sanitizer_allocator_primary64.h revision 311697
1//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Part of the Sanitizer Allocator.
11//
12//===----------------------------------------------------------------------===//
13#ifndef SANITIZER_ALLOCATOR_H
14#error This file must be included inside sanitizer_allocator.h
15#endif
16
17template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
18
19// SizeClassAllocator64 -- allocator for 64-bit address space.
20// The template parameter Params is a class containing the actual parameters.
21//
22// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
23// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
24// Otherwise SpaceBeg=kSpaceBeg (fixed address).
25// kSpaceSize is a power of two.
26// At the beginning the entire space is mprotect-ed, then small parts of it
27// are mapped on demand.
28//
29// Region: a part of Space dedicated to a single size class.
30// There are kNumClasses Regions of equal size.
31//
32// UserChunk: a piece of memory returned to user.
33// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
34
35// FreeArray is an array free-d chunks (stored as 4-byte offsets)
36//
37// A Region looks like this:
38// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
39
40struct SizeClassAllocator64FlagMasks {  //  Bit masks.
41  enum {
42    kRandomShuffleChunks = 1,
43  };
44};
45
46template <class Params>
47class SizeClassAllocator64 {
48 public:
49  static const uptr kSpaceBeg = Params::kSpaceBeg;
50  static const uptr kSpaceSize = Params::kSpaceSize;
51  static const uptr kMetadataSize = Params::kMetadataSize;
52  typedef typename Params::SizeClassMap SizeClassMap;
53  typedef typename Params::MapUnmapCallback MapUnmapCallback;
54
55  static const bool kRandomShuffleChunks =
56      Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
57
58  typedef SizeClassAllocator64<Params> ThisT;
59  typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
60
61  // When we know the size class (the region base) we can represent a pointer
62  // as a 4-byte integer (offset from the region start shifted right by 4).
63  typedef u32 CompactPtrT;
64  static const uptr kCompactPtrScale = 4;
65  CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) {
66    return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
67  }
68  uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) {
69    return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
70  }
71
72  void Init(s32 release_to_os_interval_ms) {
73    uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
74    if (kUsingConstantSpaceBeg) {
75      CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
76                              MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
77    } else {
78      NonConstSpaceBeg =
79          reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
80      CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
81    }
82    SetReleaseToOSIntervalMs(release_to_os_interval_ms);
83    MapWithCallback(SpaceEnd(), AdditionalSize());
84  }
85
86  s32 ReleaseToOSIntervalMs() const {
87    return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
88  }
89
90  void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
91    atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
92                 memory_order_relaxed);
93  }
94
95  void MapWithCallback(uptr beg, uptr size) {
96    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
97    MapUnmapCallback().OnMap(beg, size);
98  }
99
100  void UnmapWithCallback(uptr beg, uptr size) {
101    MapUnmapCallback().OnUnmap(beg, size);
102    UnmapOrDie(reinterpret_cast<void *>(beg), size);
103  }
104
105  static bool CanAllocate(uptr size, uptr alignment) {
106    return size <= SizeClassMap::kMaxSize &&
107      alignment <= SizeClassMap::kMaxSize;
108  }
109
110  NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
111                                  const CompactPtrT *chunks, uptr n_chunks) {
112    RegionInfo *region = GetRegionInfo(class_id);
113    uptr region_beg = GetRegionBeginBySizeClass(class_id);
114    CompactPtrT *free_array = GetFreeArray(region_beg);
115
116    BlockingMutexLock l(&region->mutex);
117    uptr old_num_chunks = region->num_freed_chunks;
118    uptr new_num_freed_chunks = old_num_chunks + n_chunks;
119    EnsureFreeArraySpace(region, region_beg, new_num_freed_chunks);
120    for (uptr i = 0; i < n_chunks; i++)
121      free_array[old_num_chunks + i] = chunks[i];
122    region->num_freed_chunks = new_num_freed_chunks;
123    region->n_freed += n_chunks;
124
125    MaybeReleaseToOS(class_id);
126  }
127
128  NOINLINE void GetFromAllocator(AllocatorStats *stat, uptr class_id,
129                                 CompactPtrT *chunks, uptr n_chunks) {
130    RegionInfo *region = GetRegionInfo(class_id);
131    uptr region_beg = GetRegionBeginBySizeClass(class_id);
132    CompactPtrT *free_array = GetFreeArray(region_beg);
133
134    BlockingMutexLock l(&region->mutex);
135    if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
136      PopulateFreeArray(stat, class_id, region,
137                        n_chunks - region->num_freed_chunks);
138      CHECK_GE(region->num_freed_chunks, n_chunks);
139    }
140    region->num_freed_chunks -= n_chunks;
141    uptr base_idx = region->num_freed_chunks;
142    for (uptr i = 0; i < n_chunks; i++)
143      chunks[i] = free_array[base_idx + i];
144    region->n_allocated += n_chunks;
145  }
146
147
148  bool PointerIsMine(const void *p) {
149    uptr P = reinterpret_cast<uptr>(p);
150    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
151      return P / kSpaceSize == kSpaceBeg / kSpaceSize;
152    return P >= SpaceBeg() && P < SpaceEnd();
153  }
154
155  uptr GetRegionBegin(const void *p) {
156    if (kUsingConstantSpaceBeg)
157      return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
158    uptr space_beg = SpaceBeg();
159    return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
160        space_beg;
161  }
162
163  uptr GetRegionBeginBySizeClass(uptr class_id) {
164    return SpaceBeg() + kRegionSize * class_id;
165  }
166
167  uptr GetSizeClass(const void *p) {
168    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
169      return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
170    return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
171           kNumClassesRounded;
172  }
173
174  void *GetBlockBegin(const void *p) {
175    uptr class_id = GetSizeClass(p);
176    uptr size = ClassIdToSize(class_id);
177    if (!size) return nullptr;
178    uptr chunk_idx = GetChunkIdx((uptr)p, size);
179    uptr reg_beg = GetRegionBegin(p);
180    uptr beg = chunk_idx * size;
181    uptr next_beg = beg + size;
182    if (class_id >= kNumClasses) return nullptr;
183    RegionInfo *region = GetRegionInfo(class_id);
184    if (region->mapped_user >= next_beg)
185      return reinterpret_cast<void*>(reg_beg + beg);
186    return nullptr;
187  }
188
189  uptr GetActuallyAllocatedSize(void *p) {
190    CHECK(PointerIsMine(p));
191    return ClassIdToSize(GetSizeClass(p));
192  }
193
194  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
195
196  void *GetMetaData(const void *p) {
197    uptr class_id = GetSizeClass(p);
198    uptr size = ClassIdToSize(class_id);
199    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
200    uptr region_beg = GetRegionBeginBySizeClass(class_id);
201    return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
202                                    (1 + chunk_idx) * kMetadataSize);
203  }
204
205  uptr TotalMemoryUsed() {
206    uptr res = 0;
207    for (uptr i = 0; i < kNumClasses; i++)
208      res += GetRegionInfo(i)->allocated_user;
209    return res;
210  }
211
212  // Test-only.
213  void TestOnlyUnmap() {
214    UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
215  }
216
217  static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
218                           uptr stats_size) {
219    for (uptr class_id = 0; class_id < stats_size; class_id++)
220      if (stats[class_id] == start)
221        stats[class_id] = rss;
222  }
223
224  void PrintStats(uptr class_id, uptr rss) {
225    RegionInfo *region = GetRegionInfo(class_id);
226    if (region->mapped_user == 0) return;
227    uptr in_use = region->n_allocated - region->n_freed;
228    uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
229    Printf(
230        "  %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
231        "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd\n",
232        class_id, ClassIdToSize(class_id), region->mapped_user >> 10,
233        region->n_allocated, region->n_freed, in_use,
234        region->num_freed_chunks, avail_chunks, rss >> 10,
235        region->rtoi.num_releases);
236  }
237
238  void PrintStats() {
239    uptr total_mapped = 0;
240    uptr n_allocated = 0;
241    uptr n_freed = 0;
242    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
243      RegionInfo *region = GetRegionInfo(class_id);
244      total_mapped += region->mapped_user;
245      n_allocated += region->n_allocated;
246      n_freed += region->n_freed;
247    }
248    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
249           "remains %zd\n",
250           total_mapped >> 20, n_allocated, n_allocated - n_freed);
251    uptr rss_stats[kNumClasses];
252    for (uptr class_id = 0; class_id < kNumClasses; class_id++)
253      rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
254    GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
255    for (uptr class_id = 1; class_id < kNumClasses; class_id++)
256      PrintStats(class_id, rss_stats[class_id]);
257  }
258
259  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
260  // introspection API.
261  void ForceLock() {
262    for (uptr i = 0; i < kNumClasses; i++) {
263      GetRegionInfo(i)->mutex.Lock();
264    }
265  }
266
267  void ForceUnlock() {
268    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
269      GetRegionInfo(i)->mutex.Unlock();
270    }
271  }
272
273  // Iterate over all existing chunks.
274  // The allocator must be locked when calling this function.
275  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
276    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
277      RegionInfo *region = GetRegionInfo(class_id);
278      uptr chunk_size = ClassIdToSize(class_id);
279      uptr region_beg = SpaceBeg() + class_id * kRegionSize;
280      for (uptr chunk = region_beg;
281           chunk < region_beg + region->allocated_user;
282           chunk += chunk_size) {
283        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
284        callback(chunk, arg);
285      }
286    }
287  }
288
289  static uptr ClassIdToSize(uptr class_id) {
290    return SizeClassMap::Size(class_id);
291  }
292
293  static uptr AdditionalSize() {
294    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
295                     GetPageSizeCached());
296  }
297
298  typedef SizeClassMap SizeClassMapT;
299  static const uptr kNumClasses = SizeClassMap::kNumClasses;
300  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
301
302 private:
303  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
304  // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
305  // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
306  // elements, but in reality this will not happen. For simplicity we
307  // dedicate 1/8 of the region's virtual space to FreeArray.
308  static const uptr kFreeArraySize = kRegionSize / 8;
309
310  static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
311  uptr NonConstSpaceBeg;
312  uptr SpaceBeg() const {
313    return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
314  }
315  uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
316  // kRegionSize must be >= 2^32.
317  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
318  // kRegionSize must be <= 2^36, see CompactPtrT.
319  COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
320  // Call mmap for user memory with at least this size.
321  static const uptr kUserMapSize = 1 << 16;
322  // Call mmap for metadata memory with at least this size.
323  static const uptr kMetaMapSize = 1 << 16;
324  // Call mmap for free array memory with at least this size.
325  static const uptr kFreeArrayMapSize = 1 << 16;
326
327  atomic_sint32_t release_to_os_interval_ms_;
328
329  struct ReleaseToOsInfo {
330    uptr n_freed_at_last_release;
331    uptr num_releases;
332    u64 last_release_at_ns;
333  };
334
335  struct RegionInfo {
336    BlockingMutex mutex;
337    uptr num_freed_chunks;  // Number of elements in the freearray.
338    uptr mapped_free_array;  // Bytes mapped for freearray.
339    uptr allocated_user;  // Bytes allocated for user memory.
340    uptr allocated_meta;  // Bytes allocated for metadata.
341    uptr mapped_user;  // Bytes mapped for user memory.
342    uptr mapped_meta;  // Bytes mapped for metadata.
343    u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
344    uptr n_allocated, n_freed;  // Just stats.
345    ReleaseToOsInfo rtoi;
346  };
347  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
348
349  u32 Rand(u32 *state) {  // ANSI C linear congruential PRNG.
350    return (*state = *state * 1103515245 + 12345) >> 16;
351  }
352
353  u32 RandN(u32 *state, u32 n) { return Rand(state) % n; }  // [0, n)
354
355  void RandomShuffle(u32 *a, u32 n, u32 *rand_state) {
356    if (n <= 1) return;
357    for (u32 i = n - 1; i > 0; i--)
358      Swap(a[i], a[RandN(rand_state, i + 1)]);
359  }
360
361  RegionInfo *GetRegionInfo(uptr class_id) {
362    CHECK_LT(class_id, kNumClasses);
363    RegionInfo *regions =
364        reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
365    return &regions[class_id];
366  }
367
368  uptr GetMetadataEnd(uptr region_beg) {
369    return region_beg + kRegionSize - kFreeArraySize;
370  }
371
372  uptr GetChunkIdx(uptr chunk, uptr size) {
373    if (!kUsingConstantSpaceBeg)
374      chunk -= SpaceBeg();
375
376    uptr offset = chunk % kRegionSize;
377    // Here we divide by a non-constant. This is costly.
378    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
379    if (offset >> (SANITIZER_WORDSIZE / 2))
380      return offset / size;
381    return (u32)offset / (u32)size;
382  }
383
384  CompactPtrT *GetFreeArray(uptr region_beg) {
385    return reinterpret_cast<CompactPtrT *>(region_beg + kRegionSize -
386                                           kFreeArraySize);
387  }
388
389  void EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
390                            uptr num_freed_chunks) {
391    uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
392    if (region->mapped_free_array < needed_space) {
393      CHECK_LE(needed_space, kFreeArraySize);
394      uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
395      uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
396                             region->mapped_free_array;
397      uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
398      MapWithCallback(current_map_end, new_map_size);
399      region->mapped_free_array = new_mapped_free_array;
400    }
401  }
402
403
404  NOINLINE void PopulateFreeArray(AllocatorStats *stat, uptr class_id,
405                                  RegionInfo *region, uptr requested_count) {
406    // region->mutex is held.
407    uptr size = ClassIdToSize(class_id);
408    uptr beg_idx = region->allocated_user;
409    uptr end_idx = beg_idx + requested_count * size;
410    uptr region_beg = GetRegionBeginBySizeClass(class_id);
411    if (end_idx > region->mapped_user) {
412      if (!kUsingConstantSpaceBeg && region->mapped_user == 0)
413        region->rand_state = static_cast<u32>(region_beg >> 12);  // From ASLR.
414      // Do the mmap for the user memory.
415      uptr map_size = kUserMapSize;
416      while (end_idx > region->mapped_user + map_size)
417        map_size += kUserMapSize;
418      CHECK_GE(region->mapped_user + map_size, end_idx);
419      MapWithCallback(region_beg + region->mapped_user, map_size);
420      stat->Add(AllocatorStatMapped, map_size);
421      region->mapped_user += map_size;
422    }
423    CompactPtrT *free_array = GetFreeArray(region_beg);
424    uptr total_count = (region->mapped_user - beg_idx) / size;
425    uptr num_freed_chunks = region->num_freed_chunks;
426    EnsureFreeArraySpace(region, region_beg, num_freed_chunks + total_count);
427    for (uptr i = 0; i < total_count; i++) {
428      uptr chunk = beg_idx + i * size;
429      free_array[num_freed_chunks + total_count - 1 - i] =
430          PointerToCompactPtr(0, chunk);
431    }
432    if (kRandomShuffleChunks)
433      RandomShuffle(&free_array[num_freed_chunks], total_count,
434                    &region->rand_state);
435    region->num_freed_chunks += total_count;
436    region->allocated_user += total_count * size;
437    CHECK_LE(region->allocated_user, region->mapped_user);
438
439    region->allocated_meta += total_count * kMetadataSize;
440    if (region->allocated_meta > region->mapped_meta) {
441      uptr map_size = kMetaMapSize;
442      while (region->allocated_meta > region->mapped_meta + map_size)
443        map_size += kMetaMapSize;
444      // Do the mmap for the metadata.
445      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
446      MapWithCallback(GetMetadataEnd(region_beg) -
447                      region->mapped_meta - map_size, map_size);
448      region->mapped_meta += map_size;
449    }
450    CHECK_LE(region->allocated_meta, region->mapped_meta);
451    if (region->mapped_user + region->mapped_meta >
452        kRegionSize - kFreeArraySize) {
453      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
454      Printf("The process has exhausted %zuMB for size class %zu.\n",
455          kRegionSize / 1024 / 1024, size);
456      Die();
457    }
458  }
459
460  void MaybeReleaseChunkRange(uptr region_beg, uptr chunk_size,
461                              CompactPtrT first, CompactPtrT last) {
462    uptr beg_ptr = CompactPtrToPointer(region_beg, first);
463    uptr end_ptr = CompactPtrToPointer(region_beg, last) + chunk_size;
464    ReleaseMemoryPagesToOS(beg_ptr, end_ptr);
465  }
466
467  // Attempts to release some RAM back to OS. The region is expected to be
468  // locked.
469  // Algorithm:
470  // * Sort the chunks.
471  // * Find ranges fully covered by free-d chunks
472  // * Release them to OS with madvise.
473  void MaybeReleaseToOS(uptr class_id) {
474    RegionInfo *region = GetRegionInfo(class_id);
475    const uptr chunk_size = ClassIdToSize(class_id);
476    const uptr page_size = GetPageSizeCached();
477
478    uptr n = region->num_freed_chunks;
479    if (n * chunk_size < page_size)
480      return;  // No chance to release anything.
481    if ((region->n_freed - region->rtoi.n_freed_at_last_release) * chunk_size <
482        page_size) {
483      return;  // Nothing new to release.
484    }
485
486    s32 interval_ms = ReleaseToOSIntervalMs();
487    if (interval_ms < 0)
488      return;
489
490    u64 now_ns = NanoTime();
491    if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL > now_ns)
492      return;  // Memory was returned recently.
493    region->rtoi.last_release_at_ns = now_ns;
494
495    uptr region_beg = GetRegionBeginBySizeClass(class_id);
496    CompactPtrT *free_array = GetFreeArray(region_beg);
497    SortArray(free_array, n);
498
499    const uptr scaled_chunk_size = chunk_size >> kCompactPtrScale;
500    const uptr kScaledGranularity = page_size >> kCompactPtrScale;
501
502    uptr range_beg = free_array[0];
503    uptr prev = free_array[0];
504    for (uptr i = 1; i < n; i++) {
505      uptr chunk = free_array[i];
506      CHECK_GT(chunk, prev);
507      if (chunk - prev != scaled_chunk_size) {
508        CHECK_GT(chunk - prev, scaled_chunk_size);
509        if (prev + scaled_chunk_size - range_beg >= kScaledGranularity) {
510          MaybeReleaseChunkRange(region_beg, chunk_size, range_beg, prev);
511          region->rtoi.n_freed_at_last_release = region->n_freed;
512          region->rtoi.num_releases++;
513        }
514        range_beg = chunk;
515      }
516      prev = chunk;
517    }
518  }
519};
520
521
522