InputSection.cpp revision 319887
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3//                             The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "InputSection.h"
11#include "Config.h"
12#include "EhFrame.h"
13#include "Error.h"
14#include "InputFiles.h"
15#include "LinkerScript.h"
16#include "Memory.h"
17#include "OutputSections.h"
18#include "Relocations.h"
19#include "SyntheticSections.h"
20#include "Target.h"
21#include "Thunks.h"
22#include "llvm/Object/Decompressor.h"
23#include "llvm/Support/Compression.h"
24#include "llvm/Support/Endian.h"
25#include <mutex>
26
27using namespace llvm;
28using namespace llvm::ELF;
29using namespace llvm::object;
30using namespace llvm::support;
31using namespace llvm::support::endian;
32
33using namespace lld;
34using namespace lld::elf;
35
36// Returns a string to construct an error message.
37template <class ELFT>
38std::string lld::toString(const InputSectionBase<ELFT> *Sec) {
39  // File can be absent if section is synthetic.
40  std::string FileName =
41      Sec->getFile() ? Sec->getFile()->getName() : "<internal>";
42  return (FileName + ":(" + Sec->Name + ")").str();
43}
44
45template <class ELFT>
46static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
47                                            const typename ELFT::Shdr *Hdr) {
48  if (!File || Hdr->sh_type == SHT_NOBITS)
49    return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
50  return check(File->getObj().getSectionContents(Hdr));
51}
52
53template <class ELFT>
54InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
55                                         uintX_t Flags, uint32_t Type,
56                                         uintX_t Entsize, uint32_t Link,
57                                         uint32_t Info, uintX_t Addralign,
58                                         ArrayRef<uint8_t> Data, StringRef Name,
59                                         Kind SectionKind)
60    : InputSectionData(SectionKind, Name, Data,
61                       !Config->GcSections || !(Flags & SHF_ALLOC)),
62      File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link),
63      Info(Info), Repl(this) {
64  NumRelocations = 0;
65  AreRelocsRela = false;
66
67  // The ELF spec states that a value of 0 means the section has
68  // no alignment constraits.
69  uint64_t V = std::max<uint64_t>(Addralign, 1);
70  if (!isPowerOf2_64(V))
71    fatal(toString(File) + ": section sh_addralign is not a power of 2");
72
73  // We reject object files having insanely large alignments even though
74  // they are allowed by the spec. I think 4GB is a reasonable limitation.
75  // We might want to relax this in the future.
76  if (V > UINT32_MAX)
77    fatal(toString(File) + ": section sh_addralign is too large");
78  Alignment = V;
79
80  // If it is not a mergeable section, overwrite the flag so that the flag
81  // is consistent with the class. This inconsistency could occur when
82  // string merging is disabled using -O0 flag.
83  if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this))
84    this->Flags &= ~(SHF_MERGE | SHF_STRINGS);
85}
86
87template <class ELFT>
88InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
89                                         const Elf_Shdr *Hdr, StringRef Name,
90                                         Kind SectionKind)
91    : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type,
92                       Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info,
93                       Hdr->sh_addralign, getSectionContents(File, Hdr), Name,
94                       SectionKind) {
95  this->Offset = Hdr->sh_offset;
96}
97
98template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
99  if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this))
100    return S->getSize();
101
102  if (auto *D = dyn_cast<InputSection<ELFT>>(this))
103    if (D->getThunksSize() > 0)
104      return D->getThunkOff() + D->getThunksSize();
105
106  return Data.size();
107}
108
109template <class ELFT>
110typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const {
111  switch (kind()) {
112  case Regular:
113    return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
114  case Synthetic:
115    // For synthetic sections we treat offset -1 as the end of the section.
116    // The same approach is used for synthetic symbols (DefinedSynthetic).
117    return cast<InputSection<ELFT>>(this)->OutSecOff +
118           (Offset == uintX_t(-1) ? getSize() : Offset);
119  case EHFrame:
120    // The file crtbeginT.o has relocations pointing to the start of an empty
121    // .eh_frame that is known to be the first in the link. It does that to
122    // identify the start of the output .eh_frame.
123    return Offset;
124  case Merge:
125    return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset);
126  }
127  llvm_unreachable("invalid section kind");
128}
129
130// Uncompress section contents. Note that this function is called
131// from parallel_for_each, so it must be thread-safe.
132template <class ELFT> void InputSectionBase<ELFT>::uncompress() {
133  Decompressor Decompressor = check(Decompressor::create(
134      Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little,
135      ELFT::Is64Bits));
136
137  size_t Size = Decompressor.getDecompressedSize();
138  char *OutputBuf;
139  {
140    static std::mutex Mu;
141    std::lock_guard<std::mutex> Lock(Mu);
142    OutputBuf = BAlloc.Allocate<char>(Size);
143  }
144
145  if (Error E = Decompressor.decompress({OutputBuf, Size}))
146    fatal(E, toString(this));
147  Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
148}
149
150template <class ELFT>
151typename ELFT::uint
152InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const {
153  return getOffset(Sym.Value);
154}
155
156template <class ELFT>
157InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const {
158  if ((Flags & SHF_LINK_ORDER) && Link != 0)
159    return getFile()->getSections()[Link];
160  return nullptr;
161}
162
163// Returns a source location string. Used to construct an error message.
164template <class ELFT>
165std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) {
166  // First check if we can get desired values from debugging information.
167  std::string LineInfo = File->getLineInfo(this, Offset);
168  if (!LineInfo.empty())
169    return LineInfo;
170
171  // File->SourceFile contains STT_FILE symbol that contains a
172  // source file name. If it's missing, we use an object file name.
173  std::string SrcFile = File->SourceFile;
174  if (SrcFile.empty())
175    SrcFile = toString(File);
176
177  // Find a function symbol that encloses a given location.
178  for (SymbolBody *B : File->getSymbols())
179    if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B))
180      if (D->Section == this && D->Type == STT_FUNC)
181        if (D->Value <= Offset && Offset < D->Value + D->Size)
182          return SrcFile + ":(function " + toString(*D) + ")";
183
184  // If there's no symbol, print out the offset in the section.
185  return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
186}
187
188template <class ELFT>
189InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {}
190
191template <class ELFT>
192InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type,
193                                 uintX_t Addralign, ArrayRef<uint8_t> Data,
194                                 StringRef Name, Kind K)
195    : InputSectionBase<ELFT>(nullptr, Flags, Type,
196                             /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign,
197                             Data, Name, K) {}
198
199template <class ELFT>
200InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
201                                 const Elf_Shdr *Header, StringRef Name)
202    : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {}
203
204template <class ELFT>
205bool InputSection<ELFT>::classof(const InputSectionData *S) {
206  return S->kind() == Base::Regular || S->kind() == Base::Synthetic;
207}
208
209template <class ELFT>
210InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
211  assert(this->Type == SHT_RELA || this->Type == SHT_REL);
212  ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
213  return Sections[this->Info];
214}
215
216template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) {
217  Thunks.push_back(T);
218}
219
220template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const {
221  return this->Data.size();
222}
223
224template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const {
225  uint64_t Total = 0;
226  for (const Thunk<ELFT> *T : Thunks)
227    Total += T->size();
228  return Total;
229}
230
231// This is used for -r. We can't use memcpy to copy relocations because we need
232// to update symbol table offset and section index for each relocation. So we
233// copy relocations one by one.
234template <class ELFT>
235template <class RelTy>
236void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
237  InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();
238
239  for (const RelTy &Rel : Rels) {
240    uint32_t Type = Rel.getType(Config->Mips64EL);
241    SymbolBody &Body = this->File->getRelocTargetSym(Rel);
242
243    Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf);
244    Buf += sizeof(RelTy);
245
246    if (Config->Rela)
247      P->r_addend = getAddend<ELFT>(Rel);
248    P->r_offset = RelocatedSection->getOffset(Rel.r_offset);
249    P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type,
250                        Config->Mips64EL);
251  }
252}
253
254static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
255                                              uint32_t P) {
256  switch (Type) {
257  case R_ARM_THM_JUMP11:
258    return P + 2 + A;
259  case R_ARM_CALL:
260  case R_ARM_JUMP24:
261  case R_ARM_PC24:
262  case R_ARM_PLT32:
263  case R_ARM_PREL31:
264  case R_ARM_THM_JUMP19:
265  case R_ARM_THM_JUMP24:
266    return P + 4 + A;
267  case R_ARM_THM_CALL:
268    // We don't want an interworking BLX to ARM
269    return P + 5 + A;
270  default:
271    return P + A;
272  }
273}
274
275static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
276                                                  uint64_t P) {
277  switch (Type) {
278  case R_AARCH64_CALL26:
279  case R_AARCH64_CONDBR19:
280  case R_AARCH64_JUMP26:
281  case R_AARCH64_TSTBR14:
282    return P + 4 + A;
283  default:
284    return P + A;
285  }
286}
287
288template <class ELFT>
289static typename ELFT::uint
290getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P,
291                 const SymbolBody &Body, RelExpr Expr) {
292  switch (Expr) {
293  case R_HINT:
294  case R_TLSDESC_CALL:
295    llvm_unreachable("cannot relocate hint relocs");
296  case R_TLSLD:
297    return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
298  case R_TLSLD_PC:
299    return In<ELFT>::Got->getTlsIndexVA() + A - P;
300  case R_THUNK_ABS:
301    return Body.getThunkVA<ELFT>() + A;
302  case R_THUNK_PC:
303  case R_THUNK_PLT_PC:
304    return Body.getThunkVA<ELFT>() + A - P;
305  case R_PPC_TOC:
306    return getPPC64TocBase() + A;
307  case R_TLSGD:
308    return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
309           In<ELFT>::Got->getSize();
310  case R_TLSGD_PC:
311    return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
312  case R_TLSDESC:
313    return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
314  case R_TLSDESC_PAGE:
315    return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
316           getAArch64Page(P);
317  case R_PLT:
318    return Body.getPltVA<ELFT>() + A;
319  case R_PLT_PC:
320  case R_PPC_PLT_OPD:
321    return Body.getPltVA<ELFT>() + A - P;
322  case R_SIZE:
323    return Body.getSize<ELFT>() + A;
324  case R_GOTREL:
325    return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA();
326  case R_GOTREL_FROM_END:
327    return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() -
328           In<ELFT>::Got->getSize();
329  case R_RELAX_TLS_GD_TO_IE_END:
330  case R_GOT_FROM_END:
331    return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize();
332  case R_RELAX_TLS_GD_TO_IE_ABS:
333  case R_GOT:
334    return Body.getGotVA<ELFT>() + A;
335  case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
336  case R_GOT_PAGE_PC:
337    return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
338  case R_RELAX_TLS_GD_TO_IE:
339  case R_GOT_PC:
340    return Body.getGotVA<ELFT>() + A - P;
341  case R_GOTONLY_PC:
342    return In<ELFT>::Got->getVA() + A - P;
343  case R_GOTONLY_PC_FROM_END:
344    return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
345  case R_RELAX_TLS_LD_TO_LE:
346  case R_RELAX_TLS_IE_TO_LE:
347  case R_RELAX_TLS_GD_TO_LE:
348  case R_TLS:
349    // A weak undefined TLS symbol resolves to the base of the TLS
350    // block, i.e. gets a value of zero. If we pass --gc-sections to
351    // lld and .tbss is not referenced, it gets reclaimed and we don't
352    // create a TLS program header. Therefore, we resolve this
353    // statically to zero.
354    if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
355        Body.symbol()->isWeak())
356      return 0;
357    if (Target->TcbSize)
358      return Body.getVA<ELFT>(A) +
359             alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align);
360    return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz;
361  case R_RELAX_TLS_GD_TO_LE_NEG:
362  case R_NEG_TLS:
363    return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A);
364  case R_ABS:
365  case R_RELAX_GOT_PC_NOPIC:
366    return Body.getVA<ELFT>(A);
367  case R_GOT_OFF:
368    return Body.getGotOffset<ELFT>() + A;
369  case R_MIPS_GOT_LOCAL_PAGE:
370    // If relocation against MIPS local symbol requires GOT entry, this entry
371    // should be initialized by 'page address'. This address is high 16-bits
372    // of sum the symbol's value and the addend.
373    return In<ELFT>::MipsGot->getVA() +
374           In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
375           In<ELFT>::MipsGot->getGp();
376  case R_MIPS_GOT_OFF:
377  case R_MIPS_GOT_OFF32:
378    // In case of MIPS if a GOT relocation has non-zero addend this addend
379    // should be applied to the GOT entry content not to the GOT entry offset.
380    // That is why we use separate expression type.
381    return In<ELFT>::MipsGot->getVA() +
382           In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
383           In<ELFT>::MipsGot->getGp();
384  case R_MIPS_GOTREL:
385    return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp();
386  case R_MIPS_TLSGD:
387    return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
388           In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
389           In<ELFT>::MipsGot->getGp();
390  case R_MIPS_TLSLD:
391    return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
392           In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
393  case R_PPC_OPD: {
394    uint64_t SymVA = Body.getVA<ELFT>(A);
395    // If we have an undefined weak symbol, we might get here with a symbol
396    // address of zero. That could overflow, but the code must be unreachable,
397    // so don't bother doing anything at all.
398    if (!SymVA)
399      return 0;
400    if (Out<ELF64BE>::Opd) {
401      // If this is a local call, and we currently have the address of a
402      // function-descriptor, get the underlying code address instead.
403      uint64_t OpdStart = Out<ELF64BE>::Opd->Addr;
404      uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size;
405      bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
406      if (InOpd)
407        SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]);
408    }
409    return SymVA - P;
410  }
411  case R_PC:
412    if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
413      // On ARM and AArch64 a branch to an undefined weak resolves to the
414      // next instruction, otherwise the place.
415      if (Config->EMachine == EM_ARM)
416        return getARMUndefinedRelativeWeakVA(Type, A, P);
417      if (Config->EMachine == EM_AARCH64)
418        return getAArch64UndefinedRelativeWeakVA(Type, A, P);
419    }
420  case R_RELAX_GOT_PC:
421    return Body.getVA<ELFT>(A) - P;
422  case R_PLT_PAGE_PC:
423  case R_PAGE_PC:
424    if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
425      return getAArch64Page(A);
426    return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P);
427  }
428  llvm_unreachable("Invalid expression");
429}
430
431// This function applies relocations to sections without SHF_ALLOC bit.
432// Such sections are never mapped to memory at runtime. Debug sections are
433// an example. Relocations in non-alloc sections are much easier to
434// handle than in allocated sections because it will never need complex
435// treatement such as GOT or PLT (because at runtime no one refers them).
436// So, we handle relocations for non-alloc sections directly in this
437// function as a performance optimization.
438template <class ELFT>
439template <class RelTy>
440void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
441  for (const RelTy &Rel : Rels) {
442    uint32_t Type = Rel.getType(Config->Mips64EL);
443    uintX_t Offset = this->getOffset(Rel.r_offset);
444    uint8_t *BufLoc = Buf + Offset;
445    uintX_t Addend = getAddend<ELFT>(Rel);
446    if (!RelTy::IsRela)
447      Addend += Target->getImplicitAddend(BufLoc, Type);
448
449    SymbolBody &Sym = this->File->getRelocTargetSym(Rel);
450    if (Target->getRelExpr(Type, Sym) != R_ABS) {
451      error(this->getLocation(Offset) + ": has non-ABS reloc");
452      return;
453    }
454
455    uintX_t AddrLoc = this->OutSec->Addr + Offset;
456    uint64_t SymVA = 0;
457    if (!Sym.isTls() || Out<ELFT>::TlsPhdr)
458      SymVA = SignExtend64<sizeof(uintX_t) * 8>(
459          getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
460    Target->relocateOne(BufLoc, Type, SymVA);
461  }
462}
463
464template <class ELFT>
465void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) {
466  // scanReloc function in Writer.cpp constructs Relocations
467  // vector only for SHF_ALLOC'ed sections. For other sections,
468  // we handle relocations directly here.
469  auto *IS = dyn_cast<InputSection<ELFT>>(this);
470  if (IS && !(IS->Flags & SHF_ALLOC)) {
471    if (IS->AreRelocsRela)
472      IS->relocateNonAlloc(Buf, IS->relas());
473    else
474      IS->relocateNonAlloc(Buf, IS->rels());
475    return;
476  }
477
478  const unsigned Bits = sizeof(uintX_t) * 8;
479  for (const Relocation &Rel : Relocations) {
480    uintX_t Offset = getOffset(Rel.Offset);
481    uint8_t *BufLoc = Buf + Offset;
482    uint32_t Type = Rel.Type;
483    uintX_t A = Rel.Addend;
484
485    uintX_t AddrLoc = OutSec->Addr + Offset;
486    RelExpr Expr = Rel.Expr;
487    uint64_t TargetVA = SignExtend64<Bits>(
488        getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr));
489
490    switch (Expr) {
491    case R_RELAX_GOT_PC:
492    case R_RELAX_GOT_PC_NOPIC:
493      Target->relaxGot(BufLoc, TargetVA);
494      break;
495    case R_RELAX_TLS_IE_TO_LE:
496      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
497      break;
498    case R_RELAX_TLS_LD_TO_LE:
499      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
500      break;
501    case R_RELAX_TLS_GD_TO_LE:
502    case R_RELAX_TLS_GD_TO_LE_NEG:
503      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
504      break;
505    case R_RELAX_TLS_GD_TO_IE:
506    case R_RELAX_TLS_GD_TO_IE_ABS:
507    case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
508    case R_RELAX_TLS_GD_TO_IE_END:
509      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
510      break;
511    case R_PPC_PLT_OPD:
512      // Patch a nop (0x60000000) to a ld.
513      if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
514        write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
515    // fallthrough
516    default:
517      Target->relocateOne(BufLoc, Type, TargetVA);
518      break;
519    }
520  }
521}
522
523template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
524  if (this->Type == SHT_NOBITS)
525    return;
526
527  if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) {
528    S->writeTo(Buf + OutSecOff);
529    return;
530  }
531
532  // If -r is given, then an InputSection may be a relocation section.
533  if (this->Type == SHT_RELA) {
534    copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>());
535    return;
536  }
537  if (this->Type == SHT_REL) {
538    copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>());
539    return;
540  }
541
542  // Copy section contents from source object file to output file.
543  ArrayRef<uint8_t> Data = this->Data;
544  memcpy(Buf + OutSecOff, Data.data(), Data.size());
545
546  // Iterate over all relocation sections that apply to this section.
547  uint8_t *BufEnd = Buf + OutSecOff + Data.size();
548  this->relocate(Buf, BufEnd);
549
550  // The section might have a data/code generated by the linker and need
551  // to be written after the section. Usually these are thunks - small piece
552  // of code used to jump between "incompatible" functions like PIC and non-PIC
553  // or if the jump target too far and its address does not fit to the short
554  // jump istruction.
555  if (!Thunks.empty()) {
556    Buf += OutSecOff + getThunkOff();
557    for (const Thunk<ELFT> *T : Thunks) {
558      T->writeTo(Buf);
559      Buf += T->size();
560    }
561  }
562}
563
564template <class ELFT>
565void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
566  this->Alignment = std::max(this->Alignment, Other->Alignment);
567  Other->Repl = this->Repl;
568  Other->Live = false;
569}
570
571template <class ELFT>
572EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F,
573                                     const Elf_Shdr *Header, StringRef Name)
574    : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) {
575  // Mark .eh_frame sections as live by default because there are
576  // usually no relocations that point to .eh_frames. Otherwise,
577  // the garbage collector would drop all .eh_frame sections.
578  this->Live = true;
579}
580
581template <class ELFT>
582bool EhInputSection<ELFT>::classof(const InputSectionData *S) {
583  return S->kind() == InputSectionBase<ELFT>::EHFrame;
584}
585
586// Returns the index of the first relocation that points to a region between
587// Begin and Begin+Size.
588template <class IntTy, class RelTy>
589static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
590                         unsigned &RelocI) {
591  // Start search from RelocI for fast access. That works because the
592  // relocations are sorted in .eh_frame.
593  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
594    const RelTy &Rel = Rels[RelocI];
595    if (Rel.r_offset < Begin)
596      continue;
597
598    if (Rel.r_offset < Begin + Size)
599      return RelocI;
600    return -1;
601  }
602  return -1;
603}
604
605// .eh_frame is a sequence of CIE or FDE records.
606// This function splits an input section into records and returns them.
607template <class ELFT> void EhInputSection<ELFT>::split() {
608  // Early exit if already split.
609  if (!this->Pieces.empty())
610    return;
611
612  if (this->NumRelocations) {
613    if (this->AreRelocsRela)
614      split(this->relas());
615    else
616      split(this->rels());
617    return;
618  }
619  split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
620}
621
622template <class ELFT>
623template <class RelTy>
624void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) {
625  ArrayRef<uint8_t> Data = this->Data;
626  unsigned RelI = 0;
627  for (size_t Off = 0, End = Data.size(); Off != End;) {
628    size_t Size = readEhRecordSize<ELFT>(this, Off);
629    this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
630    // The empty record is the end marker.
631    if (Size == 4)
632      break;
633    Off += Size;
634  }
635}
636
637static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
638  // Optimize the common case.
639  StringRef S((const char *)A.data(), A.size());
640  if (EntSize == 1)
641    return S.find(0);
642
643  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
644    const char *B = S.begin() + I;
645    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
646      return I;
647  }
648  return StringRef::npos;
649}
650
651// Split SHF_STRINGS section. Such section is a sequence of
652// null-terminated strings.
653template <class ELFT>
654void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data,
655                                           size_t EntSize) {
656  size_t Off = 0;
657  bool IsAlloc = this->Flags & SHF_ALLOC;
658  while (!Data.empty()) {
659    size_t End = findNull(Data, EntSize);
660    if (End == StringRef::npos)
661      fatal(toString(this) + ": string is not null terminated");
662    size_t Size = End + EntSize;
663    Pieces.emplace_back(Off, !IsAlloc);
664    Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
665    Data = Data.slice(Size);
666    Off += Size;
667  }
668}
669
670// Split non-SHF_STRINGS section. Such section is a sequence of
671// fixed size records.
672template <class ELFT>
673void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data,
674                                              size_t EntSize) {
675  size_t Size = Data.size();
676  assert((Size % EntSize) == 0);
677  bool IsAlloc = this->Flags & SHF_ALLOC;
678  for (unsigned I = 0, N = Size; I != N; I += EntSize) {
679    Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
680    Pieces.emplace_back(I, !IsAlloc);
681  }
682}
683
684template <class ELFT>
685MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
686                                           const Elf_Shdr *Header,
687                                           StringRef Name)
688    : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {}
689
690// This function is called after we obtain a complete list of input sections
691// that need to be linked. This is responsible to split section contents
692// into small chunks for further processing.
693//
694// Note that this function is called from parallel_for_each. This must be
695// thread-safe (i.e. no memory allocation from the pools).
696template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() {
697  ArrayRef<uint8_t> Data = this->Data;
698  uintX_t EntSize = this->Entsize;
699  if (this->Flags & SHF_STRINGS)
700    splitStrings(Data, EntSize);
701  else
702    splitNonStrings(Data, EntSize);
703
704  if (Config->GcSections && (this->Flags & SHF_ALLOC))
705    for (uintX_t Off : LiveOffsets)
706      this->getSectionPiece(Off)->Live = true;
707}
708
709template <class ELFT>
710bool MergeInputSection<ELFT>::classof(const InputSectionData *S) {
711  return S->kind() == InputSectionBase<ELFT>::Merge;
712}
713
714// Do binary search to get a section piece at a given input offset.
715template <class ELFT>
716SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) {
717  auto *This = static_cast<const MergeInputSection<ELFT> *>(this);
718  return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
719}
720
721template <class It, class T, class Compare>
722static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
723  size_t Size = std::distance(First, Last);
724  assert(Size != 0);
725  while (Size != 1) {
726    size_t H = Size / 2;
727    const It MI = First + H;
728    Size -= H;
729    First = Comp(Value, *MI) ? First : First + H;
730  }
731  return Comp(Value, *First) ? First : First + 1;
732}
733
734template <class ELFT>
735const SectionPiece *
736MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const {
737  uintX_t Size = this->Data.size();
738  if (Offset >= Size)
739    fatal(toString(this) + ": entry is past the end of the section");
740
741  // Find the element this offset points to.
742  auto I = fastUpperBound(
743      Pieces.begin(), Pieces.end(), Offset,
744      [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; });
745  --I;
746  return &*I;
747}
748
749// Returns the offset in an output section for a given input offset.
750// Because contents of a mergeable section is not contiguous in output,
751// it is not just an addition to a base output offset.
752template <class ELFT>
753typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const {
754  // Initialize OffsetMap lazily.
755  std::call_once(InitOffsetMap, [&] {
756    OffsetMap.reserve(Pieces.size());
757    for (const SectionPiece &Piece : Pieces)
758      OffsetMap[Piece.InputOff] = Piece.OutputOff;
759  });
760
761  // Find a string starting at a given offset.
762  auto It = OffsetMap.find(Offset);
763  if (It != OffsetMap.end())
764    return It->second;
765
766  if (!this->Live)
767    return 0;
768
769  // If Offset is not at beginning of a section piece, it is not in the map.
770  // In that case we need to search from the original section piece vector.
771  const SectionPiece &Piece = *this->getSectionPiece(Offset);
772  if (!Piece.Live)
773    return 0;
774
775  uintX_t Addend = Offset - Piece.InputOff;
776  return Piece.OutputOff + Addend;
777}
778
779template class elf::InputSectionBase<ELF32LE>;
780template class elf::InputSectionBase<ELF32BE>;
781template class elf::InputSectionBase<ELF64LE>;
782template class elf::InputSectionBase<ELF64BE>;
783
784template class elf::InputSection<ELF32LE>;
785template class elf::InputSection<ELF32BE>;
786template class elf::InputSection<ELF64LE>;
787template class elf::InputSection<ELF64BE>;
788
789template class elf::EhInputSection<ELF32LE>;
790template class elf::EhInputSection<ELF32BE>;
791template class elf::EhInputSection<ELF64LE>;
792template class elf::EhInputSection<ELF64BE>;
793
794template class elf::MergeInputSection<ELF32LE>;
795template class elf::MergeInputSection<ELF32BE>;
796template class elf::MergeInputSection<ELF64LE>;
797template class elf::MergeInputSection<ELF64BE>;
798
799template std::string lld::toString(const InputSectionBase<ELF32LE> *);
800template std::string lld::toString(const InputSectionBase<ELF32BE> *);
801template std::string lld::toString(const InputSectionBase<ELF64LE> *);
802template std::string lld::toString(const InputSectionBase<ELF64BE> *);
803