InputSection.cpp revision 349004
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3//                             The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "InputSection.h"
11#include "Config.h"
12#include "EhFrame.h"
13#include "InputFiles.h"
14#include "LinkerScript.h"
15#include "OutputSections.h"
16#include "Relocations.h"
17#include "SymbolTable.h"
18#include "Symbols.h"
19#include "SyntheticSections.h"
20#include "Target.h"
21#include "Thunks.h"
22#include "lld/Common/ErrorHandler.h"
23#include "lld/Common/Memory.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Compression.h"
26#include "llvm/Support/Endian.h"
27#include "llvm/Support/Threading.h"
28#include "llvm/Support/xxhash.h"
29#include <algorithm>
30#include <mutex>
31#include <set>
32#include <vector>
33
34using namespace llvm;
35using namespace llvm::ELF;
36using namespace llvm::object;
37using namespace llvm::support;
38using namespace llvm::support::endian;
39using namespace llvm::sys;
40
41using namespace lld;
42using namespace lld::elf;
43
44std::vector<InputSectionBase *> elf::InputSections;
45
46// Returns a string to construct an error message.
47std::string lld::toString(const InputSectionBase *Sec) {
48  return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
49}
50
51template <class ELFT>
52static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
53                                            const typename ELFT::Shdr &Hdr) {
54  if (Hdr.sh_type == SHT_NOBITS)
55    return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
56  return check(File.getObj().getSectionContents(&Hdr));
57}
58
59InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
60                                   uint32_t Type, uint64_t Entsize,
61                                   uint32_t Link, uint32_t Info,
62                                   uint32_t Alignment, ArrayRef<uint8_t> Data,
63                                   StringRef Name, Kind SectionKind)
64    : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
65                  Link),
66      File(File), RawData(Data) {
67  // In order to reduce memory allocation, we assume that mergeable
68  // sections are smaller than 4 GiB, which is not an unreasonable
69  // assumption as of 2017.
70  if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
71    error(toString(this) + ": section too large");
72
73  NumRelocations = 0;
74  AreRelocsRela = false;
75
76  // The ELF spec states that a value of 0 means the section has
77  // no alignment constraits.
78  uint32_t V = std::max<uint64_t>(Alignment, 1);
79  if (!isPowerOf2_64(V))
80    fatal(toString(File) + ": section sh_addralign is not a power of 2");
81  this->Alignment = V;
82
83  // In ELF, each section can be compressed by zlib, and if compressed,
84  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85  // If that's the case, demangle section name so that we can handle a
86  // section as if it weren't compressed.
87  if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
88    if (!zlib::isAvailable())
89      error(toString(File) + ": contains a compressed section, " +
90            "but zlib is not available");
91    parseCompressedHeader();
92  }
93}
94
95// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
96// SHF_GROUP is a marker that a section belongs to some comdat group.
97// That flag doesn't make sense in an executable.
98static uint64_t getFlags(uint64_t Flags) {
99  Flags &= ~(uint64_t)SHF_INFO_LINK;
100  if (!Config->Relocatable)
101    Flags &= ~(uint64_t)SHF_GROUP;
102  return Flags;
103}
104
105// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
106// March 2017) fail to infer section types for sections starting with
107// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
108// SHF_INIT_ARRAY. As a result, the following assembler directive
109// creates ".init_array.100" with SHT_PROGBITS, for example.
110//
111//   .section .init_array.100, "aw"
112//
113// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
114// incorrect inputs as if they were correct from the beginning.
115static uint64_t getType(uint64_t Type, StringRef Name) {
116  if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
117    return SHT_INIT_ARRAY;
118  if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
119    return SHT_FINI_ARRAY;
120  return Type;
121}
122
123template <class ELFT>
124InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
125                                   const typename ELFT::Shdr &Hdr,
126                                   StringRef Name, Kind SectionKind)
127    : InputSectionBase(&File, getFlags(Hdr.sh_flags),
128                       getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
129                       Hdr.sh_info, Hdr.sh_addralign,
130                       getSectionContents(File, Hdr), Name, SectionKind) {
131  // We reject object files having insanely large alignments even though
132  // they are allowed by the spec. I think 4GB is a reasonable limitation.
133  // We might want to relax this in the future.
134  if (Hdr.sh_addralign > UINT32_MAX)
135    fatal(toString(&File) + ": section sh_addralign is too large");
136}
137
138size_t InputSectionBase::getSize() const {
139  if (auto *S = dyn_cast<SyntheticSection>(this))
140    return S->getSize();
141  if (UncompressedSize >= 0)
142    return UncompressedSize;
143  return RawData.size();
144}
145
146void InputSectionBase::uncompress() const {
147  size_t Size = UncompressedSize;
148  UncompressedBuf.reset(new char[Size]);
149
150  if (Error E =
151          zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size))
152    fatal(toString(this) +
153          ": uncompress failed: " + llvm::toString(std::move(E)));
154  RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size);
155}
156
157uint64_t InputSectionBase::getOffsetInFile() const {
158  const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
159  const uint8_t *SecStart = data().begin();
160  return SecStart - FileStart;
161}
162
163uint64_t SectionBase::getOffset(uint64_t Offset) const {
164  switch (kind()) {
165  case Output: {
166    auto *OS = cast<OutputSection>(this);
167    // For output sections we treat offset -1 as the end of the section.
168    return Offset == uint64_t(-1) ? OS->Size : Offset;
169  }
170  case Regular:
171  case Synthetic:
172    return cast<InputSection>(this)->getOffset(Offset);
173  case EHFrame:
174    // The file crtbeginT.o has relocations pointing to the start of an empty
175    // .eh_frame that is known to be the first in the link. It does that to
176    // identify the start of the output .eh_frame.
177    return Offset;
178  case Merge:
179    const MergeInputSection *MS = cast<MergeInputSection>(this);
180    if (InputSection *IS = MS->getParent())
181      return IS->getOffset(MS->getParentOffset(Offset));
182    return MS->getParentOffset(Offset);
183  }
184  llvm_unreachable("invalid section kind");
185}
186
187uint64_t SectionBase::getVA(uint64_t Offset) const {
188  const OutputSection *Out = getOutputSection();
189  return (Out ? Out->Addr : 0) + getOffset(Offset);
190}
191
192OutputSection *SectionBase::getOutputSection() {
193  InputSection *Sec;
194  if (auto *IS = dyn_cast<InputSection>(this))
195    Sec = IS;
196  else if (auto *MS = dyn_cast<MergeInputSection>(this))
197    Sec = MS->getParent();
198  else if (auto *EH = dyn_cast<EhInputSection>(this))
199    Sec = EH->getParent();
200  else
201    return cast<OutputSection>(this);
202  return Sec ? Sec->getParent() : nullptr;
203}
204
205// When a section is compressed, `RawData` consists with a header followed
206// by zlib-compressed data. This function parses a header to initialize
207// `UncompressedSize` member and remove the header from `RawData`.
208void InputSectionBase::parseCompressedHeader() {
209  typedef typename ELF64LE::Chdr Chdr64;
210  typedef typename ELF32LE::Chdr Chdr32;
211
212  // Old-style header
213  if (Name.startswith(".zdebug")) {
214    if (!toStringRef(RawData).startswith("ZLIB")) {
215      error(toString(this) + ": corrupted compressed section header");
216      return;
217    }
218    RawData = RawData.slice(4);
219
220    if (RawData.size() < 8) {
221      error(toString(this) + ": corrupted compressed section header");
222      return;
223    }
224
225    UncompressedSize = read64be(RawData.data());
226    RawData = RawData.slice(8);
227
228    // Restore the original section name.
229    // (e.g. ".zdebug_info" -> ".debug_info")
230    Name = Saver.save("." + Name.substr(2));
231    return;
232  }
233
234  assert(Flags & SHF_COMPRESSED);
235  Flags &= ~(uint64_t)SHF_COMPRESSED;
236
237  // New-style 64-bit header
238  if (Config->Is64) {
239    if (RawData.size() < sizeof(Chdr64)) {
240      error(toString(this) + ": corrupted compressed section");
241      return;
242    }
243
244    auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
245    if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
246      error(toString(this) + ": unsupported compression type");
247      return;
248    }
249
250    UncompressedSize = Hdr->ch_size;
251    Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1);
252    RawData = RawData.slice(sizeof(*Hdr));
253    return;
254  }
255
256  // New-style 32-bit header
257  if (RawData.size() < sizeof(Chdr32)) {
258    error(toString(this) + ": corrupted compressed section");
259    return;
260  }
261
262  auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
263  if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
264    error(toString(this) + ": unsupported compression type");
265    return;
266  }
267
268  UncompressedSize = Hdr->ch_size;
269  Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1);
270  RawData = RawData.slice(sizeof(*Hdr));
271}
272
273InputSection *InputSectionBase::getLinkOrderDep() const {
274  assert(Link);
275  assert(Flags & SHF_LINK_ORDER);
276  return cast<InputSection>(File->getSections()[Link]);
277}
278
279// Find a function symbol that encloses a given location.
280template <class ELFT>
281Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
282  for (Symbol *B : File->getSymbols())
283    if (Defined *D = dyn_cast<Defined>(B))
284      if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
285          Offset < D->Value + D->Size)
286        return D;
287  return nullptr;
288}
289
290// Returns a source location string. Used to construct an error message.
291template <class ELFT>
292std::string InputSectionBase::getLocation(uint64_t Offset) {
293  std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
294
295  // We don't have file for synthetic sections.
296  if (getFile<ELFT>() == nullptr)
297    return (Config->OutputFile + ":(" + SecAndOffset + ")")
298        .str();
299
300  // First check if we can get desired values from debugging information.
301  if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
302    return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
303           SecAndOffset + ")";
304
305  // File->SourceFile contains STT_FILE symbol that contains a
306  // source file name. If it's missing, we use an object file name.
307  std::string SrcFile = getFile<ELFT>()->SourceFile;
308  if (SrcFile.empty())
309    SrcFile = toString(File);
310
311  if (Defined *D = getEnclosingFunction<ELFT>(Offset))
312    return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
313
314  // If there's no symbol, print out the offset in the section.
315  return (SrcFile + ":(" + SecAndOffset + ")");
316}
317
318// This function is intended to be used for constructing an error message.
319// The returned message looks like this:
320//
321//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
322//
323//  Returns an empty string if there's no way to get line info.
324std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
325  return File->getSrcMsg(Sym, *this, Offset);
326}
327
328// Returns a filename string along with an optional section name. This
329// function is intended to be used for constructing an error
330// message. The returned message looks like this:
331//
332//   path/to/foo.o:(function bar)
333//
334// or
335//
336//   path/to/foo.o:(function bar) in archive path/to/bar.a
337std::string InputSectionBase::getObjMsg(uint64_t Off) {
338  std::string Filename = File->getName();
339
340  std::string Archive;
341  if (!File->ArchiveName.empty())
342    Archive = " in archive " + File->ArchiveName;
343
344  // Find a symbol that encloses a given location.
345  for (Symbol *B : File->getSymbols())
346    if (auto *D = dyn_cast<Defined>(B))
347      if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
348        return Filename + ":(" + toString(*D) + ")" + Archive;
349
350  // If there's no symbol, print out the offset in the section.
351  return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
352      .str();
353}
354
355InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
356
357InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
358                           uint32_t Alignment, ArrayRef<uint8_t> Data,
359                           StringRef Name, Kind K)
360    : InputSectionBase(F, Flags, Type,
361                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
362                       Name, K) {}
363
364template <class ELFT>
365InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
366                           StringRef Name)
367    : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
368
369bool InputSection::classof(const SectionBase *S) {
370  return S->kind() == SectionBase::Regular ||
371         S->kind() == SectionBase::Synthetic;
372}
373
374OutputSection *InputSection::getParent() const {
375  return cast_or_null<OutputSection>(Parent);
376}
377
378// Copy SHT_GROUP section contents. Used only for the -r option.
379template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
380  // ELFT::Word is the 32-bit integral type in the target endianness.
381  typedef typename ELFT::Word u32;
382  ArrayRef<u32> From = getDataAs<u32>();
383  auto *To = reinterpret_cast<u32 *>(Buf);
384
385  // The first entry is not a section number but a flag.
386  *To++ = From[0];
387
388  // Adjust section numbers because section numbers in an input object
389  // files are different in the output.
390  ArrayRef<InputSectionBase *> Sections = File->getSections();
391  for (uint32_t Idx : From.slice(1))
392    *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
393}
394
395InputSectionBase *InputSection::getRelocatedSection() const {
396  if (!File || (Type != SHT_RELA && Type != SHT_REL))
397    return nullptr;
398  ArrayRef<InputSectionBase *> Sections = File->getSections();
399  return Sections[Info];
400}
401
402// This is used for -r and --emit-relocs. We can't use memcpy to copy
403// relocations because we need to update symbol table offset and section index
404// for each relocation. So we copy relocations one by one.
405template <class ELFT, class RelTy>
406void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
407  InputSectionBase *Sec = getRelocatedSection();
408
409  for (const RelTy &Rel : Rels) {
410    RelType Type = Rel.getType(Config->IsMips64EL);
411    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
412
413    auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
414    Buf += sizeof(RelTy);
415
416    if (RelTy::IsRela)
417      P->r_addend = getAddend<ELFT>(Rel);
418
419    // Output section VA is zero for -r, so r_offset is an offset within the
420    // section, but for --emit-relocs it is an virtual address.
421    P->r_offset = Sec->getVA(Rel.r_offset);
422    P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
423                        Config->IsMips64EL);
424
425    if (Sym.Type == STT_SECTION) {
426      // We combine multiple section symbols into only one per
427      // section. This means we have to update the addend. That is
428      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
429      // section data. We do that by adding to the Relocation vector.
430
431      // .eh_frame is horribly special and can reference discarded sections. To
432      // avoid having to parse and recreate .eh_frame, we just replace any
433      // relocation in it pointing to discarded sections with R_*_NONE, which
434      // hopefully creates a frame that is ignored at runtime.
435      auto *D = dyn_cast<Defined>(&Sym);
436      if (!D) {
437        error("STT_SECTION symbol should be defined");
438        continue;
439      }
440      SectionBase *Section = D->Section->Repl;
441      if (!Section->Live) {
442        P->setSymbolAndType(0, 0, false);
443        continue;
444      }
445
446      int64_t Addend = getAddend<ELFT>(Rel);
447      const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
448      if (!RelTy::IsRela)
449        Addend = Target->getImplicitAddend(BufLoc, Type);
450
451      if (Config->EMachine == EM_MIPS && Config->Relocatable &&
452          Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
453        // Some MIPS relocations depend on "gp" value. By default,
454        // this value has 0x7ff0 offset from a .got section. But
455        // relocatable files produced by a complier or a linker
456        // might redefine this default value and we must use it
457        // for a calculation of the relocation result. When we
458        // generate EXE or DSO it's trivial. Generating a relocatable
459        // output is more difficult case because the linker does
460        // not calculate relocations in this mode and loses
461        // individual "gp" values used by each input object file.
462        // As a workaround we add the "gp" value to the relocation
463        // addend and save it back to the file.
464        Addend += Sec->getFile<ELFT>()->MipsGp0;
465      }
466
467      if (RelTy::IsRela)
468        P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
469      else if (Config->Relocatable)
470        Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
471    }
472  }
473}
474
475// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
476// references specially. The general rule is that the value of the symbol in
477// this context is the address of the place P. A further special case is that
478// branch relocations to an undefined weak reference resolve to the next
479// instruction.
480static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
481                                              uint32_t P) {
482  switch (Type) {
483  // Unresolved branch relocations to weak references resolve to next
484  // instruction, this will be either 2 or 4 bytes on from P.
485  case R_ARM_THM_JUMP11:
486    return P + 2 + A;
487  case R_ARM_CALL:
488  case R_ARM_JUMP24:
489  case R_ARM_PC24:
490  case R_ARM_PLT32:
491  case R_ARM_PREL31:
492  case R_ARM_THM_JUMP19:
493  case R_ARM_THM_JUMP24:
494    return P + 4 + A;
495  case R_ARM_THM_CALL:
496    // We don't want an interworking BLX to ARM
497    return P + 5 + A;
498  // Unresolved non branch pc-relative relocations
499  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
500  // targets a weak-reference.
501  case R_ARM_MOVW_PREL_NC:
502  case R_ARM_MOVT_PREL:
503  case R_ARM_REL32:
504  case R_ARM_THM_MOVW_PREL_NC:
505  case R_ARM_THM_MOVT_PREL:
506    return P + A;
507  }
508  llvm_unreachable("ARM pc-relative relocation expected\n");
509}
510
511// The comment above getARMUndefinedRelativeWeakVA applies to this function.
512static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
513                                                  uint64_t P) {
514  switch (Type) {
515  // Unresolved branch relocations to weak references resolve to next
516  // instruction, this is 4 bytes on from P.
517  case R_AARCH64_CALL26:
518  case R_AARCH64_CONDBR19:
519  case R_AARCH64_JUMP26:
520  case R_AARCH64_TSTBR14:
521    return P + 4 + A;
522  // Unresolved non branch pc-relative relocations
523  case R_AARCH64_PREL16:
524  case R_AARCH64_PREL32:
525  case R_AARCH64_PREL64:
526  case R_AARCH64_ADR_PREL_LO21:
527  case R_AARCH64_LD_PREL_LO19:
528    return P + A;
529  }
530  llvm_unreachable("AArch64 pc-relative relocation expected\n");
531}
532
533// ARM SBREL relocations are of the form S + A - B where B is the static base
534// The ARM ABI defines base to be "addressing origin of the output segment
535// defining the symbol S". We defined the "addressing origin"/static base to be
536// the base of the PT_LOAD segment containing the Sym.
537// The procedure call standard only defines a Read Write Position Independent
538// RWPI variant so in practice we should expect the static base to be the base
539// of the RW segment.
540static uint64_t getARMStaticBase(const Symbol &Sym) {
541  OutputSection *OS = Sym.getOutputSection();
542  if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
543    fatal("SBREL relocation to " + Sym.getName() + " without static base");
544  return OS->PtLoad->FirstSec->Addr;
545}
546
547// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
548// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
549// is calculated using PCREL_HI20's symbol.
550//
551// This function returns the R_RISCV_PCREL_HI20 relocation from
552// R_RISCV_PCREL_LO12's symbol and addend.
553static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
554  const Defined *D = cast<Defined>(Sym);
555  InputSection *IS = cast<InputSection>(D->Section);
556
557  if (Addend != 0)
558    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
559         IS->getObjMsg(D->Value) + " is ignored");
560
561  // Relocations are sorted by offset, so we can use std::equal_range to do
562  // binary search.
563  auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(),
564                                D->Value, RelocationOffsetComparator{});
565  for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It)
566    if (isRelExprOneOf<R_PC>(It->Expr))
567      return &*It;
568
569  error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
570        " without an associated R_RISCV_PCREL_HI20 relocation");
571  return nullptr;
572}
573
574// A TLS symbol's virtual address is relative to the TLS segment. Add a
575// target-specific adjustment to produce a thread-pointer-relative offset.
576static int64_t getTlsTpOffset() {
577  switch (Config->EMachine) {
578  case EM_ARM:
579  case EM_AARCH64:
580    // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
581    // followed by a variable amount of alignment padding, followed by the TLS
582    // segment.
583    return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
584  case EM_386:
585  case EM_X86_64:
586    // Variant 2. The TLS segment is located just before the thread pointer.
587    return -Out::TlsPhdr->p_memsz;
588  case EM_PPC64:
589    // The thread pointer points to a fixed offset from the start of the
590    // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
591    // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
592    // program's TLS segment.
593    return -0x7000;
594  default:
595    llvm_unreachable("unhandled Config->EMachine");
596  }
597}
598
599static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
600                                 uint64_t P, const Symbol &Sym, RelExpr Expr) {
601  switch (Expr) {
602  case R_INVALID:
603    return 0;
604  case R_ABS:
605  case R_RELAX_TLS_LD_TO_LE_ABS:
606  case R_RELAX_GOT_PC_NOPIC:
607    return Sym.getVA(A);
608  case R_ADDEND:
609    return A;
610  case R_ARM_SBREL:
611    return Sym.getVA(A) - getARMStaticBase(Sym);
612  case R_GOT:
613  case R_GOT_PLT:
614  case R_RELAX_TLS_GD_TO_IE_ABS:
615    return Sym.getGotVA() + A;
616  case R_GOTONLY_PC:
617    return In.Got->getVA() + A - P;
618  case R_GOTONLY_PC_FROM_END:
619    return In.Got->getVA() + A - P + In.Got->getSize();
620  case R_GOTREL:
621    return Sym.getVA(A) - In.Got->getVA();
622  case R_GOTREL_FROM_END:
623    return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize();
624  case R_GOT_FROM_END:
625  case R_RELAX_TLS_GD_TO_IE_END:
626    return Sym.getGotOffset() + A - In.Got->getSize();
627  case R_TLSLD_GOT_OFF:
628  case R_GOT_OFF:
629  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
630    return Sym.getGotOffset() + A;
631  case R_AARCH64_GOT_PAGE_PC:
632  case R_AARCH64_GOT_PAGE_PC_PLT:
633  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
634    return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
635  case R_GOT_PC:
636  case R_RELAX_TLS_GD_TO_IE:
637    return Sym.getGotVA() + A - P;
638  case R_HEXAGON_GOT:
639    return Sym.getGotVA() - In.GotPlt->getVA();
640  case R_MIPS_GOTREL:
641    return Sym.getVA(A) - In.MipsGot->getGp(File);
642  case R_MIPS_GOT_GP:
643    return In.MipsGot->getGp(File) + A;
644  case R_MIPS_GOT_GP_PC: {
645    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
646    // is _gp_disp symbol. In that case we should use the following
647    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
648    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
649    // microMIPS variants of these relocations use slightly different
650    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
651    // to correctly handle less-sugnificant bit of the microMIPS symbol.
652    uint64_t V = In.MipsGot->getGp(File) + A - P;
653    if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
654      V += 4;
655    if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
656      V -= 1;
657    return V;
658  }
659  case R_MIPS_GOT_LOCAL_PAGE:
660    // If relocation against MIPS local symbol requires GOT entry, this entry
661    // should be initialized by 'page address'. This address is high 16-bits
662    // of sum the symbol's value and the addend.
663    return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
664           In.MipsGot->getGp(File);
665  case R_MIPS_GOT_OFF:
666  case R_MIPS_GOT_OFF32:
667    // In case of MIPS if a GOT relocation has non-zero addend this addend
668    // should be applied to the GOT entry content not to the GOT entry offset.
669    // That is why we use separate expression type.
670    return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
671           In.MipsGot->getGp(File);
672  case R_MIPS_TLSGD:
673    return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
674           In.MipsGot->getGp(File);
675  case R_MIPS_TLSLD:
676    return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
677           In.MipsGot->getGp(File);
678  case R_AARCH64_PAGE_PC: {
679    uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
680    return getAArch64Page(Val) - getAArch64Page(P);
681  }
682  case R_AARCH64_PLT_PAGE_PC: {
683    uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getPltVA() + A;
684    return getAArch64Page(Val) - getAArch64Page(P);
685  }
686  case R_RISCV_PC_INDIRECT: {
687    if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
688      return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
689                              *HiRel->Sym, HiRel->Expr);
690    return 0;
691  }
692  case R_PC: {
693    uint64_t Dest;
694    if (Sym.isUndefWeak()) {
695      // On ARM and AArch64 a branch to an undefined weak resolves to the
696      // next instruction, otherwise the place.
697      if (Config->EMachine == EM_ARM)
698        Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
699      else if (Config->EMachine == EM_AARCH64)
700        Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
701      else
702        Dest = Sym.getVA(A);
703    } else {
704      Dest = Sym.getVA(A);
705    }
706    return Dest - P;
707  }
708  case R_PLT:
709    return Sym.getPltVA() + A;
710  case R_PLT_PC:
711  case R_PPC_CALL_PLT:
712    return Sym.getPltVA() + A - P;
713  case R_PPC_CALL: {
714    uint64_t SymVA = Sym.getVA(A);
715    // If we have an undefined weak symbol, we might get here with a symbol
716    // address of zero. That could overflow, but the code must be unreachable,
717    // so don't bother doing anything at all.
718    if (!SymVA)
719      return 0;
720
721    // PPC64 V2 ABI describes two entry points to a function. The global entry
722    // point is used for calls where the caller and callee (may) have different
723    // TOC base pointers and r2 needs to be modified to hold the TOC base for
724    // the callee. For local calls the caller and callee share the same
725    // TOC base and so the TOC pointer initialization code should be skipped by
726    // branching to the local entry point.
727    return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
728  }
729  case R_PPC_TOC:
730    return getPPC64TocBase() + A;
731  case R_RELAX_GOT_PC:
732    return Sym.getVA(A) - P;
733  case R_RELAX_TLS_GD_TO_LE:
734  case R_RELAX_TLS_IE_TO_LE:
735  case R_RELAX_TLS_LD_TO_LE:
736  case R_TLS:
737    // A weak undefined TLS symbol resolves to the base of the TLS
738    // block, i.e. gets a value of zero. If we pass --gc-sections to
739    // lld and .tbss is not referenced, it gets reclaimed and we don't
740    // create a TLS program header. Therefore, we resolve this
741    // statically to zero.
742    if (Sym.isTls() && Sym.isUndefWeak())
743      return 0;
744    return Sym.getVA(A) + getTlsTpOffset();
745  case R_RELAX_TLS_GD_TO_LE_NEG:
746  case R_NEG_TLS:
747    return Out::TlsPhdr->p_memsz - Sym.getVA(A);
748  case R_SIZE:
749    return Sym.getSize() + A;
750  case R_TLSDESC:
751    return In.Got->getGlobalDynAddr(Sym) + A;
752  case R_AARCH64_TLSDESC_PAGE:
753    return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
754           getAArch64Page(P);
755  case R_TLSGD_GOT:
756    return In.Got->getGlobalDynOffset(Sym) + A;
757  case R_TLSGD_GOT_FROM_END:
758    return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize();
759  case R_TLSGD_PC:
760    return In.Got->getGlobalDynAddr(Sym) + A - P;
761  case R_TLSLD_GOT_FROM_END:
762    return In.Got->getTlsIndexOff() + A - In.Got->getSize();
763  case R_TLSLD_GOT:
764    return In.Got->getTlsIndexOff() + A;
765  case R_TLSLD_PC:
766    return In.Got->getTlsIndexVA() + A - P;
767  default:
768    llvm_unreachable("invalid expression");
769  }
770}
771
772// This function applies relocations to sections without SHF_ALLOC bit.
773// Such sections are never mapped to memory at runtime. Debug sections are
774// an example. Relocations in non-alloc sections are much easier to
775// handle than in allocated sections because it will never need complex
776// treatement such as GOT or PLT (because at runtime no one refers them).
777// So, we handle relocations for non-alloc sections directly in this
778// function as a performance optimization.
779template <class ELFT, class RelTy>
780void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
781  const unsigned Bits = sizeof(typename ELFT::uint) * 8;
782
783  for (const RelTy &Rel : Rels) {
784    RelType Type = Rel.getType(Config->IsMips64EL);
785
786    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
787    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
788    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
789    // need to keep this bug-compatible code for a while.
790    if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
791      continue;
792
793    uint64_t Offset = getOffset(Rel.r_offset);
794    uint8_t *BufLoc = Buf + Offset;
795    int64_t Addend = getAddend<ELFT>(Rel);
796    if (!RelTy::IsRela)
797      Addend += Target->getImplicitAddend(BufLoc, Type);
798
799    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
800    RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
801    if (Expr == R_NONE)
802      continue;
803
804    if (Expr != R_ABS) {
805      std::string Msg = getLocation<ELFT>(Offset) +
806                        ": has non-ABS relocation " + toString(Type) +
807                        " against symbol '" + toString(Sym) + "'";
808      if (Expr != R_PC) {
809        error(Msg);
810        return;
811      }
812
813      // If the control reaches here, we found a PC-relative relocation in a
814      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
815      // at runtime, the notion of PC-relative doesn't make sense here. So,
816      // this is a usage error. However, GNU linkers historically accept such
817      // relocations without any errors and relocate them as if they were at
818      // address 0. For bug-compatibilty, we accept them with warnings. We
819      // know Steel Bank Common Lisp as of 2018 have this bug.
820      warn(Msg);
821      Target->relocateOne(BufLoc, Type,
822                          SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
823      continue;
824    }
825
826    if (Sym.isTls() && !Out::TlsPhdr)
827      Target->relocateOne(BufLoc, Type, 0);
828    else
829      Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
830  }
831}
832
833// This is used when '-r' is given.
834// For REL targets, InputSection::copyRelocations() may store artificial
835// relocations aimed to update addends. They are handled in relocateAlloc()
836// for allocatable sections, and this function does the same for
837// non-allocatable sections, such as sections with debug information.
838static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
839  const unsigned Bits = Config->Is64 ? 64 : 32;
840
841  for (const Relocation &Rel : Sec->Relocations) {
842    // InputSection::copyRelocations() adds only R_ABS relocations.
843    assert(Rel.Expr == R_ABS);
844    uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
845    uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
846    Target->relocateOne(BufLoc, Rel.Type, TargetVA);
847  }
848}
849
850template <class ELFT>
851void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
852  if (Flags & SHF_EXECINSTR)
853    adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
854
855  if (Flags & SHF_ALLOC) {
856    relocateAlloc(Buf, BufEnd);
857    return;
858  }
859
860  auto *Sec = cast<InputSection>(this);
861  if (Config->Relocatable)
862    relocateNonAllocForRelocatable(Sec, Buf);
863  else if (Sec->AreRelocsRela)
864    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
865  else
866    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
867}
868
869void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
870  assert(Flags & SHF_ALLOC);
871  const unsigned Bits = Config->Wordsize * 8;
872
873  for (const Relocation &Rel : Relocations) {
874    uint64_t Offset = Rel.Offset;
875    if (auto *Sec = dyn_cast<InputSection>(this))
876      Offset += Sec->OutSecOff;
877    uint8_t *BufLoc = Buf + Offset;
878    RelType Type = Rel.Type;
879
880    uint64_t AddrLoc = getOutputSection()->Addr + Offset;
881    RelExpr Expr = Rel.Expr;
882    uint64_t TargetVA = SignExtend64(
883        getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
884        Bits);
885
886    switch (Expr) {
887    case R_RELAX_GOT_PC:
888    case R_RELAX_GOT_PC_NOPIC:
889      Target->relaxGot(BufLoc, TargetVA);
890      break;
891    case R_RELAX_TLS_IE_TO_LE:
892      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
893      break;
894    case R_RELAX_TLS_LD_TO_LE:
895    case R_RELAX_TLS_LD_TO_LE_ABS:
896      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
897      break;
898    case R_RELAX_TLS_GD_TO_LE:
899    case R_RELAX_TLS_GD_TO_LE_NEG:
900      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
901      break;
902    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
903    case R_RELAX_TLS_GD_TO_IE:
904    case R_RELAX_TLS_GD_TO_IE_ABS:
905    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
906    case R_RELAX_TLS_GD_TO_IE_END:
907      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
908      break;
909    case R_PPC_CALL:
910      // If this is a call to __tls_get_addr, it may be part of a TLS
911      // sequence that has been relaxed and turned into a nop. In this
912      // case, we don't want to handle it as a call.
913      if (read32(BufLoc) == 0x60000000) // nop
914        break;
915
916      // Patch a nop (0x60000000) to a ld.
917      if (Rel.Sym->NeedsTocRestore) {
918        if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
919          error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
920          break;
921        }
922        write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
923      }
924      Target->relocateOne(BufLoc, Type, TargetVA);
925      break;
926    default:
927      Target->relocateOne(BufLoc, Type, TargetVA);
928      break;
929    }
930  }
931}
932
933// For each function-defining prologue, find any calls to __morestack,
934// and replace them with calls to __morestack_non_split.
935static void switchMorestackCallsToMorestackNonSplit(
936    DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
937
938  // If the target adjusted a function's prologue, all calls to
939  // __morestack inside that function should be switched to
940  // __morestack_non_split.
941  Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
942  if (!MoreStackNonSplit) {
943    error("Mixing split-stack objects requires a definition of "
944          "__morestack_non_split");
945    return;
946  }
947
948  // Sort both collections to compare addresses efficiently.
949  llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
950    return L->Offset < R->Offset;
951  });
952  std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
953  llvm::sort(Functions, [](const Defined *L, const Defined *R) {
954    return L->Value < R->Value;
955  });
956
957  auto It = MorestackCalls.begin();
958  for (Defined *F : Functions) {
959    // Find the first call to __morestack within the function.
960    while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
961      ++It;
962    // Adjust all calls inside the function.
963    while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
964      (*It)->Sym = MoreStackNonSplit;
965      ++It;
966    }
967  }
968}
969
970static bool enclosingPrologueAttempted(uint64_t Offset,
971                                       const DenseSet<Defined *> &Prologues) {
972  for (Defined *F : Prologues)
973    if (F->Value <= Offset && Offset < F->Value + F->Size)
974      return true;
975  return false;
976}
977
978// If a function compiled for split stack calls a function not
979// compiled for split stack, then the caller needs its prologue
980// adjusted to ensure that the called function will have enough stack
981// available. Find those functions, and adjust their prologues.
982template <class ELFT>
983void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
984                                                         uint8_t *End) {
985  if (!getFile<ELFT>()->SplitStack)
986    return;
987  DenseSet<Defined *> Prologues;
988  std::vector<Relocation *> MorestackCalls;
989
990  for (Relocation &Rel : Relocations) {
991    // Local symbols can't possibly be cross-calls, and should have been
992    // resolved long before this line.
993    if (Rel.Sym->isLocal())
994      continue;
995
996    // Ignore calls into the split-stack api.
997    if (Rel.Sym->getName().startswith("__morestack")) {
998      if (Rel.Sym->getName().equals("__morestack"))
999        MorestackCalls.push_back(&Rel);
1000      continue;
1001    }
1002
1003    // A relocation to non-function isn't relevant. Sometimes
1004    // __morestack is not marked as a function, so this check comes
1005    // after the name check.
1006    if (Rel.Sym->Type != STT_FUNC)
1007      continue;
1008
1009    // If the callee's-file was compiled with split stack, nothing to do.  In
1010    // this context, a "Defined" symbol is one "defined by the binary currently
1011    // being produced". So an "undefined" symbol might be provided by a shared
1012    // library. It is not possible to tell how such symbols were compiled, so be
1013    // conservative.
1014    if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1015      if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1016        if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1017          continue;
1018
1019    if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1020      continue;
1021
1022    if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1023      Prologues.insert(F);
1024      if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1025                                                   End, F->StOther))
1026        continue;
1027      if (!getFile<ELFT>()->SomeNoSplitStack)
1028        error(lld::toString(this) + ": " + F->getName() +
1029              " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1030              " (without -fsplit-stack), but couldn't adjust its prologue");
1031    }
1032  }
1033
1034  if (Target->NeedsMoreStackNonSplit)
1035    switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1036}
1037
1038template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1039  if (Type == SHT_NOBITS)
1040    return;
1041
1042  if (auto *S = dyn_cast<SyntheticSection>(this)) {
1043    S->writeTo(Buf + OutSecOff);
1044    return;
1045  }
1046
1047  // If -r or --emit-relocs is given, then an InputSection
1048  // may be a relocation section.
1049  if (Type == SHT_RELA) {
1050    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1051    return;
1052  }
1053  if (Type == SHT_REL) {
1054    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1055    return;
1056  }
1057
1058  // If -r is given, we may have a SHT_GROUP section.
1059  if (Type == SHT_GROUP) {
1060    copyShtGroup<ELFT>(Buf + OutSecOff);
1061    return;
1062  }
1063
1064  // If this is a compressed section, uncompress section contents directly
1065  // to the buffer.
1066  if (UncompressedSize >= 0 && !UncompressedBuf) {
1067    size_t Size = UncompressedSize;
1068    if (Error E = zlib::uncompress(toStringRef(RawData),
1069                                   (char *)(Buf + OutSecOff), Size))
1070      fatal(toString(this) +
1071            ": uncompress failed: " + llvm::toString(std::move(E)));
1072    uint8_t *BufEnd = Buf + OutSecOff + Size;
1073    relocate<ELFT>(Buf, BufEnd);
1074    return;
1075  }
1076
1077  // Copy section contents from source object file to output file
1078  // and then apply relocations.
1079  memcpy(Buf + OutSecOff, data().data(), data().size());
1080  uint8_t *BufEnd = Buf + OutSecOff + data().size();
1081  relocate<ELFT>(Buf, BufEnd);
1082}
1083
1084void InputSection::replace(InputSection *Other) {
1085  Alignment = std::max(Alignment, Other->Alignment);
1086  Other->Repl = Repl;
1087  Other->Live = false;
1088}
1089
1090template <class ELFT>
1091EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1092                               const typename ELFT::Shdr &Header,
1093                               StringRef Name)
1094    : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1095
1096SyntheticSection *EhInputSection::getParent() const {
1097  return cast_or_null<SyntheticSection>(Parent);
1098}
1099
1100// Returns the index of the first relocation that points to a region between
1101// Begin and Begin+Size.
1102template <class IntTy, class RelTy>
1103static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1104                         unsigned &RelocI) {
1105  // Start search from RelocI for fast access. That works because the
1106  // relocations are sorted in .eh_frame.
1107  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1108    const RelTy &Rel = Rels[RelocI];
1109    if (Rel.r_offset < Begin)
1110      continue;
1111
1112    if (Rel.r_offset < Begin + Size)
1113      return RelocI;
1114    return -1;
1115  }
1116  return -1;
1117}
1118
1119// .eh_frame is a sequence of CIE or FDE records.
1120// This function splits an input section into records and returns them.
1121template <class ELFT> void EhInputSection::split() {
1122  if (AreRelocsRela)
1123    split<ELFT>(relas<ELFT>());
1124  else
1125    split<ELFT>(rels<ELFT>());
1126}
1127
1128template <class ELFT, class RelTy>
1129void EhInputSection::split(ArrayRef<RelTy> Rels) {
1130  unsigned RelI = 0;
1131  for (size_t Off = 0, End = data().size(); Off != End;) {
1132    size_t Size = readEhRecordSize(this, Off);
1133    Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1134    // The empty record is the end marker.
1135    if (Size == 4)
1136      break;
1137    Off += Size;
1138  }
1139}
1140
1141static size_t findNull(StringRef S, size_t EntSize) {
1142  // Optimize the common case.
1143  if (EntSize == 1)
1144    return S.find(0);
1145
1146  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1147    const char *B = S.begin() + I;
1148    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1149      return I;
1150  }
1151  return StringRef::npos;
1152}
1153
1154SyntheticSection *MergeInputSection::getParent() const {
1155  return cast_or_null<SyntheticSection>(Parent);
1156}
1157
1158// Split SHF_STRINGS section. Such section is a sequence of
1159// null-terminated strings.
1160void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1161  size_t Off = 0;
1162  bool IsAlloc = Flags & SHF_ALLOC;
1163  StringRef S = toStringRef(Data);
1164
1165  while (!S.empty()) {
1166    size_t End = findNull(S, EntSize);
1167    if (End == StringRef::npos)
1168      fatal(toString(this) + ": string is not null terminated");
1169    size_t Size = End + EntSize;
1170
1171    Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1172    S = S.substr(Size);
1173    Off += Size;
1174  }
1175}
1176
1177// Split non-SHF_STRINGS section. Such section is a sequence of
1178// fixed size records.
1179void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1180                                        size_t EntSize) {
1181  size_t Size = Data.size();
1182  assert((Size % EntSize) == 0);
1183  bool IsAlloc = Flags & SHF_ALLOC;
1184
1185  for (size_t I = 0; I != Size; I += EntSize)
1186    Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1187}
1188
1189template <class ELFT>
1190MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1191                                     const typename ELFT::Shdr &Header,
1192                                     StringRef Name)
1193    : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1194
1195MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1196                                     uint64_t Entsize, ArrayRef<uint8_t> Data,
1197                                     StringRef Name)
1198    : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1199                       /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1200
1201// This function is called after we obtain a complete list of input sections
1202// that need to be linked. This is responsible to split section contents
1203// into small chunks for further processing.
1204//
1205// Note that this function is called from parallelForEach. This must be
1206// thread-safe (i.e. no memory allocation from the pools).
1207void MergeInputSection::splitIntoPieces() {
1208  assert(Pieces.empty());
1209
1210  if (Flags & SHF_STRINGS)
1211    splitStrings(data(), Entsize);
1212  else
1213    splitNonStrings(data(), Entsize);
1214}
1215
1216SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1217  if (this->data().size() <= Offset)
1218    fatal(toString(this) + ": offset is outside the section");
1219
1220  // If Offset is not at beginning of a section piece, it is not in the map.
1221  // In that case we need to  do a binary search of the original section piece vector.
1222  auto It2 =
1223      llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) {
1224        return Offset < P.InputOff;
1225      });
1226  return &It2[-1];
1227}
1228
1229// Returns the offset in an output section for a given input offset.
1230// Because contents of a mergeable section is not contiguous in output,
1231// it is not just an addition to a base output offset.
1232uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1233  // If Offset is not at beginning of a section piece, it is not in the map.
1234  // In that case we need to search from the original section piece vector.
1235  const SectionPiece &Piece =
1236      *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1237  uint64_t Addend = Offset - Piece.InputOff;
1238  return Piece.OutputOff + Addend;
1239}
1240
1241template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1242                                    StringRef);
1243template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1244                                    StringRef);
1245template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1246                                    StringRef);
1247template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1248                                    StringRef);
1249
1250template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1251template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1252template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1253template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1254
1255template void InputSection::writeTo<ELF32LE>(uint8_t *);
1256template void InputSection::writeTo<ELF32BE>(uint8_t *);
1257template void InputSection::writeTo<ELF64LE>(uint8_t *);
1258template void InputSection::writeTo<ELF64BE>(uint8_t *);
1259
1260template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1261                                              const ELF32LE::Shdr &, StringRef);
1262template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1263                                              const ELF32BE::Shdr &, StringRef);
1264template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1265                                              const ELF64LE::Shdr &, StringRef);
1266template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1267                                              const ELF64BE::Shdr &, StringRef);
1268
1269template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1270                                        const ELF32LE::Shdr &, StringRef);
1271template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1272                                        const ELF32BE::Shdr &, StringRef);
1273template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1274                                        const ELF64LE::Shdr &, StringRef);
1275template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1276                                        const ELF64BE::Shdr &, StringRef);
1277
1278template void EhInputSection::split<ELF32LE>();
1279template void EhInputSection::split<ELF32BE>();
1280template void EhInputSection::split<ELF64LE>();
1281template void EhInputSection::split<ELF64BE>();
1282