InputSection.cpp revision 344779
1146824Srodrigc//===- InputSection.cpp ---------------------------------------------------===//
2146824Srodrigc//
3146824Srodrigc//                             The LLVM Linker
4146824Srodrigc//
5146824Srodrigc// This file is distributed under the University of Illinois Open Source
6146824Srodrigc// License. See LICENSE.TXT for details.
7146824Srodrigc//
8146824Srodrigc//===----------------------------------------------------------------------===//
9146824Srodrigc
10146824Srodrigc#include "InputSection.h"
11146824Srodrigc#include "Config.h"
12146824Srodrigc#include "EhFrame.h"
13146824Srodrigc#include "InputFiles.h"
14146824Srodrigc#include "LinkerScript.h"
15146824Srodrigc#include "OutputSections.h"
16146824Srodrigc#include "Relocations.h"
17146824Srodrigc#include "SymbolTable.h"
18146824Srodrigc#include "Symbols.h"
19146824Srodrigc#include "SyntheticSections.h"
20146824Srodrigc#include "Target.h"
21146824Srodrigc#include "Thunks.h"
22146824Srodrigc#include "lld/Common/ErrorHandler.h"
23146824Srodrigc#include "lld/Common/Memory.h"
24146824Srodrigc#include "llvm/Support/Compiler.h"
25146824Srodrigc#include "llvm/Support/Compression.h"
26146824Srodrigc#include "llvm/Support/Endian.h"
27146824Srodrigc#include "llvm/Support/Threading.h"
28146824Srodrigc#include "llvm/Support/xxhash.h"
29146824Srodrigc#include <algorithm>
30146824Srodrigc#include <mutex>
31146824Srodrigc#include <set>
32146824Srodrigc#include <vector>
33146824Srodrigc
34146824Srodrigcusing namespace llvm;
35146824Srodrigcusing namespace llvm::ELF;
36146824Srodrigcusing namespace llvm::object;
37146824Srodrigcusing namespace llvm::support;
38146824Srodrigcusing namespace llvm::support::endian;
39146824Srodrigcusing namespace llvm::sys;
40146824Srodrigc
41146824Srodrigcusing namespace lld;
42146824Srodrigcusing namespace lld::elf;
43146824Srodrigc
44146824Srodrigcstd::vector<InputSectionBase *> elf::InputSections;
45146824Srodrigc
46146824Srodrigc// Returns a string to construct an error message.
47146824Srodrigcstd::string lld::toString(const InputSectionBase *Sec) {
48146824Srodrigc  return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
49146824Srodrigc}
50146824Srodrigc
51146824Srodrigctemplate <class ELFT>
52146824Srodrigcstatic ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
53146824Srodrigc                                            const typename ELFT::Shdr &Hdr) {
54146824Srodrigc  if (Hdr.sh_type == SHT_NOBITS)
55146824Srodrigc    return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
56146824Srodrigc  return check(File.getObj().getSectionContents(&Hdr));
57146824Srodrigc}
58146824Srodrigc
59146824SrodrigcInputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
60146824Srodrigc                                   uint32_t Type, uint64_t Entsize,
61146824Srodrigc                                   uint32_t Link, uint32_t Info,
62146824Srodrigc                                   uint32_t Alignment, ArrayRef<uint8_t> Data,
63146824Srodrigc                                   StringRef Name, Kind SectionKind)
64146824Srodrigc    : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
65146824Srodrigc                  Link),
66146824Srodrigc      File(File), RawData(Data) {
67146824Srodrigc  // In order to reduce memory allocation, we assume that mergeable
68146824Srodrigc  // sections are smaller than 4 GiB, which is not an unreasonable
69146824Srodrigc  // assumption as of 2017.
70146824Srodrigc  if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
71146824Srodrigc    error(toString(this) + ": section too large");
72146824Srodrigc
73146824Srodrigc  NumRelocations = 0;
74146824Srodrigc  AreRelocsRela = false;
75146824Srodrigc
76146824Srodrigc  // The ELF spec states that a value of 0 means the section has
77146824Srodrigc  // no alignment constraits.
78146824Srodrigc  uint32_t V = std::max<uint64_t>(Alignment, 1);
79146824Srodrigc  if (!isPowerOf2_64(V))
80146824Srodrigc    fatal(toString(File) + ": section sh_addralign is not a power of 2");
81146824Srodrigc  this->Alignment = V;
82146824Srodrigc
83146824Srodrigc  // In ELF, each section can be compressed by zlib, and if compressed,
84146824Srodrigc  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85146824Srodrigc  // If that's the case, demangle section name so that we can handle a
86146824Srodrigc  // section as if it weren't compressed.
87146824Srodrigc  if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
88146824Srodrigc    if (!zlib::isAvailable())
89146824Srodrigc      error(toString(File) + ": contains a compressed section, " +
90146824Srodrigc            "but zlib is not available");
91146824Srodrigc    parseCompressedHeader();
92146824Srodrigc  }
93146824Srodrigc}
94146824Srodrigc
95146824Srodrigc// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
96// SHF_GROUP is a marker that a section belongs to some comdat group.
97// That flag doesn't make sense in an executable.
98static uint64_t getFlags(uint64_t Flags) {
99  Flags &= ~(uint64_t)SHF_INFO_LINK;
100  if (!Config->Relocatable)
101    Flags &= ~(uint64_t)SHF_GROUP;
102  return Flags;
103}
104
105// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
106// March 2017) fail to infer section types for sections starting with
107// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
108// SHF_INIT_ARRAY. As a result, the following assembler directive
109// creates ".init_array.100" with SHT_PROGBITS, for example.
110//
111//   .section .init_array.100, "aw"
112//
113// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
114// incorrect inputs as if they were correct from the beginning.
115static uint64_t getType(uint64_t Type, StringRef Name) {
116  if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
117    return SHT_INIT_ARRAY;
118  if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
119    return SHT_FINI_ARRAY;
120  return Type;
121}
122
123template <class ELFT>
124InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
125                                   const typename ELFT::Shdr &Hdr,
126                                   StringRef Name, Kind SectionKind)
127    : InputSectionBase(&File, getFlags(Hdr.sh_flags),
128                       getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
129                       Hdr.sh_info, Hdr.sh_addralign,
130                       getSectionContents(File, Hdr), Name, SectionKind) {
131  // We reject object files having insanely large alignments even though
132  // they are allowed by the spec. I think 4GB is a reasonable limitation.
133  // We might want to relax this in the future.
134  if (Hdr.sh_addralign > UINT32_MAX)
135    fatal(toString(&File) + ": section sh_addralign is too large");
136}
137
138size_t InputSectionBase::getSize() const {
139  if (auto *S = dyn_cast<SyntheticSection>(this))
140    return S->getSize();
141  if (UncompressedSize >= 0)
142    return UncompressedSize;
143  return RawData.size();
144}
145
146void InputSectionBase::uncompress() const {
147  size_t Size = UncompressedSize;
148  UncompressedBuf.reset(new char[Size]);
149
150  if (Error E =
151          zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size))
152    fatal(toString(this) +
153          ": uncompress failed: " + llvm::toString(std::move(E)));
154  RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size);
155}
156
157uint64_t InputSectionBase::getOffsetInFile() const {
158  const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
159  const uint8_t *SecStart = data().begin();
160  return SecStart - FileStart;
161}
162
163uint64_t SectionBase::getOffset(uint64_t Offset) const {
164  switch (kind()) {
165  case Output: {
166    auto *OS = cast<OutputSection>(this);
167    // For output sections we treat offset -1 as the end of the section.
168    return Offset == uint64_t(-1) ? OS->Size : Offset;
169  }
170  case Regular:
171  case Synthetic:
172    return cast<InputSection>(this)->getOffset(Offset);
173  case EHFrame:
174    // The file crtbeginT.o has relocations pointing to the start of an empty
175    // .eh_frame that is known to be the first in the link. It does that to
176    // identify the start of the output .eh_frame.
177    return Offset;
178  case Merge:
179    const MergeInputSection *MS = cast<MergeInputSection>(this);
180    if (InputSection *IS = MS->getParent())
181      return IS->getOffset(MS->getParentOffset(Offset));
182    return MS->getParentOffset(Offset);
183  }
184  llvm_unreachable("invalid section kind");
185}
186
187uint64_t SectionBase::getVA(uint64_t Offset) const {
188  const OutputSection *Out = getOutputSection();
189  return (Out ? Out->Addr : 0) + getOffset(Offset);
190}
191
192OutputSection *SectionBase::getOutputSection() {
193  InputSection *Sec;
194  if (auto *IS = dyn_cast<InputSection>(this))
195    Sec = IS;
196  else if (auto *MS = dyn_cast<MergeInputSection>(this))
197    Sec = MS->getParent();
198  else if (auto *EH = dyn_cast<EhInputSection>(this))
199    Sec = EH->getParent();
200  else
201    return cast<OutputSection>(this);
202  return Sec ? Sec->getParent() : nullptr;
203}
204
205// When a section is compressed, `RawData` consists with a header followed
206// by zlib-compressed data. This function parses a header to initialize
207// `UncompressedSize` member and remove the header from `RawData`.
208void InputSectionBase::parseCompressedHeader() {
209  typedef typename ELF64LE::Chdr Chdr64;
210  typedef typename ELF32LE::Chdr Chdr32;
211
212  // Old-style header
213  if (Name.startswith(".zdebug")) {
214    if (!toStringRef(RawData).startswith("ZLIB")) {
215      error(toString(this) + ": corrupted compressed section header");
216      return;
217    }
218    RawData = RawData.slice(4);
219
220    if (RawData.size() < 8) {
221      error(toString(this) + ": corrupted compressed section header");
222      return;
223    }
224
225    UncompressedSize = read64be(RawData.data());
226    RawData = RawData.slice(8);
227
228    // Restore the original section name.
229    // (e.g. ".zdebug_info" -> ".debug_info")
230    Name = Saver.save("." + Name.substr(2));
231    return;
232  }
233
234  assert(Flags & SHF_COMPRESSED);
235  Flags &= ~(uint64_t)SHF_COMPRESSED;
236
237  // New-style 64-bit header
238  if (Config->Is64) {
239    if (RawData.size() < sizeof(Chdr64)) {
240      error(toString(this) + ": corrupted compressed section");
241      return;
242    }
243
244    auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
245    if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
246      error(toString(this) + ": unsupported compression type");
247      return;
248    }
249
250    UncompressedSize = Hdr->ch_size;
251    RawData = RawData.slice(sizeof(*Hdr));
252    return;
253  }
254
255  // New-style 32-bit header
256  if (RawData.size() < sizeof(Chdr32)) {
257    error(toString(this) + ": corrupted compressed section");
258    return;
259  }
260
261  auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
262  if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
263    error(toString(this) + ": unsupported compression type");
264    return;
265  }
266
267  UncompressedSize = Hdr->ch_size;
268  RawData = RawData.slice(sizeof(*Hdr));
269}
270
271InputSection *InputSectionBase::getLinkOrderDep() const {
272  assert(Link);
273  assert(Flags & SHF_LINK_ORDER);
274  return cast<InputSection>(File->getSections()[Link]);
275}
276
277// Find a function symbol that encloses a given location.
278template <class ELFT>
279Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
280  for (Symbol *B : File->getSymbols())
281    if (Defined *D = dyn_cast<Defined>(B))
282      if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
283          Offset < D->Value + D->Size)
284        return D;
285  return nullptr;
286}
287
288// Returns a source location string. Used to construct an error message.
289template <class ELFT>
290std::string InputSectionBase::getLocation(uint64_t Offset) {
291  std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
292
293  // We don't have file for synthetic sections.
294  if (getFile<ELFT>() == nullptr)
295    return (Config->OutputFile + ":(" + SecAndOffset + ")")
296        .str();
297
298  // First check if we can get desired values from debugging information.
299  if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
300    return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
301           SecAndOffset + ")";
302
303  // File->SourceFile contains STT_FILE symbol that contains a
304  // source file name. If it's missing, we use an object file name.
305  std::string SrcFile = getFile<ELFT>()->SourceFile;
306  if (SrcFile.empty())
307    SrcFile = toString(File);
308
309  if (Defined *D = getEnclosingFunction<ELFT>(Offset))
310    return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
311
312  // If there's no symbol, print out the offset in the section.
313  return (SrcFile + ":(" + SecAndOffset + ")");
314}
315
316// This function is intended to be used for constructing an error message.
317// The returned message looks like this:
318//
319//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
320//
321//  Returns an empty string if there's no way to get line info.
322std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
323  return File->getSrcMsg(Sym, *this, Offset);
324}
325
326// Returns a filename string along with an optional section name. This
327// function is intended to be used for constructing an error
328// message. The returned message looks like this:
329//
330//   path/to/foo.o:(function bar)
331//
332// or
333//
334//   path/to/foo.o:(function bar) in archive path/to/bar.a
335std::string InputSectionBase::getObjMsg(uint64_t Off) {
336  std::string Filename = File->getName();
337
338  std::string Archive;
339  if (!File->ArchiveName.empty())
340    Archive = " in archive " + File->ArchiveName;
341
342  // Find a symbol that encloses a given location.
343  for (Symbol *B : File->getSymbols())
344    if (auto *D = dyn_cast<Defined>(B))
345      if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
346        return Filename + ":(" + toString(*D) + ")" + Archive;
347
348  // If there's no symbol, print out the offset in the section.
349  return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
350      .str();
351}
352
353InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
354
355InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
356                           uint32_t Alignment, ArrayRef<uint8_t> Data,
357                           StringRef Name, Kind K)
358    : InputSectionBase(F, Flags, Type,
359                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
360                       Name, K) {}
361
362template <class ELFT>
363InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
364                           StringRef Name)
365    : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
366
367bool InputSection::classof(const SectionBase *S) {
368  return S->kind() == SectionBase::Regular ||
369         S->kind() == SectionBase::Synthetic;
370}
371
372OutputSection *InputSection::getParent() const {
373  return cast_or_null<OutputSection>(Parent);
374}
375
376// Copy SHT_GROUP section contents. Used only for the -r option.
377template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
378  // ELFT::Word is the 32-bit integral type in the target endianness.
379  typedef typename ELFT::Word u32;
380  ArrayRef<u32> From = getDataAs<u32>();
381  auto *To = reinterpret_cast<u32 *>(Buf);
382
383  // The first entry is not a section number but a flag.
384  *To++ = From[0];
385
386  // Adjust section numbers because section numbers in an input object
387  // files are different in the output.
388  ArrayRef<InputSectionBase *> Sections = File->getSections();
389  for (uint32_t Idx : From.slice(1))
390    *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
391}
392
393InputSectionBase *InputSection::getRelocatedSection() const {
394  if (!File || (Type != SHT_RELA && Type != SHT_REL))
395    return nullptr;
396  ArrayRef<InputSectionBase *> Sections = File->getSections();
397  return Sections[Info];
398}
399
400// This is used for -r and --emit-relocs. We can't use memcpy to copy
401// relocations because we need to update symbol table offset and section index
402// for each relocation. So we copy relocations one by one.
403template <class ELFT, class RelTy>
404void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
405  InputSectionBase *Sec = getRelocatedSection();
406
407  for (const RelTy &Rel : Rels) {
408    RelType Type = Rel.getType(Config->IsMips64EL);
409    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
410
411    auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
412    Buf += sizeof(RelTy);
413
414    if (RelTy::IsRela)
415      P->r_addend = getAddend<ELFT>(Rel);
416
417    // Output section VA is zero for -r, so r_offset is an offset within the
418    // section, but for --emit-relocs it is an virtual address.
419    P->r_offset = Sec->getVA(Rel.r_offset);
420    P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
421                        Config->IsMips64EL);
422
423    if (Sym.Type == STT_SECTION) {
424      // We combine multiple section symbols into only one per
425      // section. This means we have to update the addend. That is
426      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
427      // section data. We do that by adding to the Relocation vector.
428
429      // .eh_frame is horribly special and can reference discarded sections. To
430      // avoid having to parse and recreate .eh_frame, we just replace any
431      // relocation in it pointing to discarded sections with R_*_NONE, which
432      // hopefully creates a frame that is ignored at runtime.
433      auto *D = dyn_cast<Defined>(&Sym);
434      if (!D) {
435        error("STT_SECTION symbol should be defined");
436        continue;
437      }
438      SectionBase *Section = D->Section->Repl;
439      if (!Section->Live) {
440        P->setSymbolAndType(0, 0, false);
441        continue;
442      }
443
444      int64_t Addend = getAddend<ELFT>(Rel);
445      const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
446      if (!RelTy::IsRela)
447        Addend = Target->getImplicitAddend(BufLoc, Type);
448
449      if (Config->EMachine == EM_MIPS && Config->Relocatable &&
450          Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
451        // Some MIPS relocations depend on "gp" value. By default,
452        // this value has 0x7ff0 offset from a .got section. But
453        // relocatable files produced by a complier or a linker
454        // might redefine this default value and we must use it
455        // for a calculation of the relocation result. When we
456        // generate EXE or DSO it's trivial. Generating a relocatable
457        // output is more difficult case because the linker does
458        // not calculate relocations in this mode and loses
459        // individual "gp" values used by each input object file.
460        // As a workaround we add the "gp" value to the relocation
461        // addend and save it back to the file.
462        Addend += Sec->getFile<ELFT>()->MipsGp0;
463      }
464
465      if (RelTy::IsRela)
466        P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
467      else if (Config->Relocatable)
468        Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
469    }
470  }
471}
472
473// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
474// references specially. The general rule is that the value of the symbol in
475// this context is the address of the place P. A further special case is that
476// branch relocations to an undefined weak reference resolve to the next
477// instruction.
478static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
479                                              uint32_t P) {
480  switch (Type) {
481  // Unresolved branch relocations to weak references resolve to next
482  // instruction, this will be either 2 or 4 bytes on from P.
483  case R_ARM_THM_JUMP11:
484    return P + 2 + A;
485  case R_ARM_CALL:
486  case R_ARM_JUMP24:
487  case R_ARM_PC24:
488  case R_ARM_PLT32:
489  case R_ARM_PREL31:
490  case R_ARM_THM_JUMP19:
491  case R_ARM_THM_JUMP24:
492    return P + 4 + A;
493  case R_ARM_THM_CALL:
494    // We don't want an interworking BLX to ARM
495    return P + 5 + A;
496  // Unresolved non branch pc-relative relocations
497  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
498  // targets a weak-reference.
499  case R_ARM_MOVW_PREL_NC:
500  case R_ARM_MOVT_PREL:
501  case R_ARM_REL32:
502  case R_ARM_THM_MOVW_PREL_NC:
503  case R_ARM_THM_MOVT_PREL:
504    return P + A;
505  }
506  llvm_unreachable("ARM pc-relative relocation expected\n");
507}
508
509// The comment above getARMUndefinedRelativeWeakVA applies to this function.
510static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
511                                                  uint64_t P) {
512  switch (Type) {
513  // Unresolved branch relocations to weak references resolve to next
514  // instruction, this is 4 bytes on from P.
515  case R_AARCH64_CALL26:
516  case R_AARCH64_CONDBR19:
517  case R_AARCH64_JUMP26:
518  case R_AARCH64_TSTBR14:
519    return P + 4 + A;
520  // Unresolved non branch pc-relative relocations
521  case R_AARCH64_PREL16:
522  case R_AARCH64_PREL32:
523  case R_AARCH64_PREL64:
524  case R_AARCH64_ADR_PREL_LO21:
525  case R_AARCH64_LD_PREL_LO19:
526    return P + A;
527  }
528  llvm_unreachable("AArch64 pc-relative relocation expected\n");
529}
530
531// ARM SBREL relocations are of the form S + A - B where B is the static base
532// The ARM ABI defines base to be "addressing origin of the output segment
533// defining the symbol S". We defined the "addressing origin"/static base to be
534// the base of the PT_LOAD segment containing the Sym.
535// The procedure call standard only defines a Read Write Position Independent
536// RWPI variant so in practice we should expect the static base to be the base
537// of the RW segment.
538static uint64_t getARMStaticBase(const Symbol &Sym) {
539  OutputSection *OS = Sym.getOutputSection();
540  if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
541    fatal("SBREL relocation to " + Sym.getName() + " without static base");
542  return OS->PtLoad->FirstSec->Addr;
543}
544
545// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
546// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
547// is calculated using PCREL_HI20's symbol.
548//
549// This function returns the R_RISCV_PCREL_HI20 relocation from
550// R_RISCV_PCREL_LO12's symbol and addend.
551static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
552  const Defined *D = cast<Defined>(Sym);
553  InputSection *IS = cast<InputSection>(D->Section);
554
555  if (Addend != 0)
556    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
557         IS->getObjMsg(D->Value) + " is ignored");
558
559  // Relocations are sorted by offset, so we can use std::equal_range to do
560  // binary search.
561  auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(),
562                                D->Value, RelocationOffsetComparator{});
563  for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It)
564    if (isRelExprOneOf<R_PC>(It->Expr))
565      return &*It;
566
567  error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
568        " without an associated R_RISCV_PCREL_HI20 relocation");
569  return nullptr;
570}
571
572// A TLS symbol's virtual address is relative to the TLS segment. Add a
573// target-specific adjustment to produce a thread-pointer-relative offset.
574static int64_t getTlsTpOffset() {
575  switch (Config->EMachine) {
576  case EM_ARM:
577  case EM_AARCH64:
578    // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
579    // followed by a variable amount of alignment padding, followed by the TLS
580    // segment.
581    //
582    // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld
583    // effectively increases the TCB size to 8 words for Android compatibility.
584    // It accomplishes this by increasing the segment's alignment.
585    return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
586  case EM_386:
587  case EM_X86_64:
588    // Variant 2. The TLS segment is located just before the thread pointer.
589    return -Out::TlsPhdr->p_memsz;
590  case EM_PPC64:
591    // The thread pointer points to a fixed offset from the start of the
592    // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
593    // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
594    // program's TLS segment.
595    return -0x7000;
596  default:
597    llvm_unreachable("unhandled Config->EMachine");
598  }
599}
600
601static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
602                                 uint64_t P, const Symbol &Sym, RelExpr Expr) {
603  switch (Expr) {
604  case R_INVALID:
605    return 0;
606  case R_ABS:
607  case R_RELAX_TLS_LD_TO_LE_ABS:
608  case R_RELAX_GOT_PC_NOPIC:
609    return Sym.getVA(A);
610  case R_ADDEND:
611    return A;
612  case R_ARM_SBREL:
613    return Sym.getVA(A) - getARMStaticBase(Sym);
614  case R_GOT:
615  case R_GOT_PLT:
616  case R_RELAX_TLS_GD_TO_IE_ABS:
617    return Sym.getGotVA() + A;
618  case R_GOTONLY_PC:
619    return In.Got->getVA() + A - P;
620  case R_GOTONLY_PC_FROM_END:
621    return In.Got->getVA() + A - P + In.Got->getSize();
622  case R_GOTREL:
623    return Sym.getVA(A) - In.Got->getVA();
624  case R_GOTREL_FROM_END:
625    return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize();
626  case R_GOT_FROM_END:
627  case R_RELAX_TLS_GD_TO_IE_END:
628    return Sym.getGotOffset() + A - In.Got->getSize();
629  case R_TLSLD_GOT_OFF:
630  case R_GOT_OFF:
631  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
632    return Sym.getGotOffset() + A;
633  case R_AARCH64_GOT_PAGE_PC:
634  case R_AARCH64_GOT_PAGE_PC_PLT:
635  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
636    return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
637  case R_GOT_PC:
638  case R_RELAX_TLS_GD_TO_IE:
639    return Sym.getGotVA() + A - P;
640  case R_HEXAGON_GOT:
641    return Sym.getGotVA() - In.GotPlt->getVA();
642  case R_MIPS_GOTREL:
643    return Sym.getVA(A) - In.MipsGot->getGp(File);
644  case R_MIPS_GOT_GP:
645    return In.MipsGot->getGp(File) + A;
646  case R_MIPS_GOT_GP_PC: {
647    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
648    // is _gp_disp symbol. In that case we should use the following
649    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
650    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
651    // microMIPS variants of these relocations use slightly different
652    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
653    // to correctly handle less-sugnificant bit of the microMIPS symbol.
654    uint64_t V = In.MipsGot->getGp(File) + A - P;
655    if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
656      V += 4;
657    if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
658      V -= 1;
659    return V;
660  }
661  case R_MIPS_GOT_LOCAL_PAGE:
662    // If relocation against MIPS local symbol requires GOT entry, this entry
663    // should be initialized by 'page address'. This address is high 16-bits
664    // of sum the symbol's value and the addend.
665    return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
666           In.MipsGot->getGp(File);
667  case R_MIPS_GOT_OFF:
668  case R_MIPS_GOT_OFF32:
669    // In case of MIPS if a GOT relocation has non-zero addend this addend
670    // should be applied to the GOT entry content not to the GOT entry offset.
671    // That is why we use separate expression type.
672    return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
673           In.MipsGot->getGp(File);
674  case R_MIPS_TLSGD:
675    return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
676           In.MipsGot->getGp(File);
677  case R_MIPS_TLSLD:
678    return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
679           In.MipsGot->getGp(File);
680  case R_AARCH64_PAGE_PC: {
681    uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
682    return getAArch64Page(Val) - getAArch64Page(P);
683  }
684  case R_AARCH64_PLT_PAGE_PC: {
685    uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getPltVA() + A;
686    return getAArch64Page(Val) - getAArch64Page(P);
687  }
688  case R_RISCV_PC_INDIRECT: {
689    if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
690      return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
691                              *HiRel->Sym, HiRel->Expr);
692    return 0;
693  }
694  case R_PC: {
695    uint64_t Dest;
696    if (Sym.isUndefWeak()) {
697      // On ARM and AArch64 a branch to an undefined weak resolves to the
698      // next instruction, otherwise the place.
699      if (Config->EMachine == EM_ARM)
700        Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
701      else if (Config->EMachine == EM_AARCH64)
702        Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
703      else
704        Dest = Sym.getVA(A);
705    } else {
706      Dest = Sym.getVA(A);
707    }
708    return Dest - P;
709  }
710  case R_PLT:
711    return Sym.getPltVA() + A;
712  case R_PLT_PC:
713  case R_PPC_CALL_PLT:
714    return Sym.getPltVA() + A - P;
715  case R_PPC_CALL: {
716    uint64_t SymVA = Sym.getVA(A);
717    // If we have an undefined weak symbol, we might get here with a symbol
718    // address of zero. That could overflow, but the code must be unreachable,
719    // so don't bother doing anything at all.
720    if (!SymVA)
721      return 0;
722
723    // PPC64 V2 ABI describes two entry points to a function. The global entry
724    // point is used for calls where the caller and callee (may) have different
725    // TOC base pointers and r2 needs to be modified to hold the TOC base for
726    // the callee. For local calls the caller and callee share the same
727    // TOC base and so the TOC pointer initialization code should be skipped by
728    // branching to the local entry point.
729    return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
730  }
731  case R_PPC_TOC:
732    return getPPC64TocBase() + A;
733  case R_RELAX_GOT_PC:
734    return Sym.getVA(A) - P;
735  case R_RELAX_TLS_GD_TO_LE:
736  case R_RELAX_TLS_IE_TO_LE:
737  case R_RELAX_TLS_LD_TO_LE:
738  case R_TLS:
739    // A weak undefined TLS symbol resolves to the base of the TLS
740    // block, i.e. gets a value of zero. If we pass --gc-sections to
741    // lld and .tbss is not referenced, it gets reclaimed and we don't
742    // create a TLS program header. Therefore, we resolve this
743    // statically to zero.
744    if (Sym.isTls() && Sym.isUndefWeak())
745      return 0;
746    return Sym.getVA(A) + getTlsTpOffset();
747  case R_RELAX_TLS_GD_TO_LE_NEG:
748  case R_NEG_TLS:
749    return Out::TlsPhdr->p_memsz - Sym.getVA(A);
750  case R_SIZE:
751    return Sym.getSize() + A;
752  case R_TLSDESC:
753    return In.Got->getGlobalDynAddr(Sym) + A;
754  case R_AARCH64_TLSDESC_PAGE:
755    return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
756           getAArch64Page(P);
757  case R_TLSGD_GOT:
758    return In.Got->getGlobalDynOffset(Sym) + A;
759  case R_TLSGD_GOT_FROM_END:
760    return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize();
761  case R_TLSGD_PC:
762    return In.Got->getGlobalDynAddr(Sym) + A - P;
763  case R_TLSLD_GOT_FROM_END:
764    return In.Got->getTlsIndexOff() + A - In.Got->getSize();
765  case R_TLSLD_GOT:
766    return In.Got->getTlsIndexOff() + A;
767  case R_TLSLD_PC:
768    return In.Got->getTlsIndexVA() + A - P;
769  default:
770    llvm_unreachable("invalid expression");
771  }
772}
773
774// This function applies relocations to sections without SHF_ALLOC bit.
775// Such sections are never mapped to memory at runtime. Debug sections are
776// an example. Relocations in non-alloc sections are much easier to
777// handle than in allocated sections because it will never need complex
778// treatement such as GOT or PLT (because at runtime no one refers them).
779// So, we handle relocations for non-alloc sections directly in this
780// function as a performance optimization.
781template <class ELFT, class RelTy>
782void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
783  const unsigned Bits = sizeof(typename ELFT::uint) * 8;
784
785  for (const RelTy &Rel : Rels) {
786    RelType Type = Rel.getType(Config->IsMips64EL);
787
788    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
789    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
790    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
791    // need to keep this bug-compatible code for a while.
792    if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
793      continue;
794
795    uint64_t Offset = getOffset(Rel.r_offset);
796    uint8_t *BufLoc = Buf + Offset;
797    int64_t Addend = getAddend<ELFT>(Rel);
798    if (!RelTy::IsRela)
799      Addend += Target->getImplicitAddend(BufLoc, Type);
800
801    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
802    RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
803    if (Expr == R_NONE)
804      continue;
805
806    if (Expr != R_ABS) {
807      std::string Msg = getLocation<ELFT>(Offset) +
808                        ": has non-ABS relocation " + toString(Type) +
809                        " against symbol '" + toString(Sym) + "'";
810      if (Expr != R_PC) {
811        error(Msg);
812        return;
813      }
814
815      // If the control reaches here, we found a PC-relative relocation in a
816      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
817      // at runtime, the notion of PC-relative doesn't make sense here. So,
818      // this is a usage error. However, GNU linkers historically accept such
819      // relocations without any errors and relocate them as if they were at
820      // address 0. For bug-compatibilty, we accept them with warnings. We
821      // know Steel Bank Common Lisp as of 2018 have this bug.
822      warn(Msg);
823      Target->relocateOne(BufLoc, Type,
824                          SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
825      continue;
826    }
827
828    if (Sym.isTls() && !Out::TlsPhdr)
829      Target->relocateOne(BufLoc, Type, 0);
830    else
831      Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
832  }
833}
834
835// This is used when '-r' is given.
836// For REL targets, InputSection::copyRelocations() may store artificial
837// relocations aimed to update addends. They are handled in relocateAlloc()
838// for allocatable sections, and this function does the same for
839// non-allocatable sections, such as sections with debug information.
840static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
841  const unsigned Bits = Config->Is64 ? 64 : 32;
842
843  for (const Relocation &Rel : Sec->Relocations) {
844    // InputSection::copyRelocations() adds only R_ABS relocations.
845    assert(Rel.Expr == R_ABS);
846    uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
847    uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
848    Target->relocateOne(BufLoc, Rel.Type, TargetVA);
849  }
850}
851
852template <class ELFT>
853void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
854  if (Flags & SHF_EXECINSTR)
855    adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
856
857  if (Flags & SHF_ALLOC) {
858    relocateAlloc(Buf, BufEnd);
859    return;
860  }
861
862  auto *Sec = cast<InputSection>(this);
863  if (Config->Relocatable)
864    relocateNonAllocForRelocatable(Sec, Buf);
865  else if (Sec->AreRelocsRela)
866    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
867  else
868    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
869}
870
871void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
872  assert(Flags & SHF_ALLOC);
873  const unsigned Bits = Config->Wordsize * 8;
874
875  for (const Relocation &Rel : Relocations) {
876    uint64_t Offset = Rel.Offset;
877    if (auto *Sec = dyn_cast<InputSection>(this))
878      Offset += Sec->OutSecOff;
879    uint8_t *BufLoc = Buf + Offset;
880    RelType Type = Rel.Type;
881
882    uint64_t AddrLoc = getOutputSection()->Addr + Offset;
883    RelExpr Expr = Rel.Expr;
884    uint64_t TargetVA = SignExtend64(
885        getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
886        Bits);
887
888    switch (Expr) {
889    case R_RELAX_GOT_PC:
890    case R_RELAX_GOT_PC_NOPIC:
891      Target->relaxGot(BufLoc, TargetVA);
892      break;
893    case R_RELAX_TLS_IE_TO_LE:
894      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
895      break;
896    case R_RELAX_TLS_LD_TO_LE:
897    case R_RELAX_TLS_LD_TO_LE_ABS:
898      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
899      break;
900    case R_RELAX_TLS_GD_TO_LE:
901    case R_RELAX_TLS_GD_TO_LE_NEG:
902      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
903      break;
904    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
905    case R_RELAX_TLS_GD_TO_IE:
906    case R_RELAX_TLS_GD_TO_IE_ABS:
907    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
908    case R_RELAX_TLS_GD_TO_IE_END:
909      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
910      break;
911    case R_PPC_CALL:
912      // If this is a call to __tls_get_addr, it may be part of a TLS
913      // sequence that has been relaxed and turned into a nop. In this
914      // case, we don't want to handle it as a call.
915      if (read32(BufLoc) == 0x60000000) // nop
916        break;
917
918      // Patch a nop (0x60000000) to a ld.
919      if (Rel.Sym->NeedsTocRestore) {
920        if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
921          error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
922          break;
923        }
924        write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
925      }
926      Target->relocateOne(BufLoc, Type, TargetVA);
927      break;
928    default:
929      Target->relocateOne(BufLoc, Type, TargetVA);
930      break;
931    }
932  }
933}
934
935// For each function-defining prologue, find any calls to __morestack,
936// and replace them with calls to __morestack_non_split.
937static void switchMorestackCallsToMorestackNonSplit(
938    DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
939
940  // If the target adjusted a function's prologue, all calls to
941  // __morestack inside that function should be switched to
942  // __morestack_non_split.
943  Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
944  if (!MoreStackNonSplit) {
945    error("Mixing split-stack objects requires a definition of "
946          "__morestack_non_split");
947    return;
948  }
949
950  // Sort both collections to compare addresses efficiently.
951  llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
952    return L->Offset < R->Offset;
953  });
954  std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
955  llvm::sort(Functions, [](const Defined *L, const Defined *R) {
956    return L->Value < R->Value;
957  });
958
959  auto It = MorestackCalls.begin();
960  for (Defined *F : Functions) {
961    // Find the first call to __morestack within the function.
962    while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
963      ++It;
964    // Adjust all calls inside the function.
965    while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
966      (*It)->Sym = MoreStackNonSplit;
967      ++It;
968    }
969  }
970}
971
972static bool enclosingPrologueAttempted(uint64_t Offset,
973                                       const DenseSet<Defined *> &Prologues) {
974  for (Defined *F : Prologues)
975    if (F->Value <= Offset && Offset < F->Value + F->Size)
976      return true;
977  return false;
978}
979
980// If a function compiled for split stack calls a function not
981// compiled for split stack, then the caller needs its prologue
982// adjusted to ensure that the called function will have enough stack
983// available. Find those functions, and adjust their prologues.
984template <class ELFT>
985void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
986                                                         uint8_t *End) {
987  if (!getFile<ELFT>()->SplitStack)
988    return;
989  DenseSet<Defined *> Prologues;
990  std::vector<Relocation *> MorestackCalls;
991
992  for (Relocation &Rel : Relocations) {
993    // Local symbols can't possibly be cross-calls, and should have been
994    // resolved long before this line.
995    if (Rel.Sym->isLocal())
996      continue;
997
998    // Ignore calls into the split-stack api.
999    if (Rel.Sym->getName().startswith("__morestack")) {
1000      if (Rel.Sym->getName().equals("__morestack"))
1001        MorestackCalls.push_back(&Rel);
1002      continue;
1003    }
1004
1005    // A relocation to non-function isn't relevant. Sometimes
1006    // __morestack is not marked as a function, so this check comes
1007    // after the name check.
1008    if (Rel.Sym->Type != STT_FUNC)
1009      continue;
1010
1011    // If the callee's-file was compiled with split stack, nothing to do.  In
1012    // this context, a "Defined" symbol is one "defined by the binary currently
1013    // being produced". So an "undefined" symbol might be provided by a shared
1014    // library. It is not possible to tell how such symbols were compiled, so be
1015    // conservative.
1016    if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1017      if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1018        if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1019          continue;
1020
1021    if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1022      continue;
1023
1024    if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1025      Prologues.insert(F);
1026      if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1027                                                   End, F->StOther))
1028        continue;
1029      if (!getFile<ELFT>()->SomeNoSplitStack)
1030        error(lld::toString(this) + ": " + F->getName() +
1031              " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1032              " (without -fsplit-stack), but couldn't adjust its prologue");
1033    }
1034  }
1035
1036  if (Target->NeedsMoreStackNonSplit)
1037    switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1038}
1039
1040template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1041  if (Type == SHT_NOBITS)
1042    return;
1043
1044  if (auto *S = dyn_cast<SyntheticSection>(this)) {
1045    S->writeTo(Buf + OutSecOff);
1046    return;
1047  }
1048
1049  // If -r or --emit-relocs is given, then an InputSection
1050  // may be a relocation section.
1051  if (Type == SHT_RELA) {
1052    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1053    return;
1054  }
1055  if (Type == SHT_REL) {
1056    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1057    return;
1058  }
1059
1060  // If -r is given, we may have a SHT_GROUP section.
1061  if (Type == SHT_GROUP) {
1062    copyShtGroup<ELFT>(Buf + OutSecOff);
1063    return;
1064  }
1065
1066  // If this is a compressed section, uncompress section contents directly
1067  // to the buffer.
1068  if (UncompressedSize >= 0 && !UncompressedBuf) {
1069    size_t Size = UncompressedSize;
1070    if (Error E = zlib::uncompress(toStringRef(RawData),
1071                                   (char *)(Buf + OutSecOff), Size))
1072      fatal(toString(this) +
1073            ": uncompress failed: " + llvm::toString(std::move(E)));
1074    uint8_t *BufEnd = Buf + OutSecOff + Size;
1075    relocate<ELFT>(Buf, BufEnd);
1076    return;
1077  }
1078
1079  // Copy section contents from source object file to output file
1080  // and then apply relocations.
1081  memcpy(Buf + OutSecOff, data().data(), data().size());
1082  uint8_t *BufEnd = Buf + OutSecOff + data().size();
1083  relocate<ELFT>(Buf, BufEnd);
1084}
1085
1086void InputSection::replace(InputSection *Other) {
1087  Alignment = std::max(Alignment, Other->Alignment);
1088  Other->Repl = Repl;
1089  Other->Live = false;
1090}
1091
1092template <class ELFT>
1093EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1094                               const typename ELFT::Shdr &Header,
1095                               StringRef Name)
1096    : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1097
1098SyntheticSection *EhInputSection::getParent() const {
1099  return cast_or_null<SyntheticSection>(Parent);
1100}
1101
1102// Returns the index of the first relocation that points to a region between
1103// Begin and Begin+Size.
1104template <class IntTy, class RelTy>
1105static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1106                         unsigned &RelocI) {
1107  // Start search from RelocI for fast access. That works because the
1108  // relocations are sorted in .eh_frame.
1109  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1110    const RelTy &Rel = Rels[RelocI];
1111    if (Rel.r_offset < Begin)
1112      continue;
1113
1114    if (Rel.r_offset < Begin + Size)
1115      return RelocI;
1116    return -1;
1117  }
1118  return -1;
1119}
1120
1121// .eh_frame is a sequence of CIE or FDE records.
1122// This function splits an input section into records and returns them.
1123template <class ELFT> void EhInputSection::split() {
1124  if (AreRelocsRela)
1125    split<ELFT>(relas<ELFT>());
1126  else
1127    split<ELFT>(rels<ELFT>());
1128}
1129
1130template <class ELFT, class RelTy>
1131void EhInputSection::split(ArrayRef<RelTy> Rels) {
1132  unsigned RelI = 0;
1133  for (size_t Off = 0, End = data().size(); Off != End;) {
1134    size_t Size = readEhRecordSize(this, Off);
1135    Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1136    // The empty record is the end marker.
1137    if (Size == 4)
1138      break;
1139    Off += Size;
1140  }
1141}
1142
1143static size_t findNull(StringRef S, size_t EntSize) {
1144  // Optimize the common case.
1145  if (EntSize == 1)
1146    return S.find(0);
1147
1148  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1149    const char *B = S.begin() + I;
1150    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1151      return I;
1152  }
1153  return StringRef::npos;
1154}
1155
1156SyntheticSection *MergeInputSection::getParent() const {
1157  return cast_or_null<SyntheticSection>(Parent);
1158}
1159
1160// Split SHF_STRINGS section. Such section is a sequence of
1161// null-terminated strings.
1162void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1163  size_t Off = 0;
1164  bool IsAlloc = Flags & SHF_ALLOC;
1165  StringRef S = toStringRef(Data);
1166
1167  while (!S.empty()) {
1168    size_t End = findNull(S, EntSize);
1169    if (End == StringRef::npos)
1170      fatal(toString(this) + ": string is not null terminated");
1171    size_t Size = End + EntSize;
1172
1173    Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1174    S = S.substr(Size);
1175    Off += Size;
1176  }
1177}
1178
1179// Split non-SHF_STRINGS section. Such section is a sequence of
1180// fixed size records.
1181void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1182                                        size_t EntSize) {
1183  size_t Size = Data.size();
1184  assert((Size % EntSize) == 0);
1185  bool IsAlloc = Flags & SHF_ALLOC;
1186
1187  for (size_t I = 0; I != Size; I += EntSize)
1188    Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1189}
1190
1191template <class ELFT>
1192MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1193                                     const typename ELFT::Shdr &Header,
1194                                     StringRef Name)
1195    : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1196
1197MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1198                                     uint64_t Entsize, ArrayRef<uint8_t> Data,
1199                                     StringRef Name)
1200    : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1201                       /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1202
1203// This function is called after we obtain a complete list of input sections
1204// that need to be linked. This is responsible to split section contents
1205// into small chunks for further processing.
1206//
1207// Note that this function is called from parallelForEach. This must be
1208// thread-safe (i.e. no memory allocation from the pools).
1209void MergeInputSection::splitIntoPieces() {
1210  assert(Pieces.empty());
1211
1212  if (Flags & SHF_STRINGS)
1213    splitStrings(data(), Entsize);
1214  else
1215    splitNonStrings(data(), Entsize);
1216}
1217
1218SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1219  if (this->data().size() <= Offset)
1220    fatal(toString(this) + ": offset is outside the section");
1221
1222  // If Offset is not at beginning of a section piece, it is not in the map.
1223  // In that case we need to  do a binary search of the original section piece vector.
1224  auto It2 =
1225      llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) {
1226        return Offset < P.InputOff;
1227      });
1228  return &It2[-1];
1229}
1230
1231// Returns the offset in an output section for a given input offset.
1232// Because contents of a mergeable section is not contiguous in output,
1233// it is not just an addition to a base output offset.
1234uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1235  // If Offset is not at beginning of a section piece, it is not in the map.
1236  // In that case we need to search from the original section piece vector.
1237  const SectionPiece &Piece =
1238      *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1239  uint64_t Addend = Offset - Piece.InputOff;
1240  return Piece.OutputOff + Addend;
1241}
1242
1243template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1244                                    StringRef);
1245template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1246                                    StringRef);
1247template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1248                                    StringRef);
1249template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1250                                    StringRef);
1251
1252template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1253template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1254template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1255template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1256
1257template void InputSection::writeTo<ELF32LE>(uint8_t *);
1258template void InputSection::writeTo<ELF32BE>(uint8_t *);
1259template void InputSection::writeTo<ELF64LE>(uint8_t *);
1260template void InputSection::writeTo<ELF64BE>(uint8_t *);
1261
1262template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1263                                              const ELF32LE::Shdr &, StringRef);
1264template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1265                                              const ELF32BE::Shdr &, StringRef);
1266template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1267                                              const ELF64LE::Shdr &, StringRef);
1268template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1269                                              const ELF64BE::Shdr &, StringRef);
1270
1271template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1272                                        const ELF32LE::Shdr &, StringRef);
1273template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1274                                        const ELF32BE::Shdr &, StringRef);
1275template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1276                                        const ELF64LE::Shdr &, StringRef);
1277template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1278                                        const ELF64BE::Shdr &, StringRef);
1279
1280template void EhInputSection::split<ELF32LE>();
1281template void EhInputSection::split<ELF32BE>();
1282template void EhInputSection::split<ELF64LE>();
1283template void EhInputSection::split<ELF64BE>();
1284