InputSection.cpp revision 363496
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputSection.h"
10#include "Config.h"
11#include "EhFrame.h"
12#include "InputFiles.h"
13#include "LinkerScript.h"
14#include "OutputSections.h"
15#include "Relocations.h"
16#include "SymbolTable.h"
17#include "Symbols.h"
18#include "SyntheticSections.h"
19#include "Target.h"
20#include "Thunks.h"
21#include "lld/Common/ErrorHandler.h"
22#include "lld/Common/Memory.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Compression.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/Threading.h"
27#include "llvm/Support/xxhash.h"
28#include <algorithm>
29#include <mutex>
30#include <set>
31#include <vector>
32
33using namespace llvm;
34using namespace llvm::ELF;
35using namespace llvm::object;
36using namespace llvm::support;
37using namespace llvm::support::endian;
38using namespace llvm::sys;
39
40namespace lld {
41// Returns a string to construct an error message.
42std::string toString(const elf::InputSectionBase *sec) {
43  return (toString(sec->file) + ":(" + sec->name + ")").str();
44}
45
46namespace elf {
47std::vector<InputSectionBase *> inputSections;
48
49template <class ELFT>
50static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
51                                            const typename ELFT::Shdr &hdr) {
52  if (hdr.sh_type == SHT_NOBITS)
53    return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
54  return check(file.getObj().getSectionContents(&hdr));
55}
56
57InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
58                                   uint32_t type, uint64_t entsize,
59                                   uint32_t link, uint32_t info,
60                                   uint32_t alignment, ArrayRef<uint8_t> data,
61                                   StringRef name, Kind sectionKind)
62    : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
63                  link),
64      file(file), rawData(data) {
65  // In order to reduce memory allocation, we assume that mergeable
66  // sections are smaller than 4 GiB, which is not an unreasonable
67  // assumption as of 2017.
68  if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
69    error(toString(this) + ": section too large");
70
71  numRelocations = 0;
72  areRelocsRela = false;
73
74  // The ELF spec states that a value of 0 means the section has
75  // no alignment constraints.
76  uint32_t v = std::max<uint32_t>(alignment, 1);
77  if (!isPowerOf2_64(v))
78    fatal(toString(this) + ": sh_addralign is not a power of 2");
79  this->alignment = v;
80
81  // In ELF, each section can be compressed by zlib, and if compressed,
82  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
83  // If that's the case, demangle section name so that we can handle a
84  // section as if it weren't compressed.
85  if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
86    if (!zlib::isAvailable())
87      error(toString(file) + ": contains a compressed section, " +
88            "but zlib is not available");
89    parseCompressedHeader();
90  }
91}
92
93// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
94// SHF_GROUP is a marker that a section belongs to some comdat group.
95// That flag doesn't make sense in an executable.
96static uint64_t getFlags(uint64_t flags) {
97  flags &= ~(uint64_t)SHF_INFO_LINK;
98  if (!config->relocatable)
99    flags &= ~(uint64_t)SHF_GROUP;
100  return flags;
101}
102
103// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
104// March 2017) fail to infer section types for sections starting with
105// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
106// SHF_INIT_ARRAY. As a result, the following assembler directive
107// creates ".init_array.100" with SHT_PROGBITS, for example.
108//
109//   .section .init_array.100, "aw"
110//
111// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
112// incorrect inputs as if they were correct from the beginning.
113static uint64_t getType(uint64_t type, StringRef name) {
114  if (type == SHT_PROGBITS && name.startswith(".init_array."))
115    return SHT_INIT_ARRAY;
116  if (type == SHT_PROGBITS && name.startswith(".fini_array."))
117    return SHT_FINI_ARRAY;
118  return type;
119}
120
121template <class ELFT>
122InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
123                                   const typename ELFT::Shdr &hdr,
124                                   StringRef name, Kind sectionKind)
125    : InputSectionBase(&file, getFlags(hdr.sh_flags),
126                       getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
127                       hdr.sh_info, hdr.sh_addralign,
128                       getSectionContents(file, hdr), name, sectionKind) {
129  // We reject object files having insanely large alignments even though
130  // they are allowed by the spec. I think 4GB is a reasonable limitation.
131  // We might want to relax this in the future.
132  if (hdr.sh_addralign > UINT32_MAX)
133    fatal(toString(&file) + ": section sh_addralign is too large");
134}
135
136size_t InputSectionBase::getSize() const {
137  if (auto *s = dyn_cast<SyntheticSection>(this))
138    return s->getSize();
139  if (uncompressedSize >= 0)
140    return uncompressedSize;
141  return rawData.size();
142}
143
144void InputSectionBase::uncompress() const {
145  size_t size = uncompressedSize;
146  char *uncompressedBuf;
147  {
148    static std::mutex mu;
149    std::lock_guard<std::mutex> lock(mu);
150    uncompressedBuf = bAlloc.Allocate<char>(size);
151  }
152
153  if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
154    fatal(toString(this) +
155          ": uncompress failed: " + llvm::toString(std::move(e)));
156  rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
157  uncompressedSize = -1;
158}
159
160uint64_t InputSectionBase::getOffsetInFile() const {
161  const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
162  const uint8_t *secStart = data().begin();
163  return secStart - fileStart;
164}
165
166uint64_t SectionBase::getOffset(uint64_t offset) const {
167  switch (kind()) {
168  case Output: {
169    auto *os = cast<OutputSection>(this);
170    // For output sections we treat offset -1 as the end of the section.
171    return offset == uint64_t(-1) ? os->size : offset;
172  }
173  case Regular:
174  case Synthetic:
175    return cast<InputSection>(this)->getOffset(offset);
176  case EHFrame:
177    // The file crtbeginT.o has relocations pointing to the start of an empty
178    // .eh_frame that is known to be the first in the link. It does that to
179    // identify the start of the output .eh_frame.
180    return offset;
181  case Merge:
182    const MergeInputSection *ms = cast<MergeInputSection>(this);
183    if (InputSection *isec = ms->getParent())
184      return isec->getOffset(ms->getParentOffset(offset));
185    return ms->getParentOffset(offset);
186  }
187  llvm_unreachable("invalid section kind");
188}
189
190uint64_t SectionBase::getVA(uint64_t offset) const {
191  const OutputSection *out = getOutputSection();
192  return (out ? out->addr : 0) + getOffset(offset);
193}
194
195OutputSection *SectionBase::getOutputSection() {
196  InputSection *sec;
197  if (auto *isec = dyn_cast<InputSection>(this))
198    sec = isec;
199  else if (auto *ms = dyn_cast<MergeInputSection>(this))
200    sec = ms->getParent();
201  else if (auto *eh = dyn_cast<EhInputSection>(this))
202    sec = eh->getParent();
203  else
204    return cast<OutputSection>(this);
205  return sec ? sec->getParent() : nullptr;
206}
207
208// When a section is compressed, `rawData` consists with a header followed
209// by zlib-compressed data. This function parses a header to initialize
210// `uncompressedSize` member and remove the header from `rawData`.
211void InputSectionBase::parseCompressedHeader() {
212  using Chdr64 = typename ELF64LE::Chdr;
213  using Chdr32 = typename ELF32LE::Chdr;
214
215  // Old-style header
216  if (name.startswith(".zdebug")) {
217    if (!toStringRef(rawData).startswith("ZLIB")) {
218      error(toString(this) + ": corrupted compressed section header");
219      return;
220    }
221    rawData = rawData.slice(4);
222
223    if (rawData.size() < 8) {
224      error(toString(this) + ": corrupted compressed section header");
225      return;
226    }
227
228    uncompressedSize = read64be(rawData.data());
229    rawData = rawData.slice(8);
230
231    // Restore the original section name.
232    // (e.g. ".zdebug_info" -> ".debug_info")
233    name = saver.save("." + name.substr(2));
234    return;
235  }
236
237  assert(flags & SHF_COMPRESSED);
238  flags &= ~(uint64_t)SHF_COMPRESSED;
239
240  // New-style 64-bit header
241  if (config->is64) {
242    if (rawData.size() < sizeof(Chdr64)) {
243      error(toString(this) + ": corrupted compressed section");
244      return;
245    }
246
247    auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
248    if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
249      error(toString(this) + ": unsupported compression type");
250      return;
251    }
252
253    uncompressedSize = hdr->ch_size;
254    alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
255    rawData = rawData.slice(sizeof(*hdr));
256    return;
257  }
258
259  // New-style 32-bit header
260  if (rawData.size() < sizeof(Chdr32)) {
261    error(toString(this) + ": corrupted compressed section");
262    return;
263  }
264
265  auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
266  if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
267    error(toString(this) + ": unsupported compression type");
268    return;
269  }
270
271  uncompressedSize = hdr->ch_size;
272  alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
273  rawData = rawData.slice(sizeof(*hdr));
274}
275
276InputSection *InputSectionBase::getLinkOrderDep() const {
277  assert(link);
278  assert(flags & SHF_LINK_ORDER);
279  return cast<InputSection>(file->getSections()[link]);
280}
281
282// Find a function symbol that encloses a given location.
283template <class ELFT>
284Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
285  for (Symbol *b : file->getSymbols())
286    if (Defined *d = dyn_cast<Defined>(b))
287      if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
288          offset < d->value + d->size)
289        return d;
290  return nullptr;
291}
292
293// Returns a source location string. Used to construct an error message.
294template <class ELFT>
295std::string InputSectionBase::getLocation(uint64_t offset) {
296  std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
297
298  // We don't have file for synthetic sections.
299  if (getFile<ELFT>() == nullptr)
300    return (config->outputFile + ":(" + secAndOffset + ")")
301        .str();
302
303  // First check if we can get desired values from debugging information.
304  if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
305    return info->FileName + ":" + std::to_string(info->Line) + ":(" +
306           secAndOffset + ")";
307
308  // File->sourceFile contains STT_FILE symbol that contains a
309  // source file name. If it's missing, we use an object file name.
310  std::string srcFile = getFile<ELFT>()->sourceFile;
311  if (srcFile.empty())
312    srcFile = toString(file);
313
314  if (Defined *d = getEnclosingFunction<ELFT>(offset))
315    return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
316
317  // If there's no symbol, print out the offset in the section.
318  return (srcFile + ":(" + secAndOffset + ")");
319}
320
321// This function is intended to be used for constructing an error message.
322// The returned message looks like this:
323//
324//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
325//
326//  Returns an empty string if there's no way to get line info.
327std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
328  return file->getSrcMsg(sym, *this, offset);
329}
330
331// Returns a filename string along with an optional section name. This
332// function is intended to be used for constructing an error
333// message. The returned message looks like this:
334//
335//   path/to/foo.o:(function bar)
336//
337// or
338//
339//   path/to/foo.o:(function bar) in archive path/to/bar.a
340std::string InputSectionBase::getObjMsg(uint64_t off) {
341  std::string filename = file->getName();
342
343  std::string archive;
344  if (!file->archiveName.empty())
345    archive = " in archive " + file->archiveName;
346
347  // Find a symbol that encloses a given location.
348  for (Symbol *b : file->getSymbols())
349    if (auto *d = dyn_cast<Defined>(b))
350      if (d->section == this && d->value <= off && off < d->value + d->size)
351        return filename + ":(" + toString(*d) + ")" + archive;
352
353  // If there's no symbol, print out the offset in the section.
354  return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
355      .str();
356}
357
358InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
359
360InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
361                           uint32_t alignment, ArrayRef<uint8_t> data,
362                           StringRef name, Kind k)
363    : InputSectionBase(f, flags, type,
364                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
365                       name, k) {}
366
367template <class ELFT>
368InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
369                           StringRef name)
370    : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
371
372bool InputSection::classof(const SectionBase *s) {
373  return s->kind() == SectionBase::Regular ||
374         s->kind() == SectionBase::Synthetic;
375}
376
377OutputSection *InputSection::getParent() const {
378  return cast_or_null<OutputSection>(parent);
379}
380
381// Copy SHT_GROUP section contents. Used only for the -r option.
382template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
383  // ELFT::Word is the 32-bit integral type in the target endianness.
384  using u32 = typename ELFT::Word;
385  ArrayRef<u32> from = getDataAs<u32>();
386  auto *to = reinterpret_cast<u32 *>(buf);
387
388  // The first entry is not a section number but a flag.
389  *to++ = from[0];
390
391  // Adjust section numbers because section numbers in an input object
392  // files are different in the output.
393  ArrayRef<InputSectionBase *> sections = file->getSections();
394  for (uint32_t idx : from.slice(1))
395    *to++ = sections[idx]->getOutputSection()->sectionIndex;
396}
397
398InputSectionBase *InputSection::getRelocatedSection() const {
399  if (!file || (type != SHT_RELA && type != SHT_REL))
400    return nullptr;
401  ArrayRef<InputSectionBase *> sections = file->getSections();
402  return sections[info];
403}
404
405// This is used for -r and --emit-relocs. We can't use memcpy to copy
406// relocations because we need to update symbol table offset and section index
407// for each relocation. So we copy relocations one by one.
408template <class ELFT, class RelTy>
409void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
410  InputSectionBase *sec = getRelocatedSection();
411
412  for (const RelTy &rel : rels) {
413    RelType type = rel.getType(config->isMips64EL);
414    const ObjFile<ELFT> *file = getFile<ELFT>();
415    Symbol &sym = file->getRelocTargetSym(rel);
416
417    auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
418    buf += sizeof(RelTy);
419
420    if (RelTy::IsRela)
421      p->r_addend = getAddend<ELFT>(rel);
422
423    // Output section VA is zero for -r, so r_offset is an offset within the
424    // section, but for --emit-relocs it is a virtual address.
425    p->r_offset = sec->getVA(rel.r_offset);
426    p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
427                        config->isMips64EL);
428
429    if (sym.type == STT_SECTION) {
430      // We combine multiple section symbols into only one per
431      // section. This means we have to update the addend. That is
432      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
433      // section data. We do that by adding to the Relocation vector.
434
435      // .eh_frame is horribly special and can reference discarded sections. To
436      // avoid having to parse and recreate .eh_frame, we just replace any
437      // relocation in it pointing to discarded sections with R_*_NONE, which
438      // hopefully creates a frame that is ignored at runtime. Also, don't warn
439      // on .gcc_except_table and debug sections.
440      //
441      // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
442      auto *d = dyn_cast<Defined>(&sym);
443      if (!d) {
444        if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
445            sec->name != ".gcc_except_table" && sec->name != ".got2" &&
446            sec->name != ".toc") {
447          uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
448          Elf_Shdr_Impl<ELFT> sec =
449              CHECK(file->getObj().sections(), file)[secIdx];
450          warn("relocation refers to a discarded section: " +
451               CHECK(file->getObj().getSectionName(&sec), file) +
452               "\n>>> referenced by " + getObjMsg(p->r_offset));
453        }
454        p->setSymbolAndType(0, 0, false);
455        continue;
456      }
457      SectionBase *section = d->section->repl;
458      if (!section->isLive()) {
459        p->setSymbolAndType(0, 0, false);
460        continue;
461      }
462
463      int64_t addend = getAddend<ELFT>(rel);
464      const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
465      if (!RelTy::IsRela)
466        addend = target->getImplicitAddend(bufLoc, type);
467
468      if (config->emachine == EM_MIPS && config->relocatable &&
469          target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
470        // Some MIPS relocations depend on "gp" value. By default,
471        // this value has 0x7ff0 offset from a .got section. But
472        // relocatable files produced by a compiler or a linker
473        // might redefine this default value and we must use it
474        // for a calculation of the relocation result. When we
475        // generate EXE or DSO it's trivial. Generating a relocatable
476        // output is more difficult case because the linker does
477        // not calculate relocations in this mode and loses
478        // individual "gp" values used by each input object file.
479        // As a workaround we add the "gp" value to the relocation
480        // addend and save it back to the file.
481        addend += sec->getFile<ELFT>()->mipsGp0;
482      }
483
484      if (RelTy::IsRela)
485        p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
486      else if (config->relocatable && type != target->noneRel)
487        sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
488    } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
489               p->r_addend >= 0x8000) {
490      // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
491      // indicates that r30 is relative to the input section .got2
492      // (r_addend>=0x8000), after linking, r30 should be relative to the output
493      // section .got2 . To compensate for the shift, adjust r_addend by
494      // ppc32Got2OutSecOff.
495      p->r_addend += sec->file->ppc32Got2OutSecOff;
496    }
497  }
498}
499
500// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
501// references specially. The general rule is that the value of the symbol in
502// this context is the address of the place P. A further special case is that
503// branch relocations to an undefined weak reference resolve to the next
504// instruction.
505static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
506                                              uint32_t p) {
507  switch (type) {
508  // Unresolved branch relocations to weak references resolve to next
509  // instruction, this will be either 2 or 4 bytes on from P.
510  case R_ARM_THM_JUMP11:
511    return p + 2 + a;
512  case R_ARM_CALL:
513  case R_ARM_JUMP24:
514  case R_ARM_PC24:
515  case R_ARM_PLT32:
516  case R_ARM_PREL31:
517  case R_ARM_THM_JUMP19:
518  case R_ARM_THM_JUMP24:
519    return p + 4 + a;
520  case R_ARM_THM_CALL:
521    // We don't want an interworking BLX to ARM
522    return p + 5 + a;
523  // Unresolved non branch pc-relative relocations
524  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
525  // targets a weak-reference.
526  case R_ARM_MOVW_PREL_NC:
527  case R_ARM_MOVT_PREL:
528  case R_ARM_REL32:
529  case R_ARM_THM_MOVW_PREL_NC:
530  case R_ARM_THM_MOVT_PREL:
531    return p + a;
532  }
533  llvm_unreachable("ARM pc-relative relocation expected\n");
534}
535
536// The comment above getARMUndefinedRelativeWeakVA applies to this function.
537static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
538                                                  uint64_t p) {
539  switch (type) {
540  // Unresolved branch relocations to weak references resolve to next
541  // instruction, this is 4 bytes on from P.
542  case R_AARCH64_CALL26:
543  case R_AARCH64_CONDBR19:
544  case R_AARCH64_JUMP26:
545  case R_AARCH64_TSTBR14:
546    return p + 4 + a;
547  // Unresolved non branch pc-relative relocations
548  case R_AARCH64_PREL16:
549  case R_AARCH64_PREL32:
550  case R_AARCH64_PREL64:
551  case R_AARCH64_ADR_PREL_LO21:
552  case R_AARCH64_LD_PREL_LO19:
553    return p + a;
554  }
555  llvm_unreachable("AArch64 pc-relative relocation expected\n");
556}
557
558// ARM SBREL relocations are of the form S + A - B where B is the static base
559// The ARM ABI defines base to be "addressing origin of the output segment
560// defining the symbol S". We defined the "addressing origin"/static base to be
561// the base of the PT_LOAD segment containing the Sym.
562// The procedure call standard only defines a Read Write Position Independent
563// RWPI variant so in practice we should expect the static base to be the base
564// of the RW segment.
565static uint64_t getARMStaticBase(const Symbol &sym) {
566  OutputSection *os = sym.getOutputSection();
567  if (!os || !os->ptLoad || !os->ptLoad->firstSec)
568    fatal("SBREL relocation to " + sym.getName() + " without static base");
569  return os->ptLoad->firstSec->addr;
570}
571
572// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
573// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
574// is calculated using PCREL_HI20's symbol.
575//
576// This function returns the R_RISCV_PCREL_HI20 relocation from
577// R_RISCV_PCREL_LO12's symbol and addend.
578static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
579  const Defined *d = cast<Defined>(sym);
580  if (!d->section) {
581    error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
582          sym->getName());
583    return nullptr;
584  }
585  InputSection *isec = cast<InputSection>(d->section);
586
587  if (addend != 0)
588    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
589         isec->getObjMsg(d->value) + " is ignored");
590
591  // Relocations are sorted by offset, so we can use std::equal_range to do
592  // binary search.
593  Relocation r;
594  r.offset = d->value;
595  auto range =
596      std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
597                       [](const Relocation &lhs, const Relocation &rhs) {
598                         return lhs.offset < rhs.offset;
599                       });
600
601  for (auto it = range.first; it != range.second; ++it)
602    if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
603        it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
604      return &*it;
605
606  error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
607        " without an associated R_RISCV_PCREL_HI20 relocation");
608  return nullptr;
609}
610
611// A TLS symbol's virtual address is relative to the TLS segment. Add a
612// target-specific adjustment to produce a thread-pointer-relative offset.
613static int64_t getTlsTpOffset(const Symbol &s) {
614  // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
615  if (&s == ElfSym::tlsModuleBase)
616    return 0;
617
618  // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
619  // while most others use Variant 1. At run time TP will be aligned to p_align.
620
621  // Variant 1. TP will be followed by an optional gap (which is the size of 2
622  // pointers on ARM/AArch64, 0 on other targets), followed by alignment
623  // padding, then the static TLS blocks. The alignment padding is added so that
624  // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
625  //
626  // Variant 2. Static TLS blocks, followed by alignment padding are placed
627  // before TP. The alignment padding is added so that (TP - padding -
628  // p_memsz) is congruent to p_vaddr modulo p_align.
629  PhdrEntry *tls = Out::tlsPhdr;
630  switch (config->emachine) {
631    // Variant 1.
632  case EM_ARM:
633  case EM_AARCH64:
634    return s.getVA(0) + config->wordsize * 2 +
635           ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
636  case EM_MIPS:
637  case EM_PPC:
638  case EM_PPC64:
639    // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
640    // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
641    // data and 0xf000 of the program's TLS segment.
642    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
643  case EM_RISCV:
644    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
645
646    // Variant 2.
647  case EM_HEXAGON:
648  case EM_386:
649  case EM_X86_64:
650    return s.getVA(0) - tls->p_memsz -
651           ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
652  default:
653    llvm_unreachable("unhandled Config->EMachine");
654  }
655}
656
657static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a,
658                                 uint64_t p, const Symbol &sym, RelExpr expr) {
659  switch (expr) {
660  case R_ABS:
661  case R_DTPREL:
662  case R_RELAX_TLS_LD_TO_LE_ABS:
663  case R_RELAX_GOT_PC_NOPIC:
664  case R_RISCV_ADD:
665    return sym.getVA(a);
666  case R_ADDEND:
667    return a;
668  case R_ARM_SBREL:
669    return sym.getVA(a) - getARMStaticBase(sym);
670  case R_GOT:
671  case R_RELAX_TLS_GD_TO_IE_ABS:
672    return sym.getGotVA() + a;
673  case R_GOTONLY_PC:
674    return in.got->getVA() + a - p;
675  case R_GOTPLTONLY_PC:
676    return in.gotPlt->getVA() + a - p;
677  case R_GOTREL:
678  case R_PPC64_RELAX_TOC:
679    return sym.getVA(a) - in.got->getVA();
680  case R_GOTPLTREL:
681    return sym.getVA(a) - in.gotPlt->getVA();
682  case R_GOTPLT:
683  case R_RELAX_TLS_GD_TO_IE_GOTPLT:
684    return sym.getGotVA() + a - in.gotPlt->getVA();
685  case R_TLSLD_GOT_OFF:
686  case R_GOT_OFF:
687  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
688    return sym.getGotOffset() + a;
689  case R_AARCH64_GOT_PAGE_PC:
690  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
691    return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
692  case R_GOT_PC:
693  case R_RELAX_TLS_GD_TO_IE:
694    return sym.getGotVA() + a - p;
695  case R_MIPS_GOTREL:
696    return sym.getVA(a) - in.mipsGot->getGp(file);
697  case R_MIPS_GOT_GP:
698    return in.mipsGot->getGp(file) + a;
699  case R_MIPS_GOT_GP_PC: {
700    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
701    // is _gp_disp symbol. In that case we should use the following
702    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
703    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
704    // microMIPS variants of these relocations use slightly different
705    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
706    // to correctly handle less-sugnificant bit of the microMIPS symbol.
707    uint64_t v = in.mipsGot->getGp(file) + a - p;
708    if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
709      v += 4;
710    if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
711      v -= 1;
712    return v;
713  }
714  case R_MIPS_GOT_LOCAL_PAGE:
715    // If relocation against MIPS local symbol requires GOT entry, this entry
716    // should be initialized by 'page address'. This address is high 16-bits
717    // of sum the symbol's value and the addend.
718    return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
719           in.mipsGot->getGp(file);
720  case R_MIPS_GOT_OFF:
721  case R_MIPS_GOT_OFF32:
722    // In case of MIPS if a GOT relocation has non-zero addend this addend
723    // should be applied to the GOT entry content not to the GOT entry offset.
724    // That is why we use separate expression type.
725    return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
726           in.mipsGot->getGp(file);
727  case R_MIPS_TLSGD:
728    return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
729           in.mipsGot->getGp(file);
730  case R_MIPS_TLSLD:
731    return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
732           in.mipsGot->getGp(file);
733  case R_AARCH64_PAGE_PC: {
734    uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
735    return getAArch64Page(val) - getAArch64Page(p);
736  }
737  case R_RISCV_PC_INDIRECT: {
738    if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
739      return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
740                              *hiRel->sym, hiRel->expr);
741    return 0;
742  }
743  case R_PC: {
744    uint64_t dest;
745    if (sym.isUndefWeak()) {
746      // On ARM and AArch64 a branch to an undefined weak resolves to the
747      // next instruction, otherwise the place.
748      if (config->emachine == EM_ARM)
749        dest = getARMUndefinedRelativeWeakVA(type, a, p);
750      else if (config->emachine == EM_AARCH64)
751        dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
752      else if (config->emachine == EM_PPC)
753        dest = p;
754      else
755        dest = sym.getVA(a);
756    } else {
757      dest = sym.getVA(a);
758    }
759    return dest - p;
760  }
761  case R_PLT:
762    return sym.getPltVA() + a;
763  case R_PLT_PC:
764  case R_PPC64_CALL_PLT:
765    return sym.getPltVA() + a - p;
766  case R_PPC32_PLTREL:
767    // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
768    // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
769    // target VA computation.
770    return sym.getPltVA() - p;
771  case R_PPC64_CALL: {
772    uint64_t symVA = sym.getVA(a);
773    // If we have an undefined weak symbol, we might get here with a symbol
774    // address of zero. That could overflow, but the code must be unreachable,
775    // so don't bother doing anything at all.
776    if (!symVA)
777      return 0;
778
779    // PPC64 V2 ABI describes two entry points to a function. The global entry
780    // point is used for calls where the caller and callee (may) have different
781    // TOC base pointers and r2 needs to be modified to hold the TOC base for
782    // the callee. For local calls the caller and callee share the same
783    // TOC base and so the TOC pointer initialization code should be skipped by
784    // branching to the local entry point.
785    return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
786  }
787  case R_PPC64_TOCBASE:
788    return getPPC64TocBase() + a;
789  case R_RELAX_GOT_PC:
790    return sym.getVA(a) - p;
791  case R_RELAX_TLS_GD_TO_LE:
792  case R_RELAX_TLS_IE_TO_LE:
793  case R_RELAX_TLS_LD_TO_LE:
794  case R_TLS:
795    // It is not very clear what to return if the symbol is undefined. With
796    // --noinhibit-exec, even a non-weak undefined reference may reach here.
797    // Just return A, which matches R_ABS, and the behavior of some dynamic
798    // loaders.
799    if (sym.isUndefined())
800      return a;
801    return getTlsTpOffset(sym) + a;
802  case R_RELAX_TLS_GD_TO_LE_NEG:
803  case R_NEG_TLS:
804    if (sym.isUndefined())
805      return a;
806    return -getTlsTpOffset(sym) + a;
807  case R_SIZE:
808    return sym.getSize() + a;
809  case R_TLSDESC:
810    return in.got->getGlobalDynAddr(sym) + a;
811  case R_TLSDESC_PC:
812    return in.got->getGlobalDynAddr(sym) + a - p;
813  case R_AARCH64_TLSDESC_PAGE:
814    return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
815           getAArch64Page(p);
816  case R_TLSGD_GOT:
817    return in.got->getGlobalDynOffset(sym) + a;
818  case R_TLSGD_GOTPLT:
819    return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
820  case R_TLSGD_PC:
821    return in.got->getGlobalDynAddr(sym) + a - p;
822  case R_TLSLD_GOTPLT:
823    return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
824  case R_TLSLD_GOT:
825    return in.got->getTlsIndexOff() + a;
826  case R_TLSLD_PC:
827    return in.got->getTlsIndexVA() + a - p;
828  default:
829    llvm_unreachable("invalid expression");
830  }
831}
832
833// This function applies relocations to sections without SHF_ALLOC bit.
834// Such sections are never mapped to memory at runtime. Debug sections are
835// an example. Relocations in non-alloc sections are much easier to
836// handle than in allocated sections because it will never need complex
837// treatment such as GOT or PLT (because at runtime no one refers them).
838// So, we handle relocations for non-alloc sections directly in this
839// function as a performance optimization.
840template <class ELFT, class RelTy>
841void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
842  const unsigned bits = sizeof(typename ELFT::uint) * 8;
843
844  for (const RelTy &rel : rels) {
845    RelType type = rel.getType(config->isMips64EL);
846
847    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
848    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
849    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
850    // need to keep this bug-compatible code for a while.
851    if (config->emachine == EM_386 && type == R_386_GOTPC)
852      continue;
853
854    uint64_t offset = getOffset(rel.r_offset);
855    uint8_t *bufLoc = buf + offset;
856    int64_t addend = getAddend<ELFT>(rel);
857    if (!RelTy::IsRela)
858      addend += target->getImplicitAddend(bufLoc, type);
859
860    Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
861    RelExpr expr = target->getRelExpr(type, sym, bufLoc);
862    if (expr == R_NONE)
863      continue;
864
865    if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
866      std::string msg = getLocation<ELFT>(offset) +
867                        ": has non-ABS relocation " + toString(type) +
868                        " against symbol '" + toString(sym) + "'";
869      if (expr != R_PC) {
870        error(msg);
871        return;
872      }
873
874      // If the control reaches here, we found a PC-relative relocation in a
875      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
876      // at runtime, the notion of PC-relative doesn't make sense here. So,
877      // this is a usage error. However, GNU linkers historically accept such
878      // relocations without any errors and relocate them as if they were at
879      // address 0. For bug-compatibilty, we accept them with warnings. We
880      // know Steel Bank Common Lisp as of 2018 have this bug.
881      warn(msg);
882      target->relocateOne(bufLoc, type,
883                          SignExtend64<bits>(sym.getVA(addend - offset)));
884      continue;
885    }
886
887    if (sym.isTls() && !Out::tlsPhdr)
888      target->relocateOne(bufLoc, type, 0);
889    else
890      target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
891  }
892}
893
894// This is used when '-r' is given.
895// For REL targets, InputSection::copyRelocations() may store artificial
896// relocations aimed to update addends. They are handled in relocateAlloc()
897// for allocatable sections, and this function does the same for
898// non-allocatable sections, such as sections with debug information.
899static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
900  const unsigned bits = config->is64 ? 64 : 32;
901
902  for (const Relocation &rel : sec->relocations) {
903    // InputSection::copyRelocations() adds only R_ABS relocations.
904    assert(rel.expr == R_ABS);
905    uint8_t *bufLoc = buf + rel.offset + sec->outSecOff;
906    uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
907    target->relocateOne(bufLoc, rel.type, targetVA);
908  }
909}
910
911template <class ELFT>
912void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
913  if (flags & SHF_EXECINSTR)
914    adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
915
916  if (flags & SHF_ALLOC) {
917    relocateAlloc(buf, bufEnd);
918    return;
919  }
920
921  auto *sec = cast<InputSection>(this);
922  if (config->relocatable)
923    relocateNonAllocForRelocatable(sec, buf);
924  else if (sec->areRelocsRela)
925    sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
926  else
927    sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
928}
929
930void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
931  assert(flags & SHF_ALLOC);
932  const unsigned bits = config->wordsize * 8;
933
934  for (const Relocation &rel : relocations) {
935    uint64_t offset = rel.offset;
936    if (auto *sec = dyn_cast<InputSection>(this))
937      offset += sec->outSecOff;
938    uint8_t *bufLoc = buf + offset;
939    RelType type = rel.type;
940
941    uint64_t addrLoc = getOutputSection()->addr + offset;
942    RelExpr expr = rel.expr;
943    uint64_t targetVA = SignExtend64(
944        getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
945        bits);
946
947    switch (expr) {
948    case R_RELAX_GOT_PC:
949    case R_RELAX_GOT_PC_NOPIC:
950      target->relaxGot(bufLoc, type, targetVA);
951      break;
952    case R_PPC64_RELAX_TOC:
953      if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc))
954        target->relocateOne(bufLoc, type, targetVA);
955      break;
956    case R_RELAX_TLS_IE_TO_LE:
957      target->relaxTlsIeToLe(bufLoc, type, targetVA);
958      break;
959    case R_RELAX_TLS_LD_TO_LE:
960    case R_RELAX_TLS_LD_TO_LE_ABS:
961      target->relaxTlsLdToLe(bufLoc, type, targetVA);
962      break;
963    case R_RELAX_TLS_GD_TO_LE:
964    case R_RELAX_TLS_GD_TO_LE_NEG:
965      target->relaxTlsGdToLe(bufLoc, type, targetVA);
966      break;
967    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
968    case R_RELAX_TLS_GD_TO_IE:
969    case R_RELAX_TLS_GD_TO_IE_ABS:
970    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
971    case R_RELAX_TLS_GD_TO_IE_GOTPLT:
972      target->relaxTlsGdToIe(bufLoc, type, targetVA);
973      break;
974    case R_PPC64_CALL:
975      // If this is a call to __tls_get_addr, it may be part of a TLS
976      // sequence that has been relaxed and turned into a nop. In this
977      // case, we don't want to handle it as a call.
978      if (read32(bufLoc) == 0x60000000) // nop
979        break;
980
981      // Patch a nop (0x60000000) to a ld.
982      if (rel.sym->needsTocRestore) {
983        // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
984        // recursive calls even if the function is preemptible. This is not
985        // wrong in the common case where the function is not preempted at
986        // runtime. Just ignore.
987        if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
988            rel.sym->file != file) {
989          // Use substr(6) to remove the "__plt_" prefix.
990          errorOrWarn(getErrorLocation(bufLoc) + "call to " +
991                      lld::toString(*rel.sym).substr(6) +
992                      " lacks nop, can't restore toc");
993          break;
994        }
995        write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
996      }
997      target->relocateOne(bufLoc, type, targetVA);
998      break;
999    default:
1000      target->relocateOne(bufLoc, type, targetVA);
1001      break;
1002    }
1003  }
1004}
1005
1006// For each function-defining prologue, find any calls to __morestack,
1007// and replace them with calls to __morestack_non_split.
1008static void switchMorestackCallsToMorestackNonSplit(
1009    DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1010
1011  // If the target adjusted a function's prologue, all calls to
1012  // __morestack inside that function should be switched to
1013  // __morestack_non_split.
1014  Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1015  if (!moreStackNonSplit) {
1016    error("Mixing split-stack objects requires a definition of "
1017          "__morestack_non_split");
1018    return;
1019  }
1020
1021  // Sort both collections to compare addresses efficiently.
1022  llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1023    return l->offset < r->offset;
1024  });
1025  std::vector<Defined *> functions(prologues.begin(), prologues.end());
1026  llvm::sort(functions, [](const Defined *l, const Defined *r) {
1027    return l->value < r->value;
1028  });
1029
1030  auto it = morestackCalls.begin();
1031  for (Defined *f : functions) {
1032    // Find the first call to __morestack within the function.
1033    while (it != morestackCalls.end() && (*it)->offset < f->value)
1034      ++it;
1035    // Adjust all calls inside the function.
1036    while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1037      (*it)->sym = moreStackNonSplit;
1038      ++it;
1039    }
1040  }
1041}
1042
1043static bool enclosingPrologueAttempted(uint64_t offset,
1044                                       const DenseSet<Defined *> &prologues) {
1045  for (Defined *f : prologues)
1046    if (f->value <= offset && offset < f->value + f->size)
1047      return true;
1048  return false;
1049}
1050
1051// If a function compiled for split stack calls a function not
1052// compiled for split stack, then the caller needs its prologue
1053// adjusted to ensure that the called function will have enough stack
1054// available. Find those functions, and adjust their prologues.
1055template <class ELFT>
1056void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1057                                                         uint8_t *end) {
1058  if (!getFile<ELFT>()->splitStack)
1059    return;
1060  DenseSet<Defined *> prologues;
1061  std::vector<Relocation *> morestackCalls;
1062
1063  for (Relocation &rel : relocations) {
1064    // Local symbols can't possibly be cross-calls, and should have been
1065    // resolved long before this line.
1066    if (rel.sym->isLocal())
1067      continue;
1068
1069    // Ignore calls into the split-stack api.
1070    if (rel.sym->getName().startswith("__morestack")) {
1071      if (rel.sym->getName().equals("__morestack"))
1072        morestackCalls.push_back(&rel);
1073      continue;
1074    }
1075
1076    // A relocation to non-function isn't relevant. Sometimes
1077    // __morestack is not marked as a function, so this check comes
1078    // after the name check.
1079    if (rel.sym->type != STT_FUNC)
1080      continue;
1081
1082    // If the callee's-file was compiled with split stack, nothing to do.  In
1083    // this context, a "Defined" symbol is one "defined by the binary currently
1084    // being produced". So an "undefined" symbol might be provided by a shared
1085    // library. It is not possible to tell how such symbols were compiled, so be
1086    // conservative.
1087    if (Defined *d = dyn_cast<Defined>(rel.sym))
1088      if (InputSection *isec = cast_or_null<InputSection>(d->section))
1089        if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1090          continue;
1091
1092    if (enclosingPrologueAttempted(rel.offset, prologues))
1093      continue;
1094
1095    if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1096      prologues.insert(f);
1097      if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value),
1098                                                   end, f->stOther))
1099        continue;
1100      if (!getFile<ELFT>()->someNoSplitStack)
1101        error(toString(this) + ": " + f->getName() +
1102              " (with -fsplit-stack) calls " + rel.sym->getName() +
1103              " (without -fsplit-stack), but couldn't adjust its prologue");
1104    }
1105  }
1106
1107  if (target->needsMoreStackNonSplit)
1108    switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1109}
1110
1111template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1112  if (type == SHT_NOBITS)
1113    return;
1114
1115  if (auto *s = dyn_cast<SyntheticSection>(this)) {
1116    s->writeTo(buf + outSecOff);
1117    return;
1118  }
1119
1120  // If -r or --emit-relocs is given, then an InputSection
1121  // may be a relocation section.
1122  if (type == SHT_RELA) {
1123    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1124    return;
1125  }
1126  if (type == SHT_REL) {
1127    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1128    return;
1129  }
1130
1131  // If -r is given, we may have a SHT_GROUP section.
1132  if (type == SHT_GROUP) {
1133    copyShtGroup<ELFT>(buf + outSecOff);
1134    return;
1135  }
1136
1137  // If this is a compressed section, uncompress section contents directly
1138  // to the buffer.
1139  if (uncompressedSize >= 0) {
1140    size_t size = uncompressedSize;
1141    if (Error e = zlib::uncompress(toStringRef(rawData),
1142                                   (char *)(buf + outSecOff), size))
1143      fatal(toString(this) +
1144            ": uncompress failed: " + llvm::toString(std::move(e)));
1145    uint8_t *bufEnd = buf + outSecOff + size;
1146    relocate<ELFT>(buf, bufEnd);
1147    return;
1148  }
1149
1150  // Copy section contents from source object file to output file
1151  // and then apply relocations.
1152  memcpy(buf + outSecOff, data().data(), data().size());
1153  uint8_t *bufEnd = buf + outSecOff + data().size();
1154  relocate<ELFT>(buf, bufEnd);
1155}
1156
1157void InputSection::replace(InputSection *other) {
1158  alignment = std::max(alignment, other->alignment);
1159
1160  // When a section is replaced with another section that was allocated to
1161  // another partition, the replacement section (and its associated sections)
1162  // need to be placed in the main partition so that both partitions will be
1163  // able to access it.
1164  if (partition != other->partition) {
1165    partition = 1;
1166    for (InputSection *isec : dependentSections)
1167      isec->partition = 1;
1168  }
1169
1170  other->repl = repl;
1171  other->markDead();
1172}
1173
1174template <class ELFT>
1175EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1176                               const typename ELFT::Shdr &header,
1177                               StringRef name)
1178    : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1179
1180SyntheticSection *EhInputSection::getParent() const {
1181  return cast_or_null<SyntheticSection>(parent);
1182}
1183
1184// Returns the index of the first relocation that points to a region between
1185// Begin and Begin+Size.
1186template <class IntTy, class RelTy>
1187static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1188                         unsigned &relocI) {
1189  // Start search from RelocI for fast access. That works because the
1190  // relocations are sorted in .eh_frame.
1191  for (unsigned n = rels.size(); relocI < n; ++relocI) {
1192    const RelTy &rel = rels[relocI];
1193    if (rel.r_offset < begin)
1194      continue;
1195
1196    if (rel.r_offset < begin + size)
1197      return relocI;
1198    return -1;
1199  }
1200  return -1;
1201}
1202
1203// .eh_frame is a sequence of CIE or FDE records.
1204// This function splits an input section into records and returns them.
1205template <class ELFT> void EhInputSection::split() {
1206  if (areRelocsRela)
1207    split<ELFT>(relas<ELFT>());
1208  else
1209    split<ELFT>(rels<ELFT>());
1210}
1211
1212template <class ELFT, class RelTy>
1213void EhInputSection::split(ArrayRef<RelTy> rels) {
1214  unsigned relI = 0;
1215  for (size_t off = 0, end = data().size(); off != end;) {
1216    size_t size = readEhRecordSize(this, off);
1217    pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1218    // The empty record is the end marker.
1219    if (size == 4)
1220      break;
1221    off += size;
1222  }
1223}
1224
1225static size_t findNull(StringRef s, size_t entSize) {
1226  // Optimize the common case.
1227  if (entSize == 1)
1228    return s.find(0);
1229
1230  for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1231    const char *b = s.begin() + i;
1232    if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1233      return i;
1234  }
1235  return StringRef::npos;
1236}
1237
1238SyntheticSection *MergeInputSection::getParent() const {
1239  return cast_or_null<SyntheticSection>(parent);
1240}
1241
1242// Split SHF_STRINGS section. Such section is a sequence of
1243// null-terminated strings.
1244void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1245  size_t off = 0;
1246  bool isAlloc = flags & SHF_ALLOC;
1247  StringRef s = toStringRef(data);
1248
1249  while (!s.empty()) {
1250    size_t end = findNull(s, entSize);
1251    if (end == StringRef::npos)
1252      fatal(toString(this) + ": string is not null terminated");
1253    size_t size = end + entSize;
1254
1255    pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1256    s = s.substr(size);
1257    off += size;
1258  }
1259}
1260
1261// Split non-SHF_STRINGS section. Such section is a sequence of
1262// fixed size records.
1263void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1264                                        size_t entSize) {
1265  size_t size = data.size();
1266  assert((size % entSize) == 0);
1267  bool isAlloc = flags & SHF_ALLOC;
1268
1269  for (size_t i = 0; i != size; i += entSize)
1270    pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1271}
1272
1273template <class ELFT>
1274MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1275                                     const typename ELFT::Shdr &header,
1276                                     StringRef name)
1277    : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1278
1279MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1280                                     uint64_t entsize, ArrayRef<uint8_t> data,
1281                                     StringRef name)
1282    : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1283                       /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1284
1285// This function is called after we obtain a complete list of input sections
1286// that need to be linked. This is responsible to split section contents
1287// into small chunks for further processing.
1288//
1289// Note that this function is called from parallelForEach. This must be
1290// thread-safe (i.e. no memory allocation from the pools).
1291void MergeInputSection::splitIntoPieces() {
1292  assert(pieces.empty());
1293
1294  if (flags & SHF_STRINGS)
1295    splitStrings(data(), entsize);
1296  else
1297    splitNonStrings(data(), entsize);
1298}
1299
1300SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1301  if (this->data().size() <= offset)
1302    fatal(toString(this) + ": offset is outside the section");
1303
1304  // If Offset is not at beginning of a section piece, it is not in the map.
1305  // In that case we need to  do a binary search of the original section piece vector.
1306  auto it = partition_point(
1307      pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1308  return &it[-1];
1309}
1310
1311// Returns the offset in an output section for a given input offset.
1312// Because contents of a mergeable section is not contiguous in output,
1313// it is not just an addition to a base output offset.
1314uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1315  // If Offset is not at beginning of a section piece, it is not in the map.
1316  // In that case we need to search from the original section piece vector.
1317  const SectionPiece &piece =
1318      *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
1319  uint64_t addend = offset - piece.inputOff;
1320  return piece.outputOff + addend;
1321}
1322
1323template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1324                                    StringRef);
1325template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1326                                    StringRef);
1327template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1328                                    StringRef);
1329template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1330                                    StringRef);
1331
1332template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1333template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1334template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1335template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1336
1337template void InputSection::writeTo<ELF32LE>(uint8_t *);
1338template void InputSection::writeTo<ELF32BE>(uint8_t *);
1339template void InputSection::writeTo<ELF64LE>(uint8_t *);
1340template void InputSection::writeTo<ELF64BE>(uint8_t *);
1341
1342template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1343                                              const ELF32LE::Shdr &, StringRef);
1344template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1345                                              const ELF32BE::Shdr &, StringRef);
1346template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1347                                              const ELF64LE::Shdr &, StringRef);
1348template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1349                                              const ELF64BE::Shdr &, StringRef);
1350
1351template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1352                                        const ELF32LE::Shdr &, StringRef);
1353template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1354                                        const ELF32BE::Shdr &, StringRef);
1355template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1356                                        const ELF64LE::Shdr &, StringRef);
1357template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1358                                        const ELF64BE::Shdr &, StringRef);
1359
1360template void EhInputSection::split<ELF32LE>();
1361template void EhInputSection::split<ELF32BE>();
1362template void EhInputSection::split<ELF64LE>();
1363template void EhInputSection::split<ELF64BE>();
1364
1365} // namespace elf
1366} // namespace lld
1367