (e.g. executable or writable). There is one phdr for each segment.
2117    // Therefore, we need to create a new phdr when the next section has
2118    // different flags or is loaded at a discontiguous address or memory
2119    // region using AT or AT> linker script command, respectively. At the same
2120    // time, we don't want to create a separate load segment for the headers,
2121    // even if the first output section has an AT or AT> attribute.
2122    uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2123    if (!load ||
2124        ((sec->lmaExpr ||
2125          (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
2126         load->lastSec != Out::programHeaders) ||
2127        sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
2128        sec == relroEnd) {
2129      load = addHdr(PT_LOAD, newFlags);
2130      flags = newFlags;
2131    }
2132
2133    load->add(sec);
2134  }
2135
2136  // Add a TLS segment if any.
2137  PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2138  for (OutputSection *sec : outputSections)
2139    if (sec->partition == partNo && sec->flags & SHF_TLS)
2140      tlsHdr->add(sec);
2141  if (tlsHdr->firstSec)
2142    ret.push_back(tlsHdr);
2143
2144  // Add an entry for .dynamic.
2145  if (OutputSection *sec = part.dynamic->getParent())
2146    addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2147
2148  if (relRo->firstSec)
2149    ret.push_back(relRo);
2150
2151  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2152  if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2153      part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2154    addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2155        ->add(part.ehFrameHdr->getParent());
2156
2157  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2158  // the dynamic linker fill the segment with random data.
2159  if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2160    addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2161
2162  if (config->zGnustack != GnuStackKind::None) {
2163    // PT_GNU_STACK is a special section to tell the loader to make the
2164    // pages for the stack non-executable. If you really want an executable
2165    // stack, you can pass -z execstack, but that's not recommended for
2166    // security reasons.
2167    unsigned perm = PF_R | PF_W;
2168    if (config->zGnustack == GnuStackKind::Exec)
2169      perm |= PF_X;
2170    addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2171  }
2172
2173  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2174  // is expected to perform W^X violations, such as calling mprotect(2) or
2175  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2176  // OpenBSD.
2177  if (config->zWxneeded)
2178    addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2179
2180  if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2181    addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2182
2183  // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2184  // same alignment.
2185  PhdrEntry *note = nullptr;
2186  for (OutputSection *sec : outputSections) {
2187    if (sec->partition != partNo)
2188      continue;
2189    if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2190      if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2191        note = addHdr(PT_NOTE, PF_R);
2192      note->add(sec);
2193    } else {
2194      note = nullptr;
2195    }
2196  }
2197  return ret;
2198}
2199
2200template <class ELFT>
2201void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2202                                     unsigned pType, unsigned pFlags) {
2203  unsigned partNo = part.getNumber();
2204  auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2205    return cmd->partition == partNo && cmd->type == shType;
2206  });
2207  if (i == outputSections.end())
2208    return;
2209
2210  PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2211  entry->add(*i);
2212  part.phdrs.push_back(entry);
2213}
2214
2215// Place the first section of each PT_LOAD to a different page (of maxPageSize).
2216// This is achieved by assigning an alignment expression to addrExpr of each
2217// such section.
2218template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2219  const PhdrEntry *prev;
2220  auto pageAlign = [&](const PhdrEntry *p) {
2221    OutputSection *cmd = p->firstSec;
2222    if (cmd && !cmd->addrExpr) {
2223      // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2224      // padding in the file contents.
2225      //
2226      // When -z separate-code is used we must not have any overlap in pages
2227      // between an executable segment and a non-executable segment. We align to
2228      // the next maximum page size boundary on transitions between executable
2229      // and non-executable segments.
2230      //
2231      // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2232      // sections will be extracted to a separate file. Align to the next
2233      // maximum page size boundary so that we can find the ELF header at the
2234      // start. We cannot benefit from overlapping p_offset ranges with the
2235      // previous segment anyway.
2236      if (config->zSeparate == SeparateSegmentKind::Loadable ||
2237          (config->zSeparate == SeparateSegmentKind::Code && prev &&
2238           (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2239          cmd->type == SHT_LLVM_PART_EHDR)
2240        cmd->addrExpr = [] {
2241          return alignTo(script->getDot(), config->maxPageSize);
2242        };
2243      // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2244      // it must be the RW. Align to p_align(PT_TLS) to make sure
2245      // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2246      // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2247      // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2248      // be congruent to 0 modulo p_align(PT_TLS).
2249      //
2250      // Technically this is not required, but as of 2019, some dynamic loaders
2251      // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2252      // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2253      // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2254      // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2255      // blocks correctly. We need to keep the workaround for a while.
2256      else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2257        cmd->addrExpr = [] {
2258          return alignTo(script->getDot(), config->maxPageSize) +
2259                 alignTo(script->getDot() % config->maxPageSize,
2260                         Out::tlsPhdr->p_align);
2261        };
2262      else
2263        cmd->addrExpr = [] {
2264          return alignTo(script->getDot(), config->maxPageSize) +
2265                 script->getDot() % config->maxPageSize;
2266        };
2267    }
2268  };
2269
2270  for (Partition &part : partitions) {
2271    prev = nullptr;
2272    for (const PhdrEntry *p : part.phdrs)
2273      if (p->p_type == PT_LOAD && p->firstSec) {
2274        pageAlign(p);
2275        prev = p;
2276      }
2277  }
2278}
2279
2280// Compute an in-file position for a given section. The file offset must be the
2281// same with its virtual address modulo the page size, so that the loader can
2282// load executables without any address adjustment.
2283static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2284  // The first section in a PT_LOAD has to have congruent offset and address
2285  // modulo the maximum page size.
2286  if (os->ptLoad && os->ptLoad->firstSec == os)
2287    return alignTo(off, os->ptLoad->p_align, os->addr);
2288
2289  // File offsets are not significant for .bss sections other than the first one
2290  // in a PT_LOAD. By convention, we keep section offsets monotonically
2291  // increasing rather than setting to zero.
2292   if (os->type == SHT_NOBITS)
2293     return off;
2294
2295  // If the section is not in a PT_LOAD, we just have to align it.
2296  if (!os->ptLoad)
2297    return alignTo(off, os->alignment);
2298
2299  // If two sections share the same PT_LOAD the file offset is calculated
2300  // using this formula: Off2 = Off1 + (VA2 - VA1).
2301  OutputSection *first = os->ptLoad->firstSec;
2302  return first->offset + os->addr - first->addr;
2303}
2304
2305// Set an in-file position to a given section and returns the end position of
2306// the section.
2307static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2308  off = computeFileOffset(os, off);
2309  os->offset = off;
2310
2311  if (os->type == SHT_NOBITS)
2312    return off;
2313  return off + os->size;
2314}
2315
2316template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2317  uint64_t off = 0;
2318  for (OutputSection *sec : outputSections)
2319    if (sec->flags & SHF_ALLOC)
2320      off = setFileOffset(sec, off);
2321  fileSize = alignTo(off, config->wordsize);
2322}
2323
2324static std::string rangeToString(uint64_t addr, uint64_t len) {
2325  return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2326}
2327
2328// Assign file offsets to output sections.
2329template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2330  uint64_t off = 0;
2331  off = setFileOffset(Out::elfHeader, off);
2332  off = setFileOffset(Out::programHeaders, off);
2333
2334  PhdrEntry *lastRX = nullptr;
2335  for (Partition &part : partitions)
2336    for (PhdrEntry *p : part.phdrs)
2337      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2338        lastRX = p;
2339
2340  for (OutputSection *sec : outputSections) {
2341    off = setFileOffset(sec, off);
2342
2343    // If this is a last section of the last executable segment and that
2344    // segment is the last loadable segment, align the offset of the
2345    // following section to avoid loading non-segments parts of the file.
2346    if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2347        lastRX->lastSec == sec)
2348      off = alignTo(off, config->commonPageSize);
2349  }
2350
2351  sectionHeaderOff = alignTo(off, config->wordsize);
2352  fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2353
2354  // Our logic assumes that sections have rising VA within the same segment.
2355  // With use of linker scripts it is possible to violate this rule and get file
2356  // offset overlaps or overflows. That should never happen with a valid script
2357  // which does not move the location counter backwards and usually scripts do
2358  // not do that. Unfortunately, there are apps in the wild, for example, Linux
2359  // kernel, which control segment distribution explicitly and move the counter
2360  // backwards, so we have to allow doing that to support linking them. We
2361  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2362  // we want to prevent file size overflows because it would crash the linker.
2363  for (OutputSection *sec : outputSections) {
2364    if (sec->type == SHT_NOBITS)
2365      continue;
2366    if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2367      error("unable to place section " + sec->name + " at file offset " +
2368            rangeToString(sec->offset, sec->size) +
2369            "; check your linker script for overflows");
2370  }
2371}
2372
2373// Finalize the program headers. We call this function after we assign
2374// file offsets and VAs to all sections.
2375template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2376  for (PhdrEntry *p : part.phdrs) {
2377    OutputSection *first = p->firstSec;
2378    OutputSection *last = p->lastSec;
2379
2380    if (first) {
2381      p->p_filesz = last->offset - first->offset;
2382      if (last->type != SHT_NOBITS)
2383        p->p_filesz += last->size;
2384
2385      p->p_memsz = last->addr + last->size - first->addr;
2386      p->p_offset = first->offset;
2387      p->p_vaddr = first->addr;
2388
2389      // File offsets in partitions other than the main partition are relative
2390      // to the offset of the ELF headers. Perform that adjustment now.
2391      if (part.elfHeader)
2392        p->p_offset -= part.elfHeader->getParent()->offset;
2393
2394      if (!p->hasLMA)
2395        p->p_paddr = first->getLMA();
2396    }
2397
2398    if (p->p_type == PT_GNU_RELRO) {
2399      p->p_align = 1;
2400      // musl/glibc ld.so rounds the size down, so we need to round up
2401      // to protect the last page. This is a no-op on FreeBSD which always
2402      // rounds up.
2403      p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2404                   p->p_offset;
2405    }
2406  }
2407}
2408
2409// A helper struct for checkSectionOverlap.
2410namespace {
2411struct SectionOffset {
2412  OutputSection *sec;
2413  uint64_t offset;
2414};
2415} // namespace
2416
2417// Check whether sections overlap for a specific address range (file offsets,
2418// load and virtual addresses).
2419static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2420                         bool isVirtualAddr) {
2421  llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2422    return a.offset < b.offset;
2423  });
2424
2425  // Finding overlap is easy given a vector is sorted by start position.
2426  // If an element starts before the end of the previous element, they overlap.
2427  for (size_t i = 1, end = sections.size(); i < end; ++i) {
2428    SectionOffset a = sections[i - 1];
2429    SectionOffset b = sections[i];
2430    if (b.offset >= a.offset + a.sec->size)
2431      continue;
2432
2433    // If both sections are in OVERLAY we allow the overlapping of virtual
2434    // addresses, because it is what OVERLAY was designed for.
2435    if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2436      continue;
2437
2438    errorOrWarn("section " + a.sec->name + " " + name +
2439                " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2440                " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2441                b.sec->name + " range is " +
2442                rangeToString(b.offset, b.sec->size));
2443  }
2444}
2445
2446// Check for overlapping sections and address overflows.
2447//
2448// In this function we check that none of the output sections have overlapping
2449// file offsets. For SHF_ALLOC sections we also check that the load address
2450// ranges and the virtual address ranges don't overlap
2451template <class ELFT> void Writer<ELFT>::checkSections() {
2452  // First, check that section's VAs fit in available address space for target.
2453  for (OutputSection *os : outputSections)
2454    if ((os->addr + os->size < os->addr) ||
2455        (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2456      errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2457                  " of size 0x" + utohexstr(os->size) +
2458                  " exceeds available address space");
2459
2460  // Check for overlapping file offsets. In this case we need to skip any
2461  // section marked as SHT_NOBITS. These sections don't actually occupy space in
2462  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2463  // binary is specified only add SHF_ALLOC sections are added to the output
2464  // file so we skip any non-allocated sections in that case.
2465  std::vector<SectionOffset> fileOffs;
2466  for (OutputSection *sec : outputSections)
2467    if (sec->size > 0 && sec->type != SHT_NOBITS &&
2468        (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2469      fileOffs.push_back({sec, sec->offset});
2470  checkOverlap("file", fileOffs, false);
2471
2472  // When linking with -r there is no need to check for overlapping virtual/load
2473  // addresses since those addresses will only be assigned when the final
2474  // executable/shared object is created.
2475  if (config->relocatable)
2476    return;
2477
2478  // Checking for overlapping virtual and load addresses only needs to take
2479  // into account SHF_ALLOC sections since others will not be loaded.
2480  // Furthermore, we also need to skip SHF_TLS sections since these will be
2481  // mapped to other addresses at runtime and can therefore have overlapping
2482  // ranges in the file.
2483  std::vector<SectionOffset> vmas;
2484  for (OutputSection *sec : outputSections)
2485    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2486      vmas.push_back({sec, sec->addr});
2487  checkOverlap("virtual address", vmas, true);
2488
2489  // Finally, check that the load addresses don't overlap. This will usually be
2490  // the same as the virtual addresses but can be different when using a linker
2491  // script with AT().
2492  std::vector<SectionOffset> lmas;
2493  for (OutputSection *sec : outputSections)
2494    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2495      lmas.push_back({sec, sec->getLMA()});
2496  checkOverlap("load address", lmas, false);
2497}
2498
2499// The entry point address is chosen in the following ways.
2500//
2501// 1. the '-e' entry command-line option;
2502// 2. the ENTRY(symbol) command in a linker control script;
2503// 3. the value of the symbol _start, if present;
2504// 4. the number represented by the entry symbol, if it is a number;
2505// 5. the address of the first byte of the .text section, if present;
2506// 6. the address 0.
2507static uint64_t getEntryAddr() {
2508  // Case 1, 2 or 3
2509  if (Symbol *b = symtab->find(config->entry))
2510    return b->getVA();
2511
2512  // Case 4
2513  uint64_t addr;
2514  if (to_integer(config->entry, addr))
2515    return addr;
2516
2517  // Case 5
2518  if (OutputSection *sec = findSection(".text")) {
2519    if (config->warnMissingEntry)
2520      warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2521           utohexstr(sec->addr));
2522    return sec->addr;
2523  }
2524
2525  // Case 6
2526  if (config->warnMissingEntry)
2527    warn("cannot find entry symbol " + config->entry +
2528         "; not setting start address");
2529  return 0;
2530}
2531
2532static uint16_t getELFType() {
2533  if (config->isPic)
2534    return ET_DYN;
2535  if (config->relocatable)
2536    return ET_REL;
2537  return ET_EXEC;
2538}
2539
2540template <class ELFT> void Writer<ELFT>::writeHeader() {
2541  writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2542  writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2543
2544  auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2545  eHdr->e_type = getELFType();
2546  eHdr->e_entry = getEntryAddr();
2547  eHdr->e_shoff = sectionHeaderOff;
2548
2549  // Write the section header table.
2550  //
2551  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2552  // and e_shstrndx fields. When the value of one of these fields exceeds
2553  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2554  // use fields in the section header at index 0 to store
2555  // the value. The sentinel values and fields are:
2556  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2557  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2558  auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2559  size_t num = outputSections.size() + 1;
2560  if (num >= SHN_LORESERVE)
2561    sHdrs->sh_size = num;
2562  else
2563    eHdr->e_shnum = num;
2564
2565  uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2566  if (strTabIndex >= SHN_LORESERVE) {
2567    sHdrs->sh_link = strTabIndex;
2568    eHdr->e_shstrndx = SHN_XINDEX;
2569  } else {
2570    eHdr->e_shstrndx = strTabIndex;
2571  }
2572
2573  for (OutputSection *sec : outputSections)
2574    sec->writeHeaderTo<ELFT>(++sHdrs);
2575}
2576
2577// Open a result file.
2578template <class ELFT> void Writer<ELFT>::openFile() {
2579  uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2580  if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2581    error("output file too large: " + Twine(fileSize) + " bytes");
2582    return;
2583  }
2584
2585  unlinkAsync(config->outputFile);
2586  unsigned flags = 0;
2587  if (!config->relocatable)
2588    flags |= FileOutputBuffer::F_executable;
2589  if (!config->mmapOutputFile)
2590    flags |= FileOutputBuffer::F_no_mmap;
2591  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2592      FileOutputBuffer::create(config->outputFile, fileSize, flags);
2593
2594  if (!bufferOrErr) {
2595    error("failed to open " + config->outputFile + ": " +
2596          llvm::toString(bufferOrErr.takeError()));
2597    return;
2598  }
2599  buffer = std::move(*bufferOrErr);
2600  Out::bufferStart = buffer->getBufferStart();
2601}
2602
2603template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2604  for (OutputSection *sec : outputSections)
2605    if (sec->flags & SHF_ALLOC)
2606      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2607}
2608
2609static void fillTrap(uint8_t *i, uint8_t *end) {
2610  for (; i + 4 <= end; i += 4)
2611    memcpy(i, &target->trapInstr, 4);
2612}
2613
2614// Fill the last page of executable segments with trap instructions
2615// instead of leaving them as zero. Even though it is not required by any
2616// standard, it is in general a good thing to do for security reasons.
2617//
2618// We'll leave other pages in segments as-is because the rest will be
2619// overwritten by output sections.
2620template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2621  for (Partition &part : partitions) {
2622    // Fill the last page.
2623    for (PhdrEntry *p : part.phdrs)
2624      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2625        fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2626                                              config->commonPageSize),
2627                 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2628                                            config->commonPageSize));
2629
2630    // Round up the file size of the last segment to the page boundary iff it is
2631    // an executable segment to ensure that other tools don't accidentally
2632    // trim the instruction padding (e.g. when stripping the file).
2633    PhdrEntry *last = nullptr;
2634    for (PhdrEntry *p : part.phdrs)
2635      if (p->p_type == PT_LOAD)
2636        last = p;
2637
2638    if (last && (last->p_flags & PF_X))
2639      last->p_memsz = last->p_filesz =
2640          alignTo(last->p_filesz, config->commonPageSize);
2641  }
2642}
2643
2644// Write section contents to a mmap'ed file.
2645template <class ELFT> void Writer<ELFT>::writeSections() {
2646  // In -r or -emit-relocs mode, write the relocation sections first as in
2647  // ELf_Rel targets we might find out that we need to modify the relocated
2648  // section while doing it.
2649  for (OutputSection *sec : outputSections)
2650    if (sec->type == SHT_REL || sec->type == SHT_RELA)
2651      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2652
2653  for (OutputSection *sec : outputSections)
2654    if (sec->type != SHT_REL && sec->type != SHT_RELA)
2655      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2656}
2657
2658// Split one uint8 array into small pieces of uint8 arrays.
2659static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2660                                            size_t chunkSize) {
2661  std::vector<ArrayRef<uint8_t>> ret;
2662  while (arr.size() > chunkSize) {
2663    ret.push_back(arr.take_front(chunkSize));
2664    arr = arr.drop_front(chunkSize);
2665  }
2666  if (!arr.empty())
2667    ret.push_back(arr);
2668  return ret;
2669}
2670
2671// Computes a hash value of Data using a given hash function.
2672// In order to utilize multiple cores, we first split data into 1MB
2673// chunks, compute a hash for each chunk, and then compute a hash value
2674// of the hash values.
2675static void
2676computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2677            llvm::ArrayRef<uint8_t> data,
2678            std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2679  std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2680  std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2681
2682  // Compute hash values.
2683  parallelForEachN(0, chunks.size(), [&](size_t i) {
2684    hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2685  });
2686
2687  // Write to the final output buffer.
2688  hashFn(hashBuf.data(), hashes);
2689}
2690
2691template <class ELFT> void Writer<ELFT>::writeBuildId() {
2692  if (!mainPart->buildId || !mainPart->buildId->getParent())
2693    return;
2694
2695  if (config->buildId == BuildIdKind::Hexstring) {
2696    for (Partition &part : partitions)
2697      part.buildId->writeBuildId(config->buildIdVector);
2698    return;
2699  }
2700
2701  // Compute a hash of all sections of the output file.
2702  size_t hashSize = mainPart->buildId->hashSize;
2703  std::vector<uint8_t> buildId(hashSize);
2704  llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2705
2706  switch (config->buildId) {
2707  case BuildIdKind::Fast:
2708    computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2709      write64le(dest, xxHash64(arr));
2710    });
2711    break;
2712  case BuildIdKind::Md5:
2713    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2714      memcpy(dest, MD5::hash(arr).data(), hashSize);
2715    });
2716    break;
2717  case BuildIdKind::Sha1:
2718    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2719      memcpy(dest, SHA1::hash(arr).data(), hashSize);
2720    });
2721    break;
2722  case BuildIdKind::Uuid:
2723    if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2724      error("entropy source failure: " + ec.message());
2725    break;
2726  default:
2727    llvm_unreachable("unknown BuildIdKind");
2728  }
2729  for (Partition &part : partitions)
2730    part.buildId->writeBuildId(buildId);
2731}
2732
2733template void createSyntheticSections<ELF32LE>();
2734template void createSyntheticSections<ELF32BE>();
2735template void createSyntheticSections<ELF64LE>();
2736template void createSyntheticSections<ELF64BE>();
2737
2738template void writeResult<ELF32LE>();
2739template void writeResult<ELF32BE>();
2740template void writeResult<ELF64LE>();
2741template void writeResult<ELF64BE>();
2742
2743} // namespace elf
2744} // namespace lld
2745