InputSection.h revision 363496
1//===- InputSection.h -------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLD_ELF_INPUT_SECTION_H
10#define LLD_ELF_INPUT_SECTION_H
11
12#include "Config.h"
13#include "Relocations.h"
14#include "Thunks.h"
15#include "lld/Common/LLVM.h"
16#include "llvm/ADT/CachedHashString.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/TinyPtrVector.h"
19#include "llvm/Object/ELF.h"
20
21namespace lld {
22namespace elf {
23
24class Symbol;
25struct SectionPiece;
26
27class Defined;
28struct Partition;
29class SyntheticSection;
30class MergeSyntheticSection;
31template <class ELFT> class ObjFile;
32class OutputSection;
33
34extern std::vector<Partition> partitions;
35
36// This is the base class of all sections that lld handles. Some are sections in
37// input files, some are sections in the produced output file and some exist
38// just as a convenience for implementing special ways of combining some
39// sections.
40class SectionBase {
41public:
42  enum Kind { Regular, EHFrame, Merge, Synthetic, Output };
43
44  Kind kind() const { return (Kind)sectionKind; }
45
46  StringRef name;
47
48  // This pointer points to the "real" instance of this instance.
49  // Usually Repl == this. However, if ICF merges two sections,
50  // Repl pointer of one section points to another section. So,
51  // if you need to get a pointer to this instance, do not use
52  // this but instead this->Repl.
53  SectionBase *repl;
54
55  unsigned sectionKind : 3;
56
57  // The next two bit fields are only used by InputSectionBase, but we
58  // put them here so the struct packs better.
59
60  unsigned bss : 1;
61
62  // Set for sections that should not be folded by ICF.
63  unsigned keepUnique : 1;
64
65  // The 1-indexed partition that this section is assigned to by the garbage
66  // collector, or 0 if this section is dead. Normally there is only one
67  // partition, so this will either be 0 or 1.
68  uint8_t partition;
69  elf::Partition &getPartition() const;
70
71  // These corresponds to the fields in Elf_Shdr.
72  uint32_t alignment;
73  uint64_t flags;
74  uint64_t entsize;
75  uint32_t type;
76  uint32_t link;
77  uint32_t info;
78
79  OutputSection *getOutputSection();
80  const OutputSection *getOutputSection() const {
81    return const_cast<SectionBase *>(this)->getOutputSection();
82  }
83
84  // Translate an offset in the input section to an offset in the output
85  // section.
86  uint64_t getOffset(uint64_t offset) const;
87
88  uint64_t getVA(uint64_t offset = 0) const;
89
90  bool isLive() const { return partition != 0; }
91  void markLive() { partition = 1; }
92  void markDead() { partition = 0; }
93
94protected:
95  SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
96              uint64_t entsize, uint64_t alignment, uint32_t type,
97              uint32_t info, uint32_t link)
98      : name(name), repl(this), sectionKind(sectionKind), bss(false),
99        keepUnique(false), partition(0), alignment(alignment), flags(flags),
100        entsize(entsize), type(type), link(link), info(info) {}
101};
102
103// This corresponds to a section of an input file.
104class InputSectionBase : public SectionBase {
105public:
106  template <class ELFT>
107  InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
108                   StringRef name, Kind sectionKind);
109
110  InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
111                   uint64_t entsize, uint32_t link, uint32_t info,
112                   uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
113                   Kind sectionKind);
114
115  static bool classof(const SectionBase *s) { return s->kind() != Output; }
116
117  // Relocations that refer to this section.
118  unsigned numRelocations : 31;
119  unsigned areRelocsRela : 1;
120  const void *firstRelocation = nullptr;
121
122  // The file which contains this section. Its dynamic type is always
123  // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
124  // its static type.
125  InputFile *file;
126
127  template <class ELFT> ObjFile<ELFT> *getFile() const {
128    return cast_or_null<ObjFile<ELFT>>(file);
129  }
130
131  ArrayRef<uint8_t> data() const {
132    if (uncompressedSize >= 0)
133      uncompress();
134    return rawData;
135  }
136
137  uint64_t getOffsetInFile() const;
138
139  // Input sections are part of an output section. Special sections
140  // like .eh_frame and merge sections are first combined into a
141  // synthetic section that is then added to an output section. In all
142  // cases this points one level up.
143  SectionBase *parent = nullptr;
144
145  // The next member in the section group if this section is in a group. This is
146  // used by --gc-sections.
147  InputSectionBase *nextInSectionGroup = nullptr;
148
149  template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const {
150    assert(!areRelocsRela);
151    return llvm::makeArrayRef(
152        static_cast<const typename ELFT::Rel *>(firstRelocation),
153        numRelocations);
154  }
155
156  template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const {
157    assert(areRelocsRela);
158    return llvm::makeArrayRef(
159        static_cast<const typename ELFT::Rela *>(firstRelocation),
160        numRelocations);
161  }
162
163  // InputSections that are dependent on us (reverse dependency for GC)
164  llvm::TinyPtrVector<InputSection *> dependentSections;
165
166  // Returns the size of this section (even if this is a common or BSS.)
167  size_t getSize() const;
168
169  InputSection *getLinkOrderDep() const;
170
171  // Get the function symbol that encloses this offset from within the
172  // section.
173  template <class ELFT>
174  Defined *getEnclosingFunction(uint64_t offset);
175
176  // Returns a source location string. Used to construct an error message.
177  template <class ELFT> std::string getLocation(uint64_t offset);
178  std::string getSrcMsg(const Symbol &sym, uint64_t offset);
179  std::string getObjMsg(uint64_t offset);
180
181  // Each section knows how to relocate itself. These functions apply
182  // relocations, assuming that Buf points to this section's copy in
183  // the mmap'ed output buffer.
184  template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
185  void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);
186
187  // The native ELF reloc data type is not very convenient to handle.
188  // So we convert ELF reloc records to our own records in Relocations.cpp.
189  // This vector contains such "cooked" relocations.
190  std::vector<Relocation> relocations;
191
192  // A function compiled with -fsplit-stack calling a function
193  // compiled without -fsplit-stack needs its prologue adjusted. Find
194  // such functions and adjust their prologues.  This is very similar
195  // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
196  // information.
197  template <typename ELFT>
198  void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
199
200
201  template <typename T> llvm::ArrayRef<T> getDataAs() const {
202    size_t s = data().size();
203    assert(s % sizeof(T) == 0);
204    return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T));
205  }
206
207protected:
208  void parseCompressedHeader();
209  void uncompress() const;
210
211  mutable ArrayRef<uint8_t> rawData;
212
213  // This field stores the uncompressed size of the compressed data in rawData,
214  // or -1 if rawData is not compressed (either because the section wasn't
215  // compressed in the first place, or because we ended up uncompressing it).
216  // Since the feature is not used often, this is usually -1.
217  mutable int64_t uncompressedSize = -1;
218};
219
220// SectionPiece represents a piece of splittable section contents.
221// We allocate a lot of these and binary search on them. This means that they
222// have to be as compact as possible, which is why we don't store the size (can
223// be found by looking at the next one).
224struct SectionPiece {
225  SectionPiece(size_t off, uint32_t hash, bool live)
226      : inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {}
227
228  uint32_t inputOff;
229  uint32_t live : 1;
230  uint32_t hash : 31;
231  uint64_t outputOff = 0;
232};
233
234static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
235
236// This corresponds to a SHF_MERGE section of an input file.
237class MergeInputSection : public InputSectionBase {
238public:
239  template <class ELFT>
240  MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
241                    StringRef name);
242  MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
243                    ArrayRef<uint8_t> data, StringRef name);
244
245  static bool classof(const SectionBase *s) { return s->kind() == Merge; }
246  void splitIntoPieces();
247
248  // Translate an offset in the input section to an offset in the parent
249  // MergeSyntheticSection.
250  uint64_t getParentOffset(uint64_t offset) const;
251
252  // Splittable sections are handled as a sequence of data
253  // rather than a single large blob of data.
254  std::vector<SectionPiece> pieces;
255
256  // Returns I'th piece's data. This function is very hot when
257  // string merging is enabled, so we want to inline.
258  LLVM_ATTRIBUTE_ALWAYS_INLINE
259  llvm::CachedHashStringRef getData(size_t i) const {
260    size_t begin = pieces[i].inputOff;
261    size_t end =
262        (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
263    return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
264  }
265
266  // Returns the SectionPiece at a given input section offset.
267  SectionPiece *getSectionPiece(uint64_t offset);
268  const SectionPiece *getSectionPiece(uint64_t offset) const {
269    return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
270  }
271
272  SyntheticSection *getParent() const;
273
274private:
275  void splitStrings(ArrayRef<uint8_t> a, size_t size);
276  void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
277};
278
279struct EhSectionPiece {
280  EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
281                 unsigned firstRelocation)
282      : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
283
284  ArrayRef<uint8_t> data() {
285    return {sec->data().data() + this->inputOff, size};
286  }
287
288  size_t inputOff;
289  ssize_t outputOff = -1;
290  InputSectionBase *sec;
291  uint32_t size;
292  unsigned firstRelocation;
293};
294
295// This corresponds to a .eh_frame section of an input file.
296class EhInputSection : public InputSectionBase {
297public:
298  template <class ELFT>
299  EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
300                 StringRef name);
301  static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
302  template <class ELFT> void split();
303  template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
304
305  // Splittable sections are handled as a sequence of data
306  // rather than a single large blob of data.
307  std::vector<EhSectionPiece> pieces;
308
309  SyntheticSection *getParent() const;
310};
311
312// This is a section that is added directly to an output section
313// instead of needing special combination via a synthetic section. This
314// includes all input sections with the exceptions of SHF_MERGE and
315// .eh_frame. It also includes the synthetic sections themselves.
316class InputSection : public InputSectionBase {
317public:
318  InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
319               ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
320  template <class ELFT>
321  InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
322               StringRef name);
323
324  // Write this section to a mmap'ed file, assuming Buf is pointing to
325  // beginning of the output section.
326  template <class ELFT> void writeTo(uint8_t *buf);
327
328  uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; }
329
330  OutputSection *getParent() const;
331
332  // This variable has two usages. Initially, it represents an index in the
333  // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
334  // sections. After assignAddresses is called, it represents the offset from
335  // the beginning of the output section this section was assigned to.
336  uint64_t outSecOff = 0;
337
338  static bool classof(const SectionBase *s);
339
340  InputSectionBase *getRelocatedSection() const;
341
342  template <class ELFT, class RelTy>
343  void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
344
345  // Used by ICF.
346  uint32_t eqClass[2] = {0, 0};
347
348  // Called by ICF to merge two input sections.
349  void replace(InputSection *other);
350
351  static InputSection discarded;
352
353private:
354  template <class ELFT, class RelTy>
355  void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
356
357  template <class ELFT> void copyShtGroup(uint8_t *buf);
358};
359
360inline bool isDebugSection(const InputSectionBase &sec) {
361  return sec.name.startswith(".debug") || sec.name.startswith(".zdebug");
362}
363
364// The list of all input sections.
365extern std::vector<InputSectionBase *> inputSections;
366
367} // namespace elf
368
369std::string toString(const elf::InputSectionBase *);
370} // namespace lld
371
372#endif
373