InputSection.cpp revision 341825
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3//                             The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "InputSection.h"
11#include "Config.h"
12#include "EhFrame.h"
13#include "InputFiles.h"
14#include "LinkerScript.h"
15#include "OutputSections.h"
16#include "Relocations.h"
17#include "SymbolTable.h"
18#include "Symbols.h"
19#include "SyntheticSections.h"
20#include "Target.h"
21#include "Thunks.h"
22#include "lld/Common/ErrorHandler.h"
23#include "lld/Common/Memory.h"
24#include "llvm/Object/Decompressor.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Compression.h"
27#include "llvm/Support/Endian.h"
28#include "llvm/Support/Threading.h"
29#include "llvm/Support/xxhash.h"
30#include <algorithm>
31#include <mutex>
32#include <set>
33#include <vector>
34
35using namespace llvm;
36using namespace llvm::ELF;
37using namespace llvm::object;
38using namespace llvm::support;
39using namespace llvm::support::endian;
40using namespace llvm::sys;
41
42using namespace lld;
43using namespace lld::elf;
44
45std::vector<InputSectionBase *> elf::InputSections;
46
47// Returns a string to construct an error message.
48std::string lld::toString(const InputSectionBase *Sec) {
49  return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
50}
51
52template <class ELFT>
53static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
54                                            const typename ELFT::Shdr &Hdr) {
55  if (Hdr.sh_type == SHT_NOBITS)
56    return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
57  return check(File.getObj().getSectionContents(&Hdr));
58}
59
60InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
61                                   uint32_t Type, uint64_t Entsize,
62                                   uint32_t Link, uint32_t Info,
63                                   uint32_t Alignment, ArrayRef<uint8_t> Data,
64                                   StringRef Name, Kind SectionKind)
65    : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
66                  Link),
67      File(File), Data(Data) {
68  // In order to reduce memory allocation, we assume that mergeable
69  // sections are smaller than 4 GiB, which is not an unreasonable
70  // assumption as of 2017.
71  if (SectionKind == SectionBase::Merge && Data.size() > UINT32_MAX)
72    error(toString(this) + ": section too large");
73
74  NumRelocations = 0;
75  AreRelocsRela = false;
76
77  // The ELF spec states that a value of 0 means the section has
78  // no alignment constraits.
79  uint32_t V = std::max<uint64_t>(Alignment, 1);
80  if (!isPowerOf2_64(V))
81    fatal(toString(File) + ": section sh_addralign is not a power of 2");
82  this->Alignment = V;
83}
84
85// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
86// SHF_GROUP is a marker that a section belongs to some comdat group.
87// That flag doesn't make sense in an executable.
88static uint64_t getFlags(uint64_t Flags) {
89  Flags &= ~(uint64_t)SHF_INFO_LINK;
90  if (!Config->Relocatable)
91    Flags &= ~(uint64_t)SHF_GROUP;
92  return Flags;
93}
94
95// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
96// March 2017) fail to infer section types for sections starting with
97// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
98// SHF_INIT_ARRAY. As a result, the following assembler directive
99// creates ".init_array.100" with SHT_PROGBITS, for example.
100//
101//   .section .init_array.100, "aw"
102//
103// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
104// incorrect inputs as if they were correct from the beginning.
105static uint64_t getType(uint64_t Type, StringRef Name) {
106  if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
107    return SHT_INIT_ARRAY;
108  if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
109    return SHT_FINI_ARRAY;
110  return Type;
111}
112
113template <class ELFT>
114InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
115                                   const typename ELFT::Shdr &Hdr,
116                                   StringRef Name, Kind SectionKind)
117    : InputSectionBase(&File, getFlags(Hdr.sh_flags),
118                       getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
119                       Hdr.sh_info, Hdr.sh_addralign,
120                       getSectionContents(File, Hdr), Name, SectionKind) {
121  // We reject object files having insanely large alignments even though
122  // they are allowed by the spec. I think 4GB is a reasonable limitation.
123  // We might want to relax this in the future.
124  if (Hdr.sh_addralign > UINT32_MAX)
125    fatal(toString(&File) + ": section sh_addralign is too large");
126}
127
128size_t InputSectionBase::getSize() const {
129  if (auto *S = dyn_cast<SyntheticSection>(this))
130    return S->getSize();
131
132  return Data.size();
133}
134
135uint64_t InputSectionBase::getOffsetInFile() const {
136  const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
137  const uint8_t *SecStart = Data.begin();
138  return SecStart - FileStart;
139}
140
141uint64_t SectionBase::getOffset(uint64_t Offset) const {
142  switch (kind()) {
143  case Output: {
144    auto *OS = cast<OutputSection>(this);
145    // For output sections we treat offset -1 as the end of the section.
146    return Offset == uint64_t(-1) ? OS->Size : Offset;
147  }
148  case Regular:
149  case Synthetic:
150    return cast<InputSection>(this)->getOffset(Offset);
151  case EHFrame:
152    // The file crtbeginT.o has relocations pointing to the start of an empty
153    // .eh_frame that is known to be the first in the link. It does that to
154    // identify the start of the output .eh_frame.
155    return Offset;
156  case Merge:
157    const MergeInputSection *MS = cast<MergeInputSection>(this);
158    if (InputSection *IS = MS->getParent())
159      return IS->getOffset(MS->getParentOffset(Offset));
160    return MS->getParentOffset(Offset);
161  }
162  llvm_unreachable("invalid section kind");
163}
164
165uint64_t SectionBase::getVA(uint64_t Offset) const {
166  const OutputSection *Out = getOutputSection();
167  return (Out ? Out->Addr : 0) + getOffset(Offset);
168}
169
170OutputSection *SectionBase::getOutputSection() {
171  InputSection *Sec;
172  if (auto *IS = dyn_cast<InputSection>(this))
173    Sec = IS;
174  else if (auto *MS = dyn_cast<MergeInputSection>(this))
175    Sec = MS->getParent();
176  else if (auto *EH = dyn_cast<EhInputSection>(this))
177    Sec = EH->getParent();
178  else
179    return cast<OutputSection>(this);
180  return Sec ? Sec->getParent() : nullptr;
181}
182
183// Decompress section contents if required. Note that this function
184// is called from parallelForEach, so it must be thread-safe.
185void InputSectionBase::maybeDecompress() {
186  if (DecompressBuf)
187    return;
188  if (!(Flags & SHF_COMPRESSED) && !Name.startswith(".zdebug"))
189    return;
190
191  // Decompress a section.
192  Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
193                                                Config->IsLE, Config->Is64));
194
195  size_t Size = Dec.getDecompressedSize();
196  DecompressBuf.reset(new char[Size + Name.size()]());
197  if (Error E = Dec.decompress({DecompressBuf.get(), Size}))
198    fatal(toString(this) +
199          ": decompress failed: " + llvm::toString(std::move(E)));
200
201  Data = makeArrayRef((uint8_t *)DecompressBuf.get(), Size);
202  Flags &= ~(uint64_t)SHF_COMPRESSED;
203
204  // A section name may have been altered if compressed. If that's
205  // the case, restore the original name. (i.e. ".zdebug_" -> ".debug_")
206  if (Name.startswith(".zdebug")) {
207    DecompressBuf[Size] = '.';
208    memcpy(&DecompressBuf[Size + 1], Name.data() + 2, Name.size() - 2);
209    Name = StringRef(&DecompressBuf[Size], Name.size() - 1);
210  }
211}
212
213InputSection *InputSectionBase::getLinkOrderDep() const {
214  assert(Link);
215  assert(Flags & SHF_LINK_ORDER);
216  return cast<InputSection>(File->getSections()[Link]);
217}
218
219// Find a function symbol that encloses a given location.
220template <class ELFT>
221Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
222  for (Symbol *B : File->getSymbols())
223    if (Defined *D = dyn_cast<Defined>(B))
224      if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
225          Offset < D->Value + D->Size)
226        return D;
227  return nullptr;
228}
229
230// Returns a source location string. Used to construct an error message.
231template <class ELFT>
232std::string InputSectionBase::getLocation(uint64_t Offset) {
233  // We don't have file for synthetic sections.
234  if (getFile<ELFT>() == nullptr)
235    return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
236        .str();
237
238  // First check if we can get desired values from debugging information.
239  if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
240    return Info->FileName + ":" + std::to_string(Info->Line);
241
242  // File->SourceFile contains STT_FILE symbol that contains a
243  // source file name. If it's missing, we use an object file name.
244  std::string SrcFile = getFile<ELFT>()->SourceFile;
245  if (SrcFile.empty())
246    SrcFile = toString(File);
247
248  if (Defined *D = getEnclosingFunction<ELFT>(Offset))
249    return SrcFile + ":(function " + toString(*D) + ")";
250
251  // If there's no symbol, print out the offset in the section.
252  return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
253}
254
255// This function is intended to be used for constructing an error message.
256// The returned message looks like this:
257//
258//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
259//
260//  Returns an empty string if there's no way to get line info.
261std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
262  // Synthetic sections don't have input files.
263  if (!File)
264    return "";
265  return File->getSrcMsg(Sym, *this, Offset);
266}
267
268// Returns a filename string along with an optional section name. This
269// function is intended to be used for constructing an error
270// message. The returned message looks like this:
271//
272//   path/to/foo.o:(function bar)
273//
274// or
275//
276//   path/to/foo.o:(function bar) in archive path/to/bar.a
277std::string InputSectionBase::getObjMsg(uint64_t Off) {
278  // Synthetic sections don't have input files.
279  if (!File)
280    return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str();
281  std::string Filename = File->getName();
282
283  std::string Archive;
284  if (!File->ArchiveName.empty())
285    Archive = " in archive " + File->ArchiveName;
286
287  // Find a symbol that encloses a given location.
288  for (Symbol *B : File->getSymbols())
289    if (auto *D = dyn_cast<Defined>(B))
290      if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
291        return Filename + ":(" + toString(*D) + ")" + Archive;
292
293  // If there's no symbol, print out the offset in the section.
294  return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
295      .str();
296}
297
298InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
299
300InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
301                           uint32_t Alignment, ArrayRef<uint8_t> Data,
302                           StringRef Name, Kind K)
303    : InputSectionBase(F, Flags, Type,
304                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
305                       Name, K) {}
306
307template <class ELFT>
308InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
309                           StringRef Name)
310    : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
311
312bool InputSection::classof(const SectionBase *S) {
313  return S->kind() == SectionBase::Regular ||
314         S->kind() == SectionBase::Synthetic;
315}
316
317OutputSection *InputSection::getParent() const {
318  return cast_or_null<OutputSection>(Parent);
319}
320
321// Copy SHT_GROUP section contents. Used only for the -r option.
322template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
323  // ELFT::Word is the 32-bit integral type in the target endianness.
324  typedef typename ELFT::Word u32;
325  ArrayRef<u32> From = getDataAs<u32>();
326  auto *To = reinterpret_cast<u32 *>(Buf);
327
328  // The first entry is not a section number but a flag.
329  *To++ = From[0];
330
331  // Adjust section numbers because section numbers in an input object
332  // files are different in the output.
333  ArrayRef<InputSectionBase *> Sections = File->getSections();
334  for (uint32_t Idx : From.slice(1))
335    *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
336}
337
338InputSectionBase *InputSection::getRelocatedSection() const {
339  if (!File || (Type != SHT_RELA && Type != SHT_REL))
340    return nullptr;
341  ArrayRef<InputSectionBase *> Sections = File->getSections();
342  return Sections[Info];
343}
344
345// This is used for -r and --emit-relocs. We can't use memcpy to copy
346// relocations because we need to update symbol table offset and section index
347// for each relocation. So we copy relocations one by one.
348template <class ELFT, class RelTy>
349void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
350  InputSectionBase *Sec = getRelocatedSection();
351
352  for (const RelTy &Rel : Rels) {
353    RelType Type = Rel.getType(Config->IsMips64EL);
354    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
355
356    auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
357    Buf += sizeof(RelTy);
358
359    if (RelTy::IsRela)
360      P->r_addend = getAddend<ELFT>(Rel);
361
362    // Output section VA is zero for -r, so r_offset is an offset within the
363    // section, but for --emit-relocs it is an virtual address.
364    P->r_offset = Sec->getVA(Rel.r_offset);
365    P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type,
366                        Config->IsMips64EL);
367
368    if (Sym.Type == STT_SECTION) {
369      // We combine multiple section symbols into only one per
370      // section. This means we have to update the addend. That is
371      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
372      // section data. We do that by adding to the Relocation vector.
373
374      // .eh_frame is horribly special and can reference discarded sections. To
375      // avoid having to parse and recreate .eh_frame, we just replace any
376      // relocation in it pointing to discarded sections with R_*_NONE, which
377      // hopefully creates a frame that is ignored at runtime.
378      auto *D = dyn_cast<Defined>(&Sym);
379      if (!D) {
380        error("STT_SECTION symbol should be defined");
381        continue;
382      }
383      SectionBase *Section = D->Section;
384      if (Section == &InputSection::Discarded) {
385        P->setSymbolAndType(0, 0, false);
386        continue;
387      }
388
389      int64_t Addend = getAddend<ELFT>(Rel);
390      const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset;
391      if (!RelTy::IsRela)
392        Addend = Target->getImplicitAddend(BufLoc, Type);
393
394      if (Config->EMachine == EM_MIPS && Config->Relocatable &&
395          Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
396        // Some MIPS relocations depend on "gp" value. By default,
397        // this value has 0x7ff0 offset from a .got section. But
398        // relocatable files produced by a complier or a linker
399        // might redefine this default value and we must use it
400        // for a calculation of the relocation result. When we
401        // generate EXE or DSO it's trivial. Generating a relocatable
402        // output is more difficult case because the linker does
403        // not calculate relocations in this mode and loses
404        // individual "gp" values used by each input object file.
405        // As a workaround we add the "gp" value to the relocation
406        // addend and save it back to the file.
407        Addend += Sec->getFile<ELFT>()->MipsGp0;
408      }
409
410      if (RelTy::IsRela)
411        P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
412      else if (Config->Relocatable)
413        Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
414    }
415  }
416}
417
418// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
419// references specially. The general rule is that the value of the symbol in
420// this context is the address of the place P. A further special case is that
421// branch relocations to an undefined weak reference resolve to the next
422// instruction.
423static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
424                                              uint32_t P) {
425  switch (Type) {
426  // Unresolved branch relocations to weak references resolve to next
427  // instruction, this will be either 2 or 4 bytes on from P.
428  case R_ARM_THM_JUMP11:
429    return P + 2 + A;
430  case R_ARM_CALL:
431  case R_ARM_JUMP24:
432  case R_ARM_PC24:
433  case R_ARM_PLT32:
434  case R_ARM_PREL31:
435  case R_ARM_THM_JUMP19:
436  case R_ARM_THM_JUMP24:
437    return P + 4 + A;
438  case R_ARM_THM_CALL:
439    // We don't want an interworking BLX to ARM
440    return P + 5 + A;
441  // Unresolved non branch pc-relative relocations
442  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
443  // targets a weak-reference.
444  case R_ARM_MOVW_PREL_NC:
445  case R_ARM_MOVT_PREL:
446  case R_ARM_REL32:
447  case R_ARM_THM_MOVW_PREL_NC:
448  case R_ARM_THM_MOVT_PREL:
449    return P + A;
450  }
451  llvm_unreachable("ARM pc-relative relocation expected\n");
452}
453
454// The comment above getARMUndefinedRelativeWeakVA applies to this function.
455static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
456                                                  uint64_t P) {
457  switch (Type) {
458  // Unresolved branch relocations to weak references resolve to next
459  // instruction, this is 4 bytes on from P.
460  case R_AARCH64_CALL26:
461  case R_AARCH64_CONDBR19:
462  case R_AARCH64_JUMP26:
463  case R_AARCH64_TSTBR14:
464    return P + 4 + A;
465  // Unresolved non branch pc-relative relocations
466  case R_AARCH64_PREL16:
467  case R_AARCH64_PREL32:
468  case R_AARCH64_PREL64:
469  case R_AARCH64_ADR_PREL_LO21:
470  case R_AARCH64_LD_PREL_LO19:
471    return P + A;
472  }
473  llvm_unreachable("AArch64 pc-relative relocation expected\n");
474}
475
476// ARM SBREL relocations are of the form S + A - B where B is the static base
477// The ARM ABI defines base to be "addressing origin of the output segment
478// defining the symbol S". We defined the "addressing origin"/static base to be
479// the base of the PT_LOAD segment containing the Sym.
480// The procedure call standard only defines a Read Write Position Independent
481// RWPI variant so in practice we should expect the static base to be the base
482// of the RW segment.
483static uint64_t getARMStaticBase(const Symbol &Sym) {
484  OutputSection *OS = Sym.getOutputSection();
485  if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
486    fatal("SBREL relocation to " + Sym.getName() + " without static base");
487  return OS->PtLoad->FirstSec->Addr;
488}
489
490static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
491                                 uint64_t P, const Symbol &Sym, RelExpr Expr) {
492  switch (Expr) {
493  case R_INVALID:
494    return 0;
495  case R_ABS:
496  case R_RELAX_TLS_LD_TO_LE_ABS:
497  case R_RELAX_GOT_PC_NOPIC:
498    return Sym.getVA(A);
499  case R_ADDEND:
500    return A;
501  case R_ARM_SBREL:
502    return Sym.getVA(A) - getARMStaticBase(Sym);
503  case R_GOT:
504  case R_RELAX_TLS_GD_TO_IE_ABS:
505    return Sym.getGotVA() + A;
506  case R_GOTONLY_PC:
507    return InX::Got->getVA() + A - P;
508  case R_GOTONLY_PC_FROM_END:
509    return InX::Got->getVA() + A - P + InX::Got->getSize();
510  case R_GOTREL:
511    return Sym.getVA(A) - InX::Got->getVA();
512  case R_GOTREL_FROM_END:
513    return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize();
514  case R_GOT_FROM_END:
515  case R_RELAX_TLS_GD_TO_IE_END:
516    return Sym.getGotOffset() + A - InX::Got->getSize();
517  case R_TLSLD_GOT_OFF:
518  case R_GOT_OFF:
519  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
520    return Sym.getGotOffset() + A;
521  case R_GOT_PAGE_PC:
522  case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
523    return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
524  case R_GOT_PC:
525  case R_RELAX_TLS_GD_TO_IE:
526    return Sym.getGotVA() + A - P;
527  case R_HINT:
528  case R_NONE:
529  case R_TLSDESC_CALL:
530  case R_TLSLD_HINT:
531    llvm_unreachable("cannot relocate hint relocs");
532  case R_MIPS_GOTREL:
533    return Sym.getVA(A) - InX::MipsGot->getGp(File);
534  case R_MIPS_GOT_GP:
535    return InX::MipsGot->getGp(File) + A;
536  case R_MIPS_GOT_GP_PC: {
537    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
538    // is _gp_disp symbol. In that case we should use the following
539    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
540    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
541    // microMIPS variants of these relocations use slightly different
542    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
543    // to correctly handle less-sugnificant bit of the microMIPS symbol.
544    uint64_t V = InX::MipsGot->getGp(File) + A - P;
545    if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
546      V += 4;
547    if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
548      V -= 1;
549    return V;
550  }
551  case R_MIPS_GOT_LOCAL_PAGE:
552    // If relocation against MIPS local symbol requires GOT entry, this entry
553    // should be initialized by 'page address'. This address is high 16-bits
554    // of sum the symbol's value and the addend.
555    return InX::MipsGot->getVA() +
556           InX::MipsGot->getPageEntryOffset(File, Sym, A) -
557           InX::MipsGot->getGp(File);
558  case R_MIPS_GOT_OFF:
559  case R_MIPS_GOT_OFF32:
560    // In case of MIPS if a GOT relocation has non-zero addend this addend
561    // should be applied to the GOT entry content not to the GOT entry offset.
562    // That is why we use separate expression type.
563    return InX::MipsGot->getVA() +
564           InX::MipsGot->getSymEntryOffset(File, Sym, A) -
565           InX::MipsGot->getGp(File);
566  case R_MIPS_TLSGD:
567    return InX::MipsGot->getVA() + InX::MipsGot->getGlobalDynOffset(File, Sym) -
568           InX::MipsGot->getGp(File);
569  case R_MIPS_TLSLD:
570    return InX::MipsGot->getVA() + InX::MipsGot->getTlsIndexOffset(File) -
571           InX::MipsGot->getGp(File);
572  case R_PAGE_PC:
573  case R_PLT_PAGE_PC: {
574    uint64_t Dest;
575    if (Sym.isUndefWeak())
576      Dest = getAArch64Page(A);
577    else
578      Dest = getAArch64Page(Sym.getVA(A));
579    return Dest - getAArch64Page(P);
580  }
581  case R_PC: {
582    uint64_t Dest;
583    if (Sym.isUndefWeak()) {
584      // On ARM and AArch64 a branch to an undefined weak resolves to the
585      // next instruction, otherwise the place.
586      if (Config->EMachine == EM_ARM)
587        Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
588      else if (Config->EMachine == EM_AARCH64)
589        Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
590      else
591        Dest = Sym.getVA(A);
592    } else {
593      Dest = Sym.getVA(A);
594    }
595    return Dest - P;
596  }
597  case R_PLT:
598    return Sym.getPltVA() + A;
599  case R_PLT_PC:
600  case R_PPC_CALL_PLT:
601    return Sym.getPltVA() + A - P;
602  case R_PPC_CALL: {
603    uint64_t SymVA = Sym.getVA(A);
604    // If we have an undefined weak symbol, we might get here with a symbol
605    // address of zero. That could overflow, but the code must be unreachable,
606    // so don't bother doing anything at all.
607    if (!SymVA)
608      return 0;
609
610    // PPC64 V2 ABI describes two entry points to a function. The global entry
611    // point sets up the TOC base pointer. When calling a local function, the
612    // call should branch to the local entry point rather than the global entry
613    // point. Section 3.4.1 describes using the 3 most significant bits of the
614    // st_other field to find out how many instructions there are between the
615    // local and global entry point.
616    uint8_t StOther = (Sym.StOther >> 5) & 7;
617    if (StOther == 0 || StOther == 1)
618      return SymVA - P;
619
620    return SymVA - P + (1LL << StOther);
621  }
622  case R_PPC_TOC:
623    return getPPC64TocBase() + A;
624  case R_RELAX_GOT_PC:
625    return Sym.getVA(A) - P;
626  case R_RELAX_TLS_GD_TO_LE:
627  case R_RELAX_TLS_IE_TO_LE:
628  case R_RELAX_TLS_LD_TO_LE:
629  case R_TLS:
630    // A weak undefined TLS symbol resolves to the base of the TLS
631    // block, i.e. gets a value of zero. If we pass --gc-sections to
632    // lld and .tbss is not referenced, it gets reclaimed and we don't
633    // create a TLS program header. Therefore, we resolve this
634    // statically to zero.
635    if (Sym.isTls() && Sym.isUndefWeak())
636      return 0;
637
638    // For TLS variant 1 the TCB is a fixed size, whereas for TLS variant 2 the
639    // TCB is on unspecified size and content. Targets that implement variant 1
640    // should set TcbSize.
641    if (Target->TcbSize) {
642      // PPC64 V2 ABI has the thread pointer offset into the middle of the TLS
643      // storage area by TlsTpOffset for efficient addressing TCB and up to
644      // 4KB ��� 8 B of other thread library information (placed before the TCB).
645      // Subtracting this offset will get the address of the first TLS block.
646      if (Target->TlsTpOffset)
647        return Sym.getVA(A) - Target->TlsTpOffset;
648
649      // If thread pointer is not offset into the middle, the first thing in the
650      // TLS storage area is the TCB. Add the TcbSize to get the address of the
651      // first TLS block.
652      return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
653    }
654    return Sym.getVA(A) - Out::TlsPhdr->p_memsz;
655  case R_RELAX_TLS_GD_TO_LE_NEG:
656  case R_NEG_TLS:
657    return Out::TlsPhdr->p_memsz - Sym.getVA(A);
658  case R_SIZE:
659    return Sym.getSize() + A;
660  case R_TLSDESC:
661    return InX::Got->getGlobalDynAddr(Sym) + A;
662  case R_TLSDESC_PAGE:
663    return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) -
664           getAArch64Page(P);
665  case R_TLSGD_GOT:
666    return InX::Got->getGlobalDynOffset(Sym) + A;
667  case R_TLSGD_GOT_FROM_END:
668    return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize();
669  case R_TLSGD_PC:
670    return InX::Got->getGlobalDynAddr(Sym) + A - P;
671  case R_TLSLD_GOT_FROM_END:
672    return InX::Got->getTlsIndexOff() + A - InX::Got->getSize();
673  case R_TLSLD_GOT:
674    return InX::Got->getTlsIndexOff() + A;
675  case R_TLSLD_PC:
676    return InX::Got->getTlsIndexVA() + A - P;
677  }
678  llvm_unreachable("Invalid expression");
679}
680
681// This function applies relocations to sections without SHF_ALLOC bit.
682// Such sections are never mapped to memory at runtime. Debug sections are
683// an example. Relocations in non-alloc sections are much easier to
684// handle than in allocated sections because it will never need complex
685// treatement such as GOT or PLT (because at runtime no one refers them).
686// So, we handle relocations for non-alloc sections directly in this
687// function as a performance optimization.
688template <class ELFT, class RelTy>
689void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
690  const unsigned Bits = sizeof(typename ELFT::uint) * 8;
691
692  for (const RelTy &Rel : Rels) {
693    RelType Type = Rel.getType(Config->IsMips64EL);
694
695    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
696    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
697    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
698    // need to keep this bug-compatible code for a while.
699    if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
700      continue;
701
702    uint64_t Offset = getOffset(Rel.r_offset);
703    uint8_t *BufLoc = Buf + Offset;
704    int64_t Addend = getAddend<ELFT>(Rel);
705    if (!RelTy::IsRela)
706      Addend += Target->getImplicitAddend(BufLoc, Type);
707
708    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
709    RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
710    if (Expr == R_NONE)
711      continue;
712
713    if (Expr != R_ABS) {
714      std::string Msg = getLocation<ELFT>(Offset) +
715                        ": has non-ABS relocation " + toString(Type) +
716                        " against symbol '" + toString(Sym) + "'";
717      if (Expr != R_PC) {
718        error(Msg);
719        return;
720      }
721
722      // If the control reaches here, we found a PC-relative relocation in a
723      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
724      // at runtime, the notion of PC-relative doesn't make sense here. So,
725      // this is a usage error. However, GNU linkers historically accept such
726      // relocations without any errors and relocate them as if they were at
727      // address 0. For bug-compatibilty, we accept them with warnings. We
728      // know Steel Bank Common Lisp as of 2018 have this bug.
729      warn(Msg);
730      Target->relocateOne(BufLoc, Type,
731                          SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
732      continue;
733    }
734
735    if (Sym.isTls() && !Out::TlsPhdr)
736      Target->relocateOne(BufLoc, Type, 0);
737    else
738      Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
739  }
740}
741
742// This is used when '-r' is given.
743// For REL targets, InputSection::copyRelocations() may store artificial
744// relocations aimed to update addends. They are handled in relocateAlloc()
745// for allocatable sections, and this function does the same for
746// non-allocatable sections, such as sections with debug information.
747static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
748  const unsigned Bits = Config->Is64 ? 64 : 32;
749
750  for (const Relocation &Rel : Sec->Relocations) {
751    // InputSection::copyRelocations() adds only R_ABS relocations.
752    assert(Rel.Expr == R_ABS);
753    uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
754    uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
755    Target->relocateOne(BufLoc, Rel.Type, TargetVA);
756  }
757}
758
759template <class ELFT>
760void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
761  if (Flags & SHF_EXECINSTR)
762    adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
763
764  if (Flags & SHF_ALLOC) {
765    relocateAlloc(Buf, BufEnd);
766    return;
767  }
768
769  auto *Sec = cast<InputSection>(this);
770  if (Config->Relocatable)
771    relocateNonAllocForRelocatable(Sec, Buf);
772  else if (Sec->AreRelocsRela)
773    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
774  else
775    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
776}
777
778void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
779  assert(Flags & SHF_ALLOC);
780  const unsigned Bits = Config->Wordsize * 8;
781
782  for (const Relocation &Rel : Relocations) {
783    uint64_t Offset = Rel.Offset;
784    if (auto *Sec = dyn_cast<InputSection>(this))
785      Offset += Sec->OutSecOff;
786    uint8_t *BufLoc = Buf + Offset;
787    RelType Type = Rel.Type;
788
789    uint64_t AddrLoc = getOutputSection()->Addr + Offset;
790    RelExpr Expr = Rel.Expr;
791    uint64_t TargetVA = SignExtend64(
792        getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
793        Bits);
794
795    switch (Expr) {
796    case R_RELAX_GOT_PC:
797    case R_RELAX_GOT_PC_NOPIC:
798      Target->relaxGot(BufLoc, TargetVA);
799      break;
800    case R_RELAX_TLS_IE_TO_LE:
801      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
802      break;
803    case R_RELAX_TLS_LD_TO_LE:
804    case R_RELAX_TLS_LD_TO_LE_ABS:
805      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
806      break;
807    case R_RELAX_TLS_GD_TO_LE:
808    case R_RELAX_TLS_GD_TO_LE_NEG:
809      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
810      break;
811    case R_RELAX_TLS_GD_TO_IE:
812    case R_RELAX_TLS_GD_TO_IE_ABS:
813    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
814    case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
815    case R_RELAX_TLS_GD_TO_IE_END:
816      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
817      break;
818    case R_PPC_CALL:
819      // If this is a call to __tls_get_addr, it may be part of a TLS
820      // sequence that has been relaxed and turned into a nop. In this
821      // case, we don't want to handle it as a call.
822      if (read32(BufLoc) == 0x60000000) // nop
823        break;
824
825      // Patch a nop (0x60000000) to a ld.
826      if (Rel.Sym->NeedsTocRestore) {
827        if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
828          error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
829          break;
830        }
831        write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
832      }
833      Target->relocateOne(BufLoc, Type, TargetVA);
834      break;
835    default:
836      Target->relocateOne(BufLoc, Type, TargetVA);
837      break;
838    }
839  }
840}
841
842// For each function-defining prologue, find any calls to __morestack,
843// and replace them with calls to __morestack_non_split.
844static void switchMorestackCallsToMorestackNonSplit(
845    DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
846
847  // If the target adjusted a function's prologue, all calls to
848  // __morestack inside that function should be switched to
849  // __morestack_non_split.
850  Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
851
852  // Sort both collections to compare addresses efficiently.
853  llvm::sort(MorestackCalls.begin(), MorestackCalls.end(),
854             [](const Relocation *L, const Relocation *R) {
855               return L->Offset < R->Offset;
856             });
857  std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
858  llvm::sort(
859      Functions.begin(), Functions.end(),
860      [](const Defined *L, const Defined *R) { return L->Value < R->Value; });
861
862  auto It = MorestackCalls.begin();
863  for (Defined *F : Functions) {
864    // Find the first call to __morestack within the function.
865    while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
866      ++It;
867    // Adjust all calls inside the function.
868    while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
869      (*It)->Sym = MoreStackNonSplit;
870      ++It;
871    }
872  }
873}
874
875static bool enclosingPrologueAdjusted(uint64_t Offset,
876                                      const DenseSet<Defined *> &Prologues) {
877  for (Defined *F : Prologues)
878    if (F->Value <= Offset && Offset < F->Value + F->Size)
879      return true;
880  return false;
881}
882
883// If a function compiled for split stack calls a function not
884// compiled for split stack, then the caller needs its prologue
885// adjusted to ensure that the called function will have enough stack
886// available. Find those functions, and adjust their prologues.
887template <class ELFT>
888void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
889                                                         uint8_t *End) {
890  if (!getFile<ELFT>()->SplitStack)
891    return;
892  DenseSet<Defined *> AdjustedPrologues;
893  std::vector<Relocation *> MorestackCalls;
894
895  for (Relocation &Rel : Relocations) {
896    // Local symbols can't possibly be cross-calls, and should have been
897    // resolved long before this line.
898    if (Rel.Sym->isLocal())
899      continue;
900
901    Defined *D = dyn_cast<Defined>(Rel.Sym);
902    // A reference to an undefined symbol was an error, and should not
903    // have gotten to this point.
904    if (!D)
905      continue;
906
907    // Ignore calls into the split-stack api.
908    if (D->getName().startswith("__morestack")) {
909      if (D->getName().equals("__morestack"))
910        MorestackCalls.push_back(&Rel);
911      continue;
912    }
913
914    // A relocation to non-function isn't relevant. Sometimes
915    // __morestack is not marked as a function, so this check comes
916    // after the name check.
917    if (D->Type != STT_FUNC)
918      continue;
919
920    if (enclosingPrologueAdjusted(Rel.Offset, AdjustedPrologues))
921      continue;
922
923    if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
924      if (Target->adjustPrologueForCrossSplitStack(Buf + F->Value, End)) {
925        AdjustedPrologues.insert(F);
926        continue;
927      }
928    }
929    if (!getFile<ELFT>()->SomeNoSplitStack)
930      error("function call at " + getErrorLocation(Buf + Rel.Offset) +
931            "crosses a split-stack boundary, but unable " +
932            "to adjust the enclosing function's prologue");
933  }
934  switchMorestackCallsToMorestackNonSplit(AdjustedPrologues, MorestackCalls);
935}
936
937template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
938  if (Type == SHT_NOBITS)
939    return;
940
941  if (auto *S = dyn_cast<SyntheticSection>(this)) {
942    S->writeTo(Buf + OutSecOff);
943    return;
944  }
945
946  // If -r or --emit-relocs is given, then an InputSection
947  // may be a relocation section.
948  if (Type == SHT_RELA) {
949    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
950    return;
951  }
952  if (Type == SHT_REL) {
953    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
954    return;
955  }
956
957  // If -r is given, we may have a SHT_GROUP section.
958  if (Type == SHT_GROUP) {
959    copyShtGroup<ELFT>(Buf + OutSecOff);
960    return;
961  }
962
963  // Copy section contents from source object file to output file
964  // and then apply relocations.
965  memcpy(Buf + OutSecOff, Data.data(), Data.size());
966  uint8_t *BufEnd = Buf + OutSecOff + Data.size();
967  relocate<ELFT>(Buf, BufEnd);
968}
969
970void InputSection::replace(InputSection *Other) {
971  Alignment = std::max(Alignment, Other->Alignment);
972  Other->Repl = Repl;
973  Other->Live = false;
974}
975
976template <class ELFT>
977EhInputSection::EhInputSection(ObjFile<ELFT> &F,
978                               const typename ELFT::Shdr &Header,
979                               StringRef Name)
980    : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
981
982SyntheticSection *EhInputSection::getParent() const {
983  return cast_or_null<SyntheticSection>(Parent);
984}
985
986// Returns the index of the first relocation that points to a region between
987// Begin and Begin+Size.
988template <class IntTy, class RelTy>
989static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
990                         unsigned &RelocI) {
991  // Start search from RelocI for fast access. That works because the
992  // relocations are sorted in .eh_frame.
993  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
994    const RelTy &Rel = Rels[RelocI];
995    if (Rel.r_offset < Begin)
996      continue;
997
998    if (Rel.r_offset < Begin + Size)
999      return RelocI;
1000    return -1;
1001  }
1002  return -1;
1003}
1004
1005// .eh_frame is a sequence of CIE or FDE records.
1006// This function splits an input section into records and returns them.
1007template <class ELFT> void EhInputSection::split() {
1008  if (AreRelocsRela)
1009    split<ELFT>(relas<ELFT>());
1010  else
1011    split<ELFT>(rels<ELFT>());
1012}
1013
1014template <class ELFT, class RelTy>
1015void EhInputSection::split(ArrayRef<RelTy> Rels) {
1016  unsigned RelI = 0;
1017  for (size_t Off = 0, End = Data.size(); Off != End;) {
1018    size_t Size = readEhRecordSize(this, Off);
1019    Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1020    // The empty record is the end marker.
1021    if (Size == 4)
1022      break;
1023    Off += Size;
1024  }
1025}
1026
1027static size_t findNull(StringRef S, size_t EntSize) {
1028  // Optimize the common case.
1029  if (EntSize == 1)
1030    return S.find(0);
1031
1032  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1033    const char *B = S.begin() + I;
1034    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1035      return I;
1036  }
1037  return StringRef::npos;
1038}
1039
1040SyntheticSection *MergeInputSection::getParent() const {
1041  return cast_or_null<SyntheticSection>(Parent);
1042}
1043
1044// Split SHF_STRINGS section. Such section is a sequence of
1045// null-terminated strings.
1046void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1047  size_t Off = 0;
1048  bool IsAlloc = Flags & SHF_ALLOC;
1049  StringRef S = toStringRef(Data);
1050
1051  while (!S.empty()) {
1052    size_t End = findNull(S, EntSize);
1053    if (End == StringRef::npos)
1054      fatal(toString(this) + ": string is not null terminated");
1055    size_t Size = End + EntSize;
1056
1057    Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1058    S = S.substr(Size);
1059    Off += Size;
1060  }
1061}
1062
1063// Split non-SHF_STRINGS section. Such section is a sequence of
1064// fixed size records.
1065void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1066                                        size_t EntSize) {
1067  size_t Size = Data.size();
1068  assert((Size % EntSize) == 0);
1069  bool IsAlloc = Flags & SHF_ALLOC;
1070
1071  for (size_t I = 0; I != Size; I += EntSize)
1072    Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1073}
1074
1075template <class ELFT>
1076MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1077                                     const typename ELFT::Shdr &Header,
1078                                     StringRef Name)
1079    : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1080
1081MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1082                                     uint64_t Entsize, ArrayRef<uint8_t> Data,
1083                                     StringRef Name)
1084    : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1085                       /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1086
1087// This function is called after we obtain a complete list of input sections
1088// that need to be linked. This is responsible to split section contents
1089// into small chunks for further processing.
1090//
1091// Note that this function is called from parallelForEach. This must be
1092// thread-safe (i.e. no memory allocation from the pools).
1093void MergeInputSection::splitIntoPieces() {
1094  assert(Pieces.empty());
1095
1096  if (Flags & SHF_STRINGS)
1097    splitStrings(Data, Entsize);
1098  else
1099    splitNonStrings(Data, Entsize);
1100
1101  OffsetMap.reserve(Pieces.size());
1102  for (size_t I = 0, E = Pieces.size(); I != E; ++I)
1103    OffsetMap[Pieces[I].InputOff] = I;
1104}
1105
1106template <class It, class T, class Compare>
1107static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
1108  size_t Size = std::distance(First, Last);
1109  assert(Size != 0);
1110  while (Size != 1) {
1111    size_t H = Size / 2;
1112    const It MI = First + H;
1113    Size -= H;
1114    First = Comp(Value, *MI) ? First : First + H;
1115  }
1116  return Comp(Value, *First) ? First : First + 1;
1117}
1118
1119// Do binary search to get a section piece at a given input offset.
1120static SectionPiece *findSectionPiece(MergeInputSection *Sec, uint64_t Offset) {
1121  if (Sec->Data.size() <= Offset)
1122    fatal(toString(Sec) + ": entry is past the end of the section");
1123
1124  // Find the element this offset points to.
1125  auto I = fastUpperBound(
1126      Sec->Pieces.begin(), Sec->Pieces.end(), Offset,
1127      [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
1128  --I;
1129  return &*I;
1130}
1131
1132SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1133  // Find a piece starting at a given offset.
1134  auto It = OffsetMap.find(Offset);
1135  if (It != OffsetMap.end())
1136    return &Pieces[It->second];
1137
1138  // If Offset is not at beginning of a section piece, it is not in the map.
1139  // In that case we need to search from the original section piece vector.
1140  return findSectionPiece(this, Offset);
1141}
1142
1143// Returns the offset in an output section for a given input offset.
1144// Because contents of a mergeable section is not contiguous in output,
1145// it is not just an addition to a base output offset.
1146uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1147  // Find a string starting at a given offset.
1148  auto It = OffsetMap.find(Offset);
1149  if (It != OffsetMap.end())
1150    return Pieces[It->second].OutputOff;
1151
1152  // If Offset is not at beginning of a section piece, it is not in the map.
1153  // In that case we need to search from the original section piece vector.
1154  const SectionPiece &Piece =
1155      *findSectionPiece(const_cast<MergeInputSection *>(this), Offset);
1156  uint64_t Addend = Offset - Piece.InputOff;
1157  return Piece.OutputOff + Addend;
1158}
1159
1160template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1161                                    StringRef);
1162template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1163                                    StringRef);
1164template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1165                                    StringRef);
1166template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1167                                    StringRef);
1168
1169template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1170template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1171template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1172template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1173
1174template void InputSection::writeTo<ELF32LE>(uint8_t *);
1175template void InputSection::writeTo<ELF32BE>(uint8_t *);
1176template void InputSection::writeTo<ELF64LE>(uint8_t *);
1177template void InputSection::writeTo<ELF64BE>(uint8_t *);
1178
1179template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1180                                              const ELF32LE::Shdr &, StringRef);
1181template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1182                                              const ELF32BE::Shdr &, StringRef);
1183template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1184                                              const ELF64LE::Shdr &, StringRef);
1185template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1186                                              const ELF64BE::Shdr &, StringRef);
1187
1188template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1189                                        const ELF32LE::Shdr &, StringRef);
1190template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1191                                        const ELF32BE::Shdr &, StringRef);
1192template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1193                                        const ELF64LE::Shdr &, StringRef);
1194template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1195                                        const ELF64BE::Shdr &, StringRef);
1196
1197template void EhInputSection::split<ELF32LE>();
1198template void EhInputSection::split<ELF32BE>();
1199template void EhInputSection::split<ELF64LE>();
1200template void EhInputSection::split<ELF64BE>();
1201