ARM.cpp revision 353358
1//===- ARM.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "Symbols.h"
11#include "SyntheticSections.h"
12#include "Target.h"
13#include "Thunks.h"
14#include "lld/Common/ErrorHandler.h"
15#include "llvm/Object/ELF.h"
16#include "llvm/Support/Endian.h"
17
18using namespace llvm;
19using namespace llvm::support::endian;
20using namespace llvm::ELF;
21using namespace lld;
22using namespace lld::elf;
23
24namespace {
25class ARM final : public TargetInfo {
26public:
27  ARM();
28  uint32_t calcEFlags() const override;
29  RelExpr getRelExpr(RelType type, const Symbol &s,
30                     const uint8_t *loc) const override;
31  RelType getDynRel(RelType type) const override;
32  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
33  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
34  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
35  void writePltHeader(uint8_t *buf) const override;
36  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
37                int32_t index, unsigned relOff) const override;
38  void addPltSymbols(InputSection &isec, uint64_t off) const override;
39  void addPltHeaderSymbols(InputSection &isd) const override;
40  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
41                  uint64_t branchAddr, const Symbol &s) const override;
42  uint32_t getThunkSectionSpacing() const override;
43  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
44  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
45};
46} // namespace
47
48ARM::ARM() {
49  copyRel = R_ARM_COPY;
50  relativeRel = R_ARM_RELATIVE;
51  iRelativeRel = R_ARM_IRELATIVE;
52  gotRel = R_ARM_GLOB_DAT;
53  noneRel = R_ARM_NONE;
54  pltRel = R_ARM_JUMP_SLOT;
55  symbolicRel = R_ARM_ABS32;
56  tlsGotRel = R_ARM_TLS_TPOFF32;
57  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
58  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
59  gotBaseSymInGotPlt = false;
60  pltEntrySize = 16;
61  pltHeaderSize = 32;
62  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
63  needsThunks = true;
64}
65
66uint32_t ARM::calcEFlags() const {
67  // The ABIFloatType is used by loaders to detect the floating point calling
68  // convention.
69  uint32_t abiFloatType = 0;
70  if (config->armVFPArgs == ARMVFPArgKind::Base ||
71      config->armVFPArgs == ARMVFPArgKind::Default)
72    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
73  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
74    abiFloatType = EF_ARM_ABI_FLOAT_HARD;
75
76  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
77  // but we don't have any firm guarantees of conformance. Linux AArch64
78  // kernels (as of 2016) require an EABI version to be set.
79  return EF_ARM_EABI_VER5 | abiFloatType;
80}
81
82RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
83                        const uint8_t *loc) const {
84  switch (type) {
85  case R_ARM_THM_JUMP11:
86    return R_PC;
87  case R_ARM_CALL:
88  case R_ARM_JUMP24:
89  case R_ARM_PC24:
90  case R_ARM_PLT32:
91  case R_ARM_PREL31:
92  case R_ARM_THM_JUMP19:
93  case R_ARM_THM_JUMP24:
94  case R_ARM_THM_CALL:
95    return R_PLT_PC;
96  case R_ARM_GOTOFF32:
97    // (S + A) - GOT_ORG
98    return R_GOTREL;
99  case R_ARM_GOT_BREL:
100    // GOT(S) + A - GOT_ORG
101    return R_GOT_OFF;
102  case R_ARM_GOT_PREL:
103  case R_ARM_TLS_IE32:
104    // GOT(S) + A - P
105    return R_GOT_PC;
106  case R_ARM_SBREL32:
107    return R_ARM_SBREL;
108  case R_ARM_TARGET1:
109    return config->target1Rel ? R_PC : R_ABS;
110  case R_ARM_TARGET2:
111    if (config->target2 == Target2Policy::Rel)
112      return R_PC;
113    if (config->target2 == Target2Policy::Abs)
114      return R_ABS;
115    return R_GOT_PC;
116  case R_ARM_TLS_GD32:
117    return R_TLSGD_PC;
118  case R_ARM_TLS_LDM32:
119    return R_TLSLD_PC;
120  case R_ARM_BASE_PREL:
121    // B(S) + A - P
122    // FIXME: currently B(S) assumed to be .got, this may not hold for all
123    // platforms.
124    return R_GOTONLY_PC;
125  case R_ARM_MOVW_PREL_NC:
126  case R_ARM_MOVT_PREL:
127  case R_ARM_REL32:
128  case R_ARM_THM_MOVW_PREL_NC:
129  case R_ARM_THM_MOVT_PREL:
130    return R_PC;
131  case R_ARM_NONE:
132    return R_NONE;
133  case R_ARM_TLS_LE32:
134    return R_TLS;
135  case R_ARM_V4BX:
136    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
137    // given address. It can be used to implement a special linker mode which
138    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
139    // not ARMv4 output, we can just ignore it.
140    return R_HINT;
141  default:
142    return R_ABS;
143  }
144}
145
146RelType ARM::getDynRel(RelType type) const {
147  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
148    return R_ARM_ABS32;
149  return R_ARM_NONE;
150}
151
152void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
153  write32le(buf, in.plt->getVA());
154}
155
156void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
157  // An ARM entry is the address of the ifunc resolver function.
158  write32le(buf, s.getVA());
159}
160
161// Long form PLT Header that does not have any restrictions on the displacement
162// of the .plt from the .plt.got.
163static void writePltHeaderLong(uint8_t *buf) {
164  const uint8_t pltData[] = {
165      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
166      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
167      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
168      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
169      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
170      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
171      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
172      0xd4, 0xd4, 0xd4, 0xd4};
173  memcpy(buf, pltData, sizeof(pltData));
174  uint64_t gotPlt = in.gotPlt->getVA();
175  uint64_t l1 = in.plt->getVA() + 8;
176  write32le(buf + 16, gotPlt - l1 - 8);
177}
178
179// The default PLT header requires the .plt.got to be within 128 Mb of the
180// .plt in the positive direction.
181void ARM::writePltHeader(uint8_t *buf) const {
182  // Use a similar sequence to that in writePlt(), the difference is the calling
183  // conventions mean we use lr instead of ip. The PLT entry is responsible for
184  // saving lr on the stack, the dynamic loader is responsible for reloading
185  // it.
186  const uint32_t pltData[] = {
187      0xe52de004, // L1: str lr, [sp,#-4]!
188      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
189      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
190      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
191  };
192
193  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
194  if (!llvm::isUInt<27>(offset)) {
195    // We cannot encode the Offset, use the long form.
196    writePltHeaderLong(buf);
197    return;
198  }
199  write32le(buf + 0, pltData[0]);
200  write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
201  write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
202  write32le(buf + 12, pltData[3] | (offset & 0xfff));
203  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
204  memcpy(buf + 20, trapInstr.data(), 4);
205  memcpy(buf + 24, trapInstr.data(), 4);
206  memcpy(buf + 28, trapInstr.data(), 4);
207}
208
209void ARM::addPltHeaderSymbols(InputSection &isec) const {
210  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
211  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
212}
213
214// Long form PLT entries that do not have any restrictions on the displacement
215// of the .plt from the .plt.got.
216static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
217                         uint64_t pltEntryAddr, int32_t index,
218                         unsigned relOff) {
219  const uint8_t pltData[] = {
220      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
221      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
222      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
223      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
224  };
225  memcpy(buf, pltData, sizeof(pltData));
226  uint64_t l1 = pltEntryAddr + 4;
227  write32le(buf + 12, gotPltEntryAddr - l1 - 8);
228}
229
230// The default PLT entries require the .plt.got to be within 128 Mb of the
231// .plt in the positive direction.
232void ARM::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
233                   uint64_t pltEntryAddr, int32_t index,
234                   unsigned relOff) const {
235  // The PLT entry is similar to the example given in Appendix A of ELF for
236  // the Arm Architecture. Instead of using the Group Relocations to find the
237  // optimal rotation for the 8-bit immediate used in the add instructions we
238  // hard code the most compact rotations for simplicity. This saves a load
239  // instruction over the long plt sequences.
240  const uint32_t pltData[] = {
241      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
242      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
243      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
244  };
245
246  uint64_t offset = gotPltEntryAddr - pltEntryAddr - 8;
247  if (!llvm::isUInt<27>(offset)) {
248    // We cannot encode the Offset, use the long form.
249    writePltLong(buf, gotPltEntryAddr, pltEntryAddr, index, relOff);
250    return;
251  }
252  write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
253  write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
254  write32le(buf + 8, pltData[2] | (offset & 0xfff));
255  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
256}
257
258void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
259  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
260  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
261}
262
263bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
264                     uint64_t branchAddr, const Symbol &s) const {
265  // If S is an undefined weak symbol and does not have a PLT entry then it
266  // will be resolved as a branch to the next instruction.
267  if (s.isUndefWeak() && !s.isInPlt())
268    return false;
269  // A state change from ARM to Thumb and vice versa must go through an
270  // interworking thunk if the relocation type is not R_ARM_CALL or
271  // R_ARM_THM_CALL.
272  switch (type) {
273  case R_ARM_PC24:
274  case R_ARM_PLT32:
275  case R_ARM_JUMP24:
276    // Source is ARM, all PLT entries are ARM so no interworking required.
277    // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
278    if (expr == R_PC && ((s.getVA() & 1) == 1))
279      return true;
280    LLVM_FALLTHROUGH;
281  case R_ARM_CALL: {
282    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
283    return !inBranchRange(type, branchAddr, dst);
284  }
285  case R_ARM_THM_JUMP19:
286  case R_ARM_THM_JUMP24:
287    // Source is Thumb, all PLT entries are ARM so interworking is required.
288    // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
289    if (expr == R_PLT_PC || ((s.getVA() & 1) == 0))
290      return true;
291    LLVM_FALLTHROUGH;
292  case R_ARM_THM_CALL: {
293    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
294    return !inBranchRange(type, branchAddr, dst);
295  }
296  }
297  return false;
298}
299
300uint32_t ARM::getThunkSectionSpacing() const {
301  // The placing of pre-created ThunkSections is controlled by the value
302  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
303  // place the ThunkSection such that all branches from the InputSections
304  // prior to the ThunkSection can reach a Thunk placed at the end of the
305  // ThunkSection. Graphically:
306  // | up to thunkSectionSpacing .text input sections |
307  // | ThunkSection                                   |
308  // | up to thunkSectionSpacing .text input sections |
309  // | ThunkSection                                   |
310
311  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
312  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
313  // B.W:
314  // ARM B, BL, BLX range +/- 32MiB
315  // Thumb B.W, BL, BLX range +/- 16MiB
316  // Thumb B<cc>.W range +/- 1MiB
317  // If a branch cannot reach a pre-created ThunkSection a new one will be
318  // created so we can handle the rare cases of a Thumb 2 conditional branch.
319  // We intentionally use a lower size for thunkSectionSpacing than the maximum
320  // branch range so the end of the ThunkSection is more likely to be within
321  // range of the branch instruction that is furthest away. The value we shorten
322  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
323  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
324  // one of the Thunks going out of range.
325
326  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
327  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
328  // ARMv6T2) the range is +/- 4MiB.
329
330  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
331                                         : 0x400000 - 0x7500;
332}
333
334bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
335  uint64_t range;
336  uint64_t instrSize;
337
338  switch (type) {
339  case R_ARM_PC24:
340  case R_ARM_PLT32:
341  case R_ARM_JUMP24:
342  case R_ARM_CALL:
343    range = 0x2000000;
344    instrSize = 4;
345    break;
346  case R_ARM_THM_JUMP19:
347    range = 0x100000;
348    instrSize = 2;
349    break;
350  case R_ARM_THM_JUMP24:
351  case R_ARM_THM_CALL:
352    range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
353    instrSize = 2;
354    break;
355  default:
356    return true;
357  }
358  // PC at Src is 2 instructions ahead, immediate of branch is signed
359  if (src > dst)
360    range -= 2 * instrSize;
361  else
362    range += instrSize;
363
364  if ((dst & 0x1) == 0)
365    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
366    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
367    // destination will be 4 byte aligned.
368    src &= ~0x3;
369  else
370    // Bit 0 == 1 denotes Thumb state, it is not part of the range
371    dst &= ~0x1;
372
373  uint64_t distance = (src > dst) ? src - dst : dst - src;
374  return distance <= range;
375}
376
377void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
378  switch (type) {
379  case R_ARM_ABS32:
380  case R_ARM_BASE_PREL:
381  case R_ARM_GOTOFF32:
382  case R_ARM_GOT_BREL:
383  case R_ARM_GOT_PREL:
384  case R_ARM_REL32:
385  case R_ARM_RELATIVE:
386  case R_ARM_SBREL32:
387  case R_ARM_TARGET1:
388  case R_ARM_TARGET2:
389  case R_ARM_TLS_GD32:
390  case R_ARM_TLS_IE32:
391  case R_ARM_TLS_LDM32:
392  case R_ARM_TLS_LDO32:
393  case R_ARM_TLS_LE32:
394  case R_ARM_TLS_TPOFF32:
395  case R_ARM_TLS_DTPOFF32:
396    write32le(loc, val);
397    break;
398  case R_ARM_PREL31:
399    checkInt(loc, val, 31, type);
400    write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
401    break;
402  case R_ARM_CALL:
403    // R_ARM_CALL is used for BL and BLX instructions, depending on the
404    // value of bit 0 of Val, we must select a BL or BLX instruction
405    if (val & 1) {
406      // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
407      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
408      checkInt(loc, val, 26, type);
409      write32le(loc, 0xfa000000 |                    // opcode
410                         ((val & 2) << 23) |         // H
411                         ((val >> 2) & 0x00ffffff)); // imm24
412      break;
413    }
414    if ((read32le(loc) & 0xfe000000) == 0xfa000000)
415      // BLX (always unconditional) instruction to an ARM Target, select an
416      // unconditional BL.
417      write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
418    // fall through as BL encoding is shared with B
419    LLVM_FALLTHROUGH;
420  case R_ARM_JUMP24:
421  case R_ARM_PC24:
422  case R_ARM_PLT32:
423    checkInt(loc, val, 26, type);
424    write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
425    break;
426  case R_ARM_THM_JUMP11:
427    checkInt(loc, val, 12, type);
428    write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
429    break;
430  case R_ARM_THM_JUMP19:
431    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
432    checkInt(loc, val, 21, type);
433    write16le(loc,
434              (read16le(loc) & 0xfbc0) |   // opcode cond
435                  ((val >> 10) & 0x0400) | // S
436                  ((val >> 12) & 0x003f)); // imm6
437    write16le(loc + 2,
438              0x8000 |                    // opcode
439                  ((val >> 8) & 0x0800) | // J2
440                  ((val >> 5) & 0x2000) | // J1
441                  ((val >> 1) & 0x07ff)); // imm11
442    break;
443  case R_ARM_THM_CALL:
444    // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
445    // value of bit 0 of Val, we must select a BL or BLX instruction
446    if ((val & 1) == 0) {
447      // Ensure BLX destination is 4-byte aligned. As BLX instruction may
448      // only be two byte aligned. This must be done before overflow check
449      val = alignTo(val, 4);
450    }
451    // Bit 12 is 0 for BLX, 1 for BL
452    write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12);
453    if (!config->armJ1J2BranchEncoding) {
454      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
455      // different encoding rules and range due to J1 and J2 always being 1.
456      checkInt(loc, val, 23, type);
457      write16le(loc,
458                0xf000 |                     // opcode
459                    ((val >> 12) & 0x07ff)); // imm11
460      write16le(loc + 2,
461                (read16le(loc + 2) & 0xd000) | // opcode
462                    0x2800 |                   // J1 == J2 == 1
463                    ((val >> 1) & 0x07ff));    // imm11
464      break;
465    }
466    // Fall through as rest of encoding is the same as B.W
467    LLVM_FALLTHROUGH;
468  case R_ARM_THM_JUMP24:
469    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
470    checkInt(loc, val, 25, type);
471    write16le(loc,
472              0xf000 |                     // opcode
473                  ((val >> 14) & 0x0400) | // S
474                  ((val >> 12) & 0x03ff)); // imm10
475    write16le(loc + 2,
476              (read16le(loc + 2) & 0xd000) |                  // opcode
477                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
478                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
479                  ((val >> 1) & 0x07ff));                     // imm11
480    break;
481  case R_ARM_MOVW_ABS_NC:
482  case R_ARM_MOVW_PREL_NC:
483    write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
484                       (val & 0x0fff));
485    break;
486  case R_ARM_MOVT_ABS:
487  case R_ARM_MOVT_PREL:
488    write32le(loc, (read32le(loc) & ~0x000f0fff) |
489                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
490    break;
491  case R_ARM_THM_MOVT_ABS:
492  case R_ARM_THM_MOVT_PREL:
493    // Encoding T1: A = imm4:i:imm3:imm8
494    write16le(loc,
495              0xf2c0 |                     // opcode
496                  ((val >> 17) & 0x0400) | // i
497                  ((val >> 28) & 0x000f)); // imm4
498    write16le(loc + 2,
499              (read16le(loc + 2) & 0x8f00) | // opcode
500                  ((val >> 12) & 0x7000) |   // imm3
501                  ((val >> 16) & 0x00ff));   // imm8
502    break;
503  case R_ARM_THM_MOVW_ABS_NC:
504  case R_ARM_THM_MOVW_PREL_NC:
505    // Encoding T3: A = imm4:i:imm3:imm8
506    write16le(loc,
507              0xf240 |                     // opcode
508                  ((val >> 1) & 0x0400) |  // i
509                  ((val >> 12) & 0x000f)); // imm4
510    write16le(loc + 2,
511              (read16le(loc + 2) & 0x8f00) | // opcode
512                  ((val << 4) & 0x7000) |    // imm3
513                  (val & 0x00ff));           // imm8
514    break;
515  default:
516    error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
517  }
518}
519
520int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
521  switch (type) {
522  default:
523    return 0;
524  case R_ARM_ABS32:
525  case R_ARM_BASE_PREL:
526  case R_ARM_GOTOFF32:
527  case R_ARM_GOT_BREL:
528  case R_ARM_GOT_PREL:
529  case R_ARM_REL32:
530  case R_ARM_TARGET1:
531  case R_ARM_TARGET2:
532  case R_ARM_TLS_GD32:
533  case R_ARM_TLS_LDM32:
534  case R_ARM_TLS_LDO32:
535  case R_ARM_TLS_IE32:
536  case R_ARM_TLS_LE32:
537    return SignExtend64<32>(read32le(buf));
538  case R_ARM_PREL31:
539    return SignExtend64<31>(read32le(buf));
540  case R_ARM_CALL:
541  case R_ARM_JUMP24:
542  case R_ARM_PC24:
543  case R_ARM_PLT32:
544    return SignExtend64<26>(read32le(buf) << 2);
545  case R_ARM_THM_JUMP11:
546    return SignExtend64<12>(read16le(buf) << 1);
547  case R_ARM_THM_JUMP19: {
548    // Encoding T3: A = S:J2:J1:imm10:imm6:0
549    uint16_t hi = read16le(buf);
550    uint16_t lo = read16le(buf + 2);
551    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
552                            ((lo & 0x0800) << 8) |  // J2
553                            ((lo & 0x2000) << 5) |  // J1
554                            ((hi & 0x003f) << 12) | // imm6
555                            ((lo & 0x07ff) << 1));  // imm11:0
556  }
557  case R_ARM_THM_CALL:
558    if (!config->armJ1J2BranchEncoding) {
559      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
560      // different encoding rules and range due to J1 and J2 always being 1.
561      uint16_t hi = read16le(buf);
562      uint16_t lo = read16le(buf + 2);
563      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
564                              ((lo & 0x7ff) << 1));  // imm11:0
565      break;
566    }
567    LLVM_FALLTHROUGH;
568  case R_ARM_THM_JUMP24: {
569    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
570    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
571    uint16_t hi = read16le(buf);
572    uint16_t lo = read16le(buf + 2);
573    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
574                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
575                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
576                            ((hi & 0x003ff) << 12) |                   // imm0
577                            ((lo & 0x007ff) << 1)); // imm11:0
578  }
579  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
580  // MOVT is in the range -32768 <= A < 32768
581  case R_ARM_MOVW_ABS_NC:
582  case R_ARM_MOVT_ABS:
583  case R_ARM_MOVW_PREL_NC:
584  case R_ARM_MOVT_PREL: {
585    uint64_t val = read32le(buf) & 0x000f0fff;
586    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
587  }
588  case R_ARM_THM_MOVW_ABS_NC:
589  case R_ARM_THM_MOVT_ABS:
590  case R_ARM_THM_MOVW_PREL_NC:
591  case R_ARM_THM_MOVT_PREL: {
592    // Encoding T3: A = imm4:i:imm3:imm8
593    uint16_t hi = read16le(buf);
594    uint16_t lo = read16le(buf + 2);
595    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
596                            ((hi & 0x0400) << 1) |  // i
597                            ((lo & 0x7000) >> 4) |  // imm3
598                            (lo & 0x00ff));         // imm8
599  }
600  }
601}
602
603TargetInfo *elf::getARMTargetInfo() {
604  static ARM target;
605  return &target;
606}
607