InputSection.cpp revision 350467
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3//                             The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "InputSection.h"
11#include "Config.h"
12#include "EhFrame.h"
13#include "InputFiles.h"
14#include "LinkerScript.h"
15#include "OutputSections.h"
16#include "Relocations.h"
17#include "SymbolTable.h"
18#include "Symbols.h"
19#include "SyntheticSections.h"
20#include "Target.h"
21#include "Thunks.h"
22#include "lld/Common/ErrorHandler.h"
23#include "lld/Common/Memory.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Compression.h"
26#include "llvm/Support/Endian.h"
27#include "llvm/Support/Threading.h"
28#include "llvm/Support/xxhash.h"
29#include <algorithm>
30#include <mutex>
31#include <set>
32#include <vector>
33
34using namespace llvm;
35using namespace llvm::ELF;
36using namespace llvm::object;
37using namespace llvm::support;
38using namespace llvm::support::endian;
39using namespace llvm::sys;
40
41using namespace lld;
42using namespace lld::elf;
43
44std::vector<InputSectionBase *> elf::InputSections;
45
46// Returns a string to construct an error message.
47std::string lld::toString(const InputSectionBase *Sec) {
48  return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
49}
50
51template <class ELFT>
52static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
53                                            const typename ELFT::Shdr &Hdr) {
54  if (Hdr.sh_type == SHT_NOBITS)
55    return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
56  return check(File.getObj().getSectionContents(&Hdr));
57}
58
59InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
60                                   uint32_t Type, uint64_t Entsize,
61                                   uint32_t Link, uint32_t Info,
62                                   uint32_t Alignment, ArrayRef<uint8_t> Data,
63                                   StringRef Name, Kind SectionKind)
64    : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
65                  Link),
66      File(File), RawData(Data) {
67  // In order to reduce memory allocation, we assume that mergeable
68  // sections are smaller than 4 GiB, which is not an unreasonable
69  // assumption as of 2017.
70  if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
71    error(toString(this) + ": section too large");
72
73  NumRelocations = 0;
74  AreRelocsRela = false;
75
76  // The ELF spec states that a value of 0 means the section has
77  // no alignment constraits.
78  uint32_t V = std::max<uint64_t>(Alignment, 1);
79  if (!isPowerOf2_64(V))
80    fatal(toString(File) + ": section sh_addralign is not a power of 2");
81  this->Alignment = V;
82
83  // In ELF, each section can be compressed by zlib, and if compressed,
84  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85  // If that's the case, demangle section name so that we can handle a
86  // section as if it weren't compressed.
87  if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
88    if (!zlib::isAvailable())
89      error(toString(File) + ": contains a compressed section, " +
90            "but zlib is not available");
91    parseCompressedHeader();
92  }
93}
94
95// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
96// SHF_GROUP is a marker that a section belongs to some comdat group.
97// That flag doesn't make sense in an executable.
98static uint64_t getFlags(uint64_t Flags) {
99  Flags &= ~(uint64_t)SHF_INFO_LINK;
100  if (!Config->Relocatable)
101    Flags &= ~(uint64_t)SHF_GROUP;
102  return Flags;
103}
104
105// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
106// March 2017) fail to infer section types for sections starting with
107// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
108// SHF_INIT_ARRAY. As a result, the following assembler directive
109// creates ".init_array.100" with SHT_PROGBITS, for example.
110//
111//   .section .init_array.100, "aw"
112//
113// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
114// incorrect inputs as if they were correct from the beginning.
115static uint64_t getType(uint64_t Type, StringRef Name) {
116  if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
117    return SHT_INIT_ARRAY;
118  if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
119    return SHT_FINI_ARRAY;
120  return Type;
121}
122
123template <class ELFT>
124InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
125                                   const typename ELFT::Shdr &Hdr,
126                                   StringRef Name, Kind SectionKind)
127    : InputSectionBase(&File, getFlags(Hdr.sh_flags),
128                       getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
129                       Hdr.sh_info, Hdr.sh_addralign,
130                       getSectionContents(File, Hdr), Name, SectionKind) {
131  // We reject object files having insanely large alignments even though
132  // they are allowed by the spec. I think 4GB is a reasonable limitation.
133  // We might want to relax this in the future.
134  if (Hdr.sh_addralign > UINT32_MAX)
135    fatal(toString(&File) + ": section sh_addralign is too large");
136}
137
138size_t InputSectionBase::getSize() const {
139  if (auto *S = dyn_cast<SyntheticSection>(this))
140    return S->getSize();
141  if (UncompressedSize >= 0)
142    return UncompressedSize;
143  return RawData.size();
144}
145
146void InputSectionBase::uncompress() const {
147  size_t Size = UncompressedSize;
148  UncompressedBuf.reset(new char[Size]);
149
150  if (Error E =
151          zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size))
152    fatal(toString(this) +
153          ": uncompress failed: " + llvm::toString(std::move(E)));
154  RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size);
155}
156
157uint64_t InputSectionBase::getOffsetInFile() const {
158  const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
159  const uint8_t *SecStart = data().begin();
160  return SecStart - FileStart;
161}
162
163uint64_t SectionBase::getOffset(uint64_t Offset) const {
164  switch (kind()) {
165  case Output: {
166    auto *OS = cast<OutputSection>(this);
167    // For output sections we treat offset -1 as the end of the section.
168    return Offset == uint64_t(-1) ? OS->Size : Offset;
169  }
170  case Regular:
171  case Synthetic:
172    return cast<InputSection>(this)->getOffset(Offset);
173  case EHFrame:
174    // The file crtbeginT.o has relocations pointing to the start of an empty
175    // .eh_frame that is known to be the first in the link. It does that to
176    // identify the start of the output .eh_frame.
177    return Offset;
178  case Merge:
179    const MergeInputSection *MS = cast<MergeInputSection>(this);
180    if (InputSection *IS = MS->getParent())
181      return IS->getOffset(MS->getParentOffset(Offset));
182    return MS->getParentOffset(Offset);
183  }
184  llvm_unreachable("invalid section kind");
185}
186
187uint64_t SectionBase::getVA(uint64_t Offset) const {
188  const OutputSection *Out = getOutputSection();
189  return (Out ? Out->Addr : 0) + getOffset(Offset);
190}
191
192OutputSection *SectionBase::getOutputSection() {
193  InputSection *Sec;
194  if (auto *IS = dyn_cast<InputSection>(this))
195    Sec = IS;
196  else if (auto *MS = dyn_cast<MergeInputSection>(this))
197    Sec = MS->getParent();
198  else if (auto *EH = dyn_cast<EhInputSection>(this))
199    Sec = EH->getParent();
200  else
201    return cast<OutputSection>(this);
202  return Sec ? Sec->getParent() : nullptr;
203}
204
205// When a section is compressed, `RawData` consists with a header followed
206// by zlib-compressed data. This function parses a header to initialize
207// `UncompressedSize` member and remove the header from `RawData`.
208void InputSectionBase::parseCompressedHeader() {
209  typedef typename ELF64LE::Chdr Chdr64;
210  typedef typename ELF32LE::Chdr Chdr32;
211
212  // Old-style header
213  if (Name.startswith(".zdebug")) {
214    if (!toStringRef(RawData).startswith("ZLIB")) {
215      error(toString(this) + ": corrupted compressed section header");
216      return;
217    }
218    RawData = RawData.slice(4);
219
220    if (RawData.size() < 8) {
221      error(toString(this) + ": corrupted compressed section header");
222      return;
223    }
224
225    UncompressedSize = read64be(RawData.data());
226    RawData = RawData.slice(8);
227
228    // Restore the original section name.
229    // (e.g. ".zdebug_info" -> ".debug_info")
230    Name = Saver.save("." + Name.substr(2));
231    return;
232  }
233
234  assert(Flags & SHF_COMPRESSED);
235  Flags &= ~(uint64_t)SHF_COMPRESSED;
236
237  // New-style 64-bit header
238  if (Config->Is64) {
239    if (RawData.size() < sizeof(Chdr64)) {
240      error(toString(this) + ": corrupted compressed section");
241      return;
242    }
243
244    auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
245    if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
246      error(toString(this) + ": unsupported compression type");
247      return;
248    }
249
250    UncompressedSize = Hdr->ch_size;
251    Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1);
252    RawData = RawData.slice(sizeof(*Hdr));
253    return;
254  }
255
256  // New-style 32-bit header
257  if (RawData.size() < sizeof(Chdr32)) {
258    error(toString(this) + ": corrupted compressed section");
259    return;
260  }
261
262  auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
263  if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
264    error(toString(this) + ": unsupported compression type");
265    return;
266  }
267
268  UncompressedSize = Hdr->ch_size;
269  Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1);
270  RawData = RawData.slice(sizeof(*Hdr));
271}
272
273InputSection *InputSectionBase::getLinkOrderDep() const {
274  assert(Link);
275  assert(Flags & SHF_LINK_ORDER);
276  return cast<InputSection>(File->getSections()[Link]);
277}
278
279// Find a function symbol that encloses a given location.
280template <class ELFT>
281Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
282  for (Symbol *B : File->getSymbols())
283    if (Defined *D = dyn_cast<Defined>(B))
284      if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
285          Offset < D->Value + D->Size)
286        return D;
287  return nullptr;
288}
289
290// Returns a source location string. Used to construct an error message.
291template <class ELFT>
292std::string InputSectionBase::getLocation(uint64_t Offset) {
293  std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
294
295  // We don't have file for synthetic sections.
296  if (getFile<ELFT>() == nullptr)
297    return (Config->OutputFile + ":(" + SecAndOffset + ")")
298        .str();
299
300  // First check if we can get desired values from debugging information.
301  if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
302    return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
303           SecAndOffset + ")";
304
305  // File->SourceFile contains STT_FILE symbol that contains a
306  // source file name. If it's missing, we use an object file name.
307  std::string SrcFile = getFile<ELFT>()->SourceFile;
308  if (SrcFile.empty())
309    SrcFile = toString(File);
310
311  if (Defined *D = getEnclosingFunction<ELFT>(Offset))
312    return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
313
314  // If there's no symbol, print out the offset in the section.
315  return (SrcFile + ":(" + SecAndOffset + ")");
316}
317
318// This function is intended to be used for constructing an error message.
319// The returned message looks like this:
320//
321//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
322//
323//  Returns an empty string if there's no way to get line info.
324std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
325  return File->getSrcMsg(Sym, *this, Offset);
326}
327
328// Returns a filename string along with an optional section name. This
329// function is intended to be used for constructing an error
330// message. The returned message looks like this:
331//
332//   path/to/foo.o:(function bar)
333//
334// or
335//
336//   path/to/foo.o:(function bar) in archive path/to/bar.a
337std::string InputSectionBase::getObjMsg(uint64_t Off) {
338  std::string Filename = File->getName();
339
340  std::string Archive;
341  if (!File->ArchiveName.empty())
342    Archive = " in archive " + File->ArchiveName;
343
344  // Find a symbol that encloses a given location.
345  for (Symbol *B : File->getSymbols())
346    if (auto *D = dyn_cast<Defined>(B))
347      if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
348        return Filename + ":(" + toString(*D) + ")" + Archive;
349
350  // If there's no symbol, print out the offset in the section.
351  return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
352      .str();
353}
354
355InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
356
357InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
358                           uint32_t Alignment, ArrayRef<uint8_t> Data,
359                           StringRef Name, Kind K)
360    : InputSectionBase(F, Flags, Type,
361                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
362                       Name, K) {}
363
364template <class ELFT>
365InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
366                           StringRef Name)
367    : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
368
369bool InputSection::classof(const SectionBase *S) {
370  return S->kind() == SectionBase::Regular ||
371         S->kind() == SectionBase::Synthetic;
372}
373
374OutputSection *InputSection::getParent() const {
375  return cast_or_null<OutputSection>(Parent);
376}
377
378// Copy SHT_GROUP section contents. Used only for the -r option.
379template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
380  // ELFT::Word is the 32-bit integral type in the target endianness.
381  typedef typename ELFT::Word u32;
382  ArrayRef<u32> From = getDataAs<u32>();
383  auto *To = reinterpret_cast<u32 *>(Buf);
384
385  // The first entry is not a section number but a flag.
386  *To++ = From[0];
387
388  // Adjust section numbers because section numbers in an input object
389  // files are different in the output.
390  ArrayRef<InputSectionBase *> Sections = File->getSections();
391  for (uint32_t Idx : From.slice(1))
392    *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
393}
394
395InputSectionBase *InputSection::getRelocatedSection() const {
396  if (!File || (Type != SHT_RELA && Type != SHT_REL))
397    return nullptr;
398  ArrayRef<InputSectionBase *> Sections = File->getSections();
399  return Sections[Info];
400}
401
402// This is used for -r and --emit-relocs. We can't use memcpy to copy
403// relocations because we need to update symbol table offset and section index
404// for each relocation. So we copy relocations one by one.
405template <class ELFT, class RelTy>
406void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
407  InputSectionBase *Sec = getRelocatedSection();
408
409  for (const RelTy &Rel : Rels) {
410    RelType Type = Rel.getType(Config->IsMips64EL);
411    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
412
413    auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
414    Buf += sizeof(RelTy);
415
416    if (RelTy::IsRela)
417      P->r_addend = getAddend<ELFT>(Rel);
418
419    // Output section VA is zero for -r, so r_offset is an offset within the
420    // section, but for --emit-relocs it is an virtual address.
421    P->r_offset = Sec->getVA(Rel.r_offset);
422    P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
423                        Config->IsMips64EL);
424
425    if (Sym.Type == STT_SECTION) {
426      // We combine multiple section symbols into only one per
427      // section. This means we have to update the addend. That is
428      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
429      // section data. We do that by adding to the Relocation vector.
430
431      // .eh_frame is horribly special and can reference discarded sections. To
432      // avoid having to parse and recreate .eh_frame, we just replace any
433      // relocation in it pointing to discarded sections with R_*_NONE, which
434      // hopefully creates a frame that is ignored at runtime.
435      auto *D = dyn_cast<Defined>(&Sym);
436      if (!D) {
437        error("STT_SECTION symbol should be defined");
438        continue;
439      }
440      SectionBase *Section = D->Section->Repl;
441      if (!Section->Live) {
442        P->setSymbolAndType(0, 0, false);
443        continue;
444      }
445
446      int64_t Addend = getAddend<ELFT>(Rel);
447      const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
448      if (!RelTy::IsRela)
449        Addend = Target->getImplicitAddend(BufLoc, Type);
450
451      if (Config->EMachine == EM_MIPS && Config->Relocatable &&
452          Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
453        // Some MIPS relocations depend on "gp" value. By default,
454        // this value has 0x7ff0 offset from a .got section. But
455        // relocatable files produced by a complier or a linker
456        // might redefine this default value and we must use it
457        // for a calculation of the relocation result. When we
458        // generate EXE or DSO it's trivial. Generating a relocatable
459        // output is more difficult case because the linker does
460        // not calculate relocations in this mode and loses
461        // individual "gp" values used by each input object file.
462        // As a workaround we add the "gp" value to the relocation
463        // addend and save it back to the file.
464        Addend += Sec->getFile<ELFT>()->MipsGp0;
465      }
466
467      if (RelTy::IsRela)
468        P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
469      else if (Config->Relocatable)
470        Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
471    }
472  }
473}
474
475// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
476// references specially. The general rule is that the value of the symbol in
477// this context is the address of the place P. A further special case is that
478// branch relocations to an undefined weak reference resolve to the next
479// instruction.
480static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
481                                              uint32_t P) {
482  switch (Type) {
483  // Unresolved branch relocations to weak references resolve to next
484  // instruction, this will be either 2 or 4 bytes on from P.
485  case R_ARM_THM_JUMP11:
486    return P + 2 + A;
487  case R_ARM_CALL:
488  case R_ARM_JUMP24:
489  case R_ARM_PC24:
490  case R_ARM_PLT32:
491  case R_ARM_PREL31:
492  case R_ARM_THM_JUMP19:
493  case R_ARM_THM_JUMP24:
494    return P + 4 + A;
495  case R_ARM_THM_CALL:
496    // We don't want an interworking BLX to ARM
497    return P + 5 + A;
498  // Unresolved non branch pc-relative relocations
499  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
500  // targets a weak-reference.
501  case R_ARM_MOVW_PREL_NC:
502  case R_ARM_MOVT_PREL:
503  case R_ARM_REL32:
504  case R_ARM_THM_MOVW_PREL_NC:
505  case R_ARM_THM_MOVT_PREL:
506    return P + A;
507  }
508  llvm_unreachable("ARM pc-relative relocation expected\n");
509}
510
511// The comment above getARMUndefinedRelativeWeakVA applies to this function.
512static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
513                                                  uint64_t P) {
514  switch (Type) {
515  // Unresolved branch relocations to weak references resolve to next
516  // instruction, this is 4 bytes on from P.
517  case R_AARCH64_CALL26:
518  case R_AARCH64_CONDBR19:
519  case R_AARCH64_JUMP26:
520  case R_AARCH64_TSTBR14:
521    return P + 4 + A;
522  // Unresolved non branch pc-relative relocations
523  case R_AARCH64_PREL16:
524  case R_AARCH64_PREL32:
525  case R_AARCH64_PREL64:
526  case R_AARCH64_ADR_PREL_LO21:
527  case R_AARCH64_LD_PREL_LO19:
528    return P + A;
529  }
530  llvm_unreachable("AArch64 pc-relative relocation expected\n");
531}
532
533// ARM SBREL relocations are of the form S + A - B where B is the static base
534// The ARM ABI defines base to be "addressing origin of the output segment
535// defining the symbol S". We defined the "addressing origin"/static base to be
536// the base of the PT_LOAD segment containing the Sym.
537// The procedure call standard only defines a Read Write Position Independent
538// RWPI variant so in practice we should expect the static base to be the base
539// of the RW segment.
540static uint64_t getARMStaticBase(const Symbol &Sym) {
541  OutputSection *OS = Sym.getOutputSection();
542  if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
543    fatal("SBREL relocation to " + Sym.getName() + " without static base");
544  return OS->PtLoad->FirstSec->Addr;
545}
546
547// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
548// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
549// is calculated using PCREL_HI20's symbol.
550//
551// This function returns the R_RISCV_PCREL_HI20 relocation from
552// R_RISCV_PCREL_LO12's symbol and addend.
553static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
554  const Defined *D = cast<Defined>(Sym);
555  InputSection *IS = cast<InputSection>(D->Section);
556
557  if (Addend != 0)
558    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
559         IS->getObjMsg(D->Value) + " is ignored");
560
561  // Relocations are sorted by offset, so we can use std::equal_range to do
562  // binary search.
563  auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(),
564                                D->Value, RelocationOffsetComparator{});
565  for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It)
566    if (isRelExprOneOf<R_PC>(It->Expr))
567      return &*It;
568
569  error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
570        " without an associated R_RISCV_PCREL_HI20 relocation");
571  return nullptr;
572}
573
574// A TLS symbol's virtual address is relative to the TLS segment. Add a
575// target-specific adjustment to produce a thread-pointer-relative offset.
576static int64_t getTlsTpOffset() {
577  switch (Config->EMachine) {
578  case EM_ARM:
579  case EM_AARCH64:
580    // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
581    // followed by a variable amount of alignment padding, followed by the TLS
582    // segment.
583    return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
584  case EM_386:
585  case EM_X86_64:
586    // Variant 2. The TLS segment is located just before the thread pointer.
587    return -Out::TlsPhdr->p_memsz;
588  case EM_PPC64:
589    // The thread pointer points to a fixed offset from the start of the
590    // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
591    // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
592    // program's TLS segment.
593    return -0x7000;
594  default:
595    llvm_unreachable("unhandled Config->EMachine");
596  }
597}
598
599static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
600                                 uint64_t P, const Symbol &Sym, RelExpr Expr) {
601  switch (Expr) {
602  case R_INVALID:
603    return 0;
604  case R_ABS:
605  case R_RELAX_TLS_LD_TO_LE_ABS:
606  case R_RELAX_GOT_PC_NOPIC:
607    return Sym.getVA(A);
608  case R_ADDEND:
609    return A;
610  case R_ARM_SBREL:
611    return Sym.getVA(A) - getARMStaticBase(Sym);
612  case R_GOT:
613  case R_RELAX_TLS_GD_TO_IE_ABS:
614    return Sym.getGotVA() + A;
615  case R_GOTONLY_PC:
616    return In.Got->getVA() + A - P;
617  case R_GOTONLY_PC_FROM_END:
618    return In.Got->getVA() + A - P + In.Got->getSize();
619  case R_GOTREL:
620    return Sym.getVA(A) - In.Got->getVA();
621  case R_GOTREL_FROM_END:
622    return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize();
623  case R_GOT_FROM_END:
624  case R_RELAX_TLS_GD_TO_IE_END:
625    return Sym.getGotOffset() + A - In.Got->getSize();
626  case R_TLSLD_GOT_OFF:
627  case R_GOT_OFF:
628  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
629    return Sym.getGotOffset() + A;
630  case R_AARCH64_GOT_PAGE_PC:
631  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
632    return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
633  case R_GOT_PC:
634  case R_RELAX_TLS_GD_TO_IE:
635    return Sym.getGotVA() + A - P;
636  case R_HEXAGON_GOT:
637    return Sym.getGotVA() - In.GotPlt->getVA();
638  case R_MIPS_GOTREL:
639    return Sym.getVA(A) - In.MipsGot->getGp(File);
640  case R_MIPS_GOT_GP:
641    return In.MipsGot->getGp(File) + A;
642  case R_MIPS_GOT_GP_PC: {
643    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
644    // is _gp_disp symbol. In that case we should use the following
645    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
646    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
647    // microMIPS variants of these relocations use slightly different
648    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
649    // to correctly handle less-sugnificant bit of the microMIPS symbol.
650    uint64_t V = In.MipsGot->getGp(File) + A - P;
651    if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
652      V += 4;
653    if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
654      V -= 1;
655    return V;
656  }
657  case R_MIPS_GOT_LOCAL_PAGE:
658    // If relocation against MIPS local symbol requires GOT entry, this entry
659    // should be initialized by 'page address'. This address is high 16-bits
660    // of sum the symbol's value and the addend.
661    return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
662           In.MipsGot->getGp(File);
663  case R_MIPS_GOT_OFF:
664  case R_MIPS_GOT_OFF32:
665    // In case of MIPS if a GOT relocation has non-zero addend this addend
666    // should be applied to the GOT entry content not to the GOT entry offset.
667    // That is why we use separate expression type.
668    return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
669           In.MipsGot->getGp(File);
670  case R_MIPS_TLSGD:
671    return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
672           In.MipsGot->getGp(File);
673  case R_MIPS_TLSLD:
674    return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
675           In.MipsGot->getGp(File);
676  case R_AARCH64_PAGE_PC: {
677    uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
678    return getAArch64Page(Val) - getAArch64Page(P);
679  }
680  case R_RISCV_PC_INDIRECT: {
681    if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
682      return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
683                              *HiRel->Sym, HiRel->Expr);
684    return 0;
685  }
686  case R_PC: {
687    uint64_t Dest;
688    if (Sym.isUndefWeak()) {
689      // On ARM and AArch64 a branch to an undefined weak resolves to the
690      // next instruction, otherwise the place.
691      if (Config->EMachine == EM_ARM)
692        Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
693      else if (Config->EMachine == EM_AARCH64)
694        Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
695      else
696        Dest = Sym.getVA(A);
697    } else {
698      Dest = Sym.getVA(A);
699    }
700    return Dest - P;
701  }
702  case R_PLT:
703    return Sym.getPltVA() + A;
704  case R_PLT_PC:
705  case R_PPC_CALL_PLT:
706    return Sym.getPltVA() + A - P;
707  case R_PPC_CALL: {
708    uint64_t SymVA = Sym.getVA(A);
709    // If we have an undefined weak symbol, we might get here with a symbol
710    // address of zero. That could overflow, but the code must be unreachable,
711    // so don't bother doing anything at all.
712    if (!SymVA)
713      return 0;
714
715    // PPC64 V2 ABI describes two entry points to a function. The global entry
716    // point is used for calls where the caller and callee (may) have different
717    // TOC base pointers and r2 needs to be modified to hold the TOC base for
718    // the callee. For local calls the caller and callee share the same
719    // TOC base and so the TOC pointer initialization code should be skipped by
720    // branching to the local entry point.
721    return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
722  }
723  case R_PPC_TOC:
724    return getPPC64TocBase() + A;
725  case R_RELAX_GOT_PC:
726    return Sym.getVA(A) - P;
727  case R_RELAX_TLS_GD_TO_LE:
728  case R_RELAX_TLS_IE_TO_LE:
729  case R_RELAX_TLS_LD_TO_LE:
730  case R_TLS:
731    // A weak undefined TLS symbol resolves to the base of the TLS
732    // block, i.e. gets a value of zero. If we pass --gc-sections to
733    // lld and .tbss is not referenced, it gets reclaimed and we don't
734    // create a TLS program header. Therefore, we resolve this
735    // statically to zero.
736    if (Sym.isTls() && Sym.isUndefWeak())
737      return 0;
738    return Sym.getVA(A) + getTlsTpOffset();
739  case R_RELAX_TLS_GD_TO_LE_NEG:
740  case R_NEG_TLS:
741    return Out::TlsPhdr->p_memsz - Sym.getVA(A);
742  case R_SIZE:
743    return Sym.getSize() + A;
744  case R_TLSDESC:
745    return In.Got->getGlobalDynAddr(Sym) + A;
746  case R_AARCH64_TLSDESC_PAGE:
747    return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
748           getAArch64Page(P);
749  case R_TLSGD_GOT:
750    return In.Got->getGlobalDynOffset(Sym) + A;
751  case R_TLSGD_GOT_FROM_END:
752    return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize();
753  case R_TLSGD_PC:
754    return In.Got->getGlobalDynAddr(Sym) + A - P;
755  case R_TLSLD_GOT_FROM_END:
756    return In.Got->getTlsIndexOff() + A - In.Got->getSize();
757  case R_TLSLD_GOT:
758    return In.Got->getTlsIndexOff() + A;
759  case R_TLSLD_PC:
760    return In.Got->getTlsIndexVA() + A - P;
761  default:
762    llvm_unreachable("invalid expression");
763  }
764}
765
766// This function applies relocations to sections without SHF_ALLOC bit.
767// Such sections are never mapped to memory at runtime. Debug sections are
768// an example. Relocations in non-alloc sections are much easier to
769// handle than in allocated sections because it will never need complex
770// treatement such as GOT or PLT (because at runtime no one refers them).
771// So, we handle relocations for non-alloc sections directly in this
772// function as a performance optimization.
773template <class ELFT, class RelTy>
774void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
775  const unsigned Bits = sizeof(typename ELFT::uint) * 8;
776
777  for (const RelTy &Rel : Rels) {
778    RelType Type = Rel.getType(Config->IsMips64EL);
779
780    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
781    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
782    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
783    // need to keep this bug-compatible code for a while.
784    if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
785      continue;
786
787    uint64_t Offset = getOffset(Rel.r_offset);
788    uint8_t *BufLoc = Buf + Offset;
789    int64_t Addend = getAddend<ELFT>(Rel);
790    if (!RelTy::IsRela)
791      Addend += Target->getImplicitAddend(BufLoc, Type);
792
793    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
794    RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
795    if (Expr == R_NONE)
796      continue;
797
798    if (Expr != R_ABS) {
799      std::string Msg = getLocation<ELFT>(Offset) +
800                        ": has non-ABS relocation " + toString(Type) +
801                        " against symbol '" + toString(Sym) + "'";
802      if (Expr != R_PC) {
803        error(Msg);
804        return;
805      }
806
807      // If the control reaches here, we found a PC-relative relocation in a
808      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
809      // at runtime, the notion of PC-relative doesn't make sense here. So,
810      // this is a usage error. However, GNU linkers historically accept such
811      // relocations without any errors and relocate them as if they were at
812      // address 0. For bug-compatibilty, we accept them with warnings. We
813      // know Steel Bank Common Lisp as of 2018 have this bug.
814      warn(Msg);
815      Target->relocateOne(BufLoc, Type,
816                          SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
817      continue;
818    }
819
820    if (Sym.isTls() && !Out::TlsPhdr)
821      Target->relocateOne(BufLoc, Type, 0);
822    else
823      Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
824  }
825}
826
827// This is used when '-r' is given.
828// For REL targets, InputSection::copyRelocations() may store artificial
829// relocations aimed to update addends. They are handled in relocateAlloc()
830// for allocatable sections, and this function does the same for
831// non-allocatable sections, such as sections with debug information.
832static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
833  const unsigned Bits = Config->Is64 ? 64 : 32;
834
835  for (const Relocation &Rel : Sec->Relocations) {
836    // InputSection::copyRelocations() adds only R_ABS relocations.
837    assert(Rel.Expr == R_ABS);
838    uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
839    uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
840    Target->relocateOne(BufLoc, Rel.Type, TargetVA);
841  }
842}
843
844template <class ELFT>
845void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
846  if (Flags & SHF_EXECINSTR)
847    adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
848
849  if (Flags & SHF_ALLOC) {
850    relocateAlloc(Buf, BufEnd);
851    return;
852  }
853
854  auto *Sec = cast<InputSection>(this);
855  if (Config->Relocatable)
856    relocateNonAllocForRelocatable(Sec, Buf);
857  else if (Sec->AreRelocsRela)
858    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
859  else
860    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
861}
862
863void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
864  assert(Flags & SHF_ALLOC);
865  const unsigned Bits = Config->Wordsize * 8;
866
867  for (const Relocation &Rel : Relocations) {
868    uint64_t Offset = Rel.Offset;
869    if (auto *Sec = dyn_cast<InputSection>(this))
870      Offset += Sec->OutSecOff;
871    uint8_t *BufLoc = Buf + Offset;
872    RelType Type = Rel.Type;
873
874    uint64_t AddrLoc = getOutputSection()->Addr + Offset;
875    RelExpr Expr = Rel.Expr;
876    uint64_t TargetVA = SignExtend64(
877        getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
878        Bits);
879
880    switch (Expr) {
881    case R_RELAX_GOT_PC:
882    case R_RELAX_GOT_PC_NOPIC:
883      Target->relaxGot(BufLoc, TargetVA);
884      break;
885    case R_RELAX_TLS_IE_TO_LE:
886      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
887      break;
888    case R_RELAX_TLS_LD_TO_LE:
889    case R_RELAX_TLS_LD_TO_LE_ABS:
890      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
891      break;
892    case R_RELAX_TLS_GD_TO_LE:
893    case R_RELAX_TLS_GD_TO_LE_NEG:
894      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
895      break;
896    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
897    case R_RELAX_TLS_GD_TO_IE:
898    case R_RELAX_TLS_GD_TO_IE_ABS:
899    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
900    case R_RELAX_TLS_GD_TO_IE_END:
901      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
902      break;
903    case R_PPC_CALL:
904      // If this is a call to __tls_get_addr, it may be part of a TLS
905      // sequence that has been relaxed and turned into a nop. In this
906      // case, we don't want to handle it as a call.
907      if (read32(BufLoc) == 0x60000000) // nop
908        break;
909
910      // Patch a nop (0x60000000) to a ld.
911      if (Rel.Sym->NeedsTocRestore) {
912        if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
913          error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
914          break;
915        }
916        write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
917      }
918      Target->relocateOne(BufLoc, Type, TargetVA);
919      break;
920    default:
921      Target->relocateOne(BufLoc, Type, TargetVA);
922      break;
923    }
924  }
925}
926
927// For each function-defining prologue, find any calls to __morestack,
928// and replace them with calls to __morestack_non_split.
929static void switchMorestackCallsToMorestackNonSplit(
930    DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
931
932  // If the target adjusted a function's prologue, all calls to
933  // __morestack inside that function should be switched to
934  // __morestack_non_split.
935  Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
936  if (!MoreStackNonSplit) {
937    error("Mixing split-stack objects requires a definition of "
938          "__morestack_non_split");
939    return;
940  }
941
942  // Sort both collections to compare addresses efficiently.
943  llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
944    return L->Offset < R->Offset;
945  });
946  std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
947  llvm::sort(Functions, [](const Defined *L, const Defined *R) {
948    return L->Value < R->Value;
949  });
950
951  auto It = MorestackCalls.begin();
952  for (Defined *F : Functions) {
953    // Find the first call to __morestack within the function.
954    while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
955      ++It;
956    // Adjust all calls inside the function.
957    while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
958      (*It)->Sym = MoreStackNonSplit;
959      ++It;
960    }
961  }
962}
963
964static bool enclosingPrologueAttempted(uint64_t Offset,
965                                       const DenseSet<Defined *> &Prologues) {
966  for (Defined *F : Prologues)
967    if (F->Value <= Offset && Offset < F->Value + F->Size)
968      return true;
969  return false;
970}
971
972// If a function compiled for split stack calls a function not
973// compiled for split stack, then the caller needs its prologue
974// adjusted to ensure that the called function will have enough stack
975// available. Find those functions, and adjust their prologues.
976template <class ELFT>
977void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
978                                                         uint8_t *End) {
979  if (!getFile<ELFT>()->SplitStack)
980    return;
981  DenseSet<Defined *> Prologues;
982  std::vector<Relocation *> MorestackCalls;
983
984  for (Relocation &Rel : Relocations) {
985    // Local symbols can't possibly be cross-calls, and should have been
986    // resolved long before this line.
987    if (Rel.Sym->isLocal())
988      continue;
989
990    // Ignore calls into the split-stack api.
991    if (Rel.Sym->getName().startswith("__morestack")) {
992      if (Rel.Sym->getName().equals("__morestack"))
993        MorestackCalls.push_back(&Rel);
994      continue;
995    }
996
997    // A relocation to non-function isn't relevant. Sometimes
998    // __morestack is not marked as a function, so this check comes
999    // after the name check.
1000    if (Rel.Sym->Type != STT_FUNC)
1001      continue;
1002
1003    // If the callee's-file was compiled with split stack, nothing to do.  In
1004    // this context, a "Defined" symbol is one "defined by the binary currently
1005    // being produced". So an "undefined" symbol might be provided by a shared
1006    // library. It is not possible to tell how such symbols were compiled, so be
1007    // conservative.
1008    if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1009      if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1010        if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1011          continue;
1012
1013    if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1014      continue;
1015
1016    if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1017      Prologues.insert(F);
1018      if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1019                                                   End, F->StOther))
1020        continue;
1021      if (!getFile<ELFT>()->SomeNoSplitStack)
1022        error(lld::toString(this) + ": " + F->getName() +
1023              " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1024              " (without -fsplit-stack), but couldn't adjust its prologue");
1025    }
1026  }
1027
1028  if (Target->NeedsMoreStackNonSplit)
1029    switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1030}
1031
1032template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1033  if (Type == SHT_NOBITS)
1034    return;
1035
1036  if (auto *S = dyn_cast<SyntheticSection>(this)) {
1037    S->writeTo(Buf + OutSecOff);
1038    return;
1039  }
1040
1041  // If -r or --emit-relocs is given, then an InputSection
1042  // may be a relocation section.
1043  if (Type == SHT_RELA) {
1044    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1045    return;
1046  }
1047  if (Type == SHT_REL) {
1048    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1049    return;
1050  }
1051
1052  // If -r is given, we may have a SHT_GROUP section.
1053  if (Type == SHT_GROUP) {
1054    copyShtGroup<ELFT>(Buf + OutSecOff);
1055    return;
1056  }
1057
1058  // If this is a compressed section, uncompress section contents directly
1059  // to the buffer.
1060  if (UncompressedSize >= 0 && !UncompressedBuf) {
1061    size_t Size = UncompressedSize;
1062    if (Error E = zlib::uncompress(toStringRef(RawData),
1063                                   (char *)(Buf + OutSecOff), Size))
1064      fatal(toString(this) +
1065            ": uncompress failed: " + llvm::toString(std::move(E)));
1066    uint8_t *BufEnd = Buf + OutSecOff + Size;
1067    relocate<ELFT>(Buf, BufEnd);
1068    return;
1069  }
1070
1071  // Copy section contents from source object file to output file
1072  // and then apply relocations.
1073  memcpy(Buf + OutSecOff, data().data(), data().size());
1074  uint8_t *BufEnd = Buf + OutSecOff + data().size();
1075  relocate<ELFT>(Buf, BufEnd);
1076}
1077
1078void InputSection::replace(InputSection *Other) {
1079  Alignment = std::max(Alignment, Other->Alignment);
1080  Other->Repl = Repl;
1081  Other->Live = false;
1082}
1083
1084template <class ELFT>
1085EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1086                               const typename ELFT::Shdr &Header,
1087                               StringRef Name)
1088    : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1089
1090SyntheticSection *EhInputSection::getParent() const {
1091  return cast_or_null<SyntheticSection>(Parent);
1092}
1093
1094// Returns the index of the first relocation that points to a region between
1095// Begin and Begin+Size.
1096template <class IntTy, class RelTy>
1097static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1098                         unsigned &RelocI) {
1099  // Start search from RelocI for fast access. That works because the
1100  // relocations are sorted in .eh_frame.
1101  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1102    const RelTy &Rel = Rels[RelocI];
1103    if (Rel.r_offset < Begin)
1104      continue;
1105
1106    if (Rel.r_offset < Begin + Size)
1107      return RelocI;
1108    return -1;
1109  }
1110  return -1;
1111}
1112
1113// .eh_frame is a sequence of CIE or FDE records.
1114// This function splits an input section into records and returns them.
1115template <class ELFT> void EhInputSection::split() {
1116  if (AreRelocsRela)
1117    split<ELFT>(relas<ELFT>());
1118  else
1119    split<ELFT>(rels<ELFT>());
1120}
1121
1122template <class ELFT, class RelTy>
1123void EhInputSection::split(ArrayRef<RelTy> Rels) {
1124  unsigned RelI = 0;
1125  for (size_t Off = 0, End = data().size(); Off != End;) {
1126    size_t Size = readEhRecordSize(this, Off);
1127    Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1128    // The empty record is the end marker.
1129    if (Size == 4)
1130      break;
1131    Off += Size;
1132  }
1133}
1134
1135static size_t findNull(StringRef S, size_t EntSize) {
1136  // Optimize the common case.
1137  if (EntSize == 1)
1138    return S.find(0);
1139
1140  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1141    const char *B = S.begin() + I;
1142    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1143      return I;
1144  }
1145  return StringRef::npos;
1146}
1147
1148SyntheticSection *MergeInputSection::getParent() const {
1149  return cast_or_null<SyntheticSection>(Parent);
1150}
1151
1152// Split SHF_STRINGS section. Such section is a sequence of
1153// null-terminated strings.
1154void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1155  size_t Off = 0;
1156  bool IsAlloc = Flags & SHF_ALLOC;
1157  StringRef S = toStringRef(Data);
1158
1159  while (!S.empty()) {
1160    size_t End = findNull(S, EntSize);
1161    if (End == StringRef::npos)
1162      fatal(toString(this) + ": string is not null terminated");
1163    size_t Size = End + EntSize;
1164
1165    Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1166    S = S.substr(Size);
1167    Off += Size;
1168  }
1169}
1170
1171// Split non-SHF_STRINGS section. Such section is a sequence of
1172// fixed size records.
1173void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1174                                        size_t EntSize) {
1175  size_t Size = Data.size();
1176  assert((Size % EntSize) == 0);
1177  bool IsAlloc = Flags & SHF_ALLOC;
1178
1179  for (size_t I = 0; I != Size; I += EntSize)
1180    Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1181}
1182
1183template <class ELFT>
1184MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1185                                     const typename ELFT::Shdr &Header,
1186                                     StringRef Name)
1187    : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1188
1189MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1190                                     uint64_t Entsize, ArrayRef<uint8_t> Data,
1191                                     StringRef Name)
1192    : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1193                       /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1194
1195// This function is called after we obtain a complete list of input sections
1196// that need to be linked. This is responsible to split section contents
1197// into small chunks for further processing.
1198//
1199// Note that this function is called from parallelForEach. This must be
1200// thread-safe (i.e. no memory allocation from the pools).
1201void MergeInputSection::splitIntoPieces() {
1202  assert(Pieces.empty());
1203
1204  if (Flags & SHF_STRINGS)
1205    splitStrings(data(), Entsize);
1206  else
1207    splitNonStrings(data(), Entsize);
1208}
1209
1210SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1211  if (this->data().size() <= Offset)
1212    fatal(toString(this) + ": offset is outside the section");
1213
1214  // If Offset is not at beginning of a section piece, it is not in the map.
1215  // In that case we need to  do a binary search of the original section piece vector.
1216  auto It2 =
1217      llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) {
1218        return Offset < P.InputOff;
1219      });
1220  return &It2[-1];
1221}
1222
1223// Returns the offset in an output section for a given input offset.
1224// Because contents of a mergeable section is not contiguous in output,
1225// it is not just an addition to a base output offset.
1226uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1227  // If Offset is not at beginning of a section piece, it is not in the map.
1228  // In that case we need to search from the original section piece vector.
1229  const SectionPiece &Piece =
1230      *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1231  uint64_t Addend = Offset - Piece.InputOff;
1232  return Piece.OutputOff + Addend;
1233}
1234
1235template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1236                                    StringRef);
1237template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1238                                    StringRef);
1239template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1240                                    StringRef);
1241template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1242                                    StringRef);
1243
1244template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1245template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1246template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1247template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1248
1249template void InputSection::writeTo<ELF32LE>(uint8_t *);
1250template void InputSection::writeTo<ELF32BE>(uint8_t *);
1251template void InputSection::writeTo<ELF64LE>(uint8_t *);
1252template void InputSection::writeTo<ELF64BE>(uint8_t *);
1253
1254template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1255                                              const ELF32LE::Shdr &, StringRef);
1256template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1257                                              const ELF32BE::Shdr &, StringRef);
1258template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1259                                              const ELF64LE::Shdr &, StringRef);
1260template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1261                                              const ELF64BE::Shdr &, StringRef);
1262
1263template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1264                                        const ELF32LE::Shdr &, StringRef);
1265template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1266                                        const ELF32BE::Shdr &, StringRef);
1267template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1268                                        const ELF64LE::Shdr &, StringRef);
1269template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1270                                        const ELF64BE::Shdr &, StringRef);
1271
1272template void EhInputSection::split<ELF32LE>();
1273template void EhInputSection::split<ELF32BE>();
1274template void EhInputSection::split<ELF64LE>();
1275template void EhInputSection::split<ELF64BE>();
1276