lsan_common.cpp revision 360784
1//=-- lsan_common.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of LeakSanitizer.
10// Implementation of common leak checking functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "lsan_common.h"
15
16#include "sanitizer_common/sanitizer_common.h"
17#include "sanitizer_common/sanitizer_flag_parser.h"
18#include "sanitizer_common/sanitizer_flags.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_procmaps.h"
21#include "sanitizer_common/sanitizer_report_decorator.h"
22#include "sanitizer_common/sanitizer_stackdepot.h"
23#include "sanitizer_common/sanitizer_stacktrace.h"
24#include "sanitizer_common/sanitizer_suppressions.h"
25#include "sanitizer_common/sanitizer_thread_registry.h"
26#include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28#if CAN_SANITIZE_LEAKS
29namespace __lsan {
30
31// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32// also to protect the global list of root regions.
33BlockingMutex global_mutex(LINKER_INITIALIZED);
34
35Flags lsan_flags;
36
37void DisableCounterUnderflow() {
38  if (common_flags()->detect_leaks) {
39    Report("Unmatched call to __lsan_enable().\n");
40    Die();
41  }
42}
43
44void Flags::SetDefaults() {
45#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
46#include "lsan_flags.inc"
47#undef LSAN_FLAG
48}
49
50void RegisterLsanFlags(FlagParser *parser, Flags *f) {
51#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
52  RegisterFlag(parser, #Name, Description, &f->Name);
53#include "lsan_flags.inc"
54#undef LSAN_FLAG
55}
56
57#define LOG_POINTERS(...)                           \
58  do {                                              \
59    if (flags()->log_pointers) Report(__VA_ARGS__); \
60  } while (0)
61
62#define LOG_THREADS(...)                           \
63  do {                                             \
64    if (flags()->log_threads) Report(__VA_ARGS__); \
65  } while (0)
66
67ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
68static SuppressionContext *suppression_ctx = nullptr;
69static const char kSuppressionLeak[] = "leak";
70static const char *kSuppressionTypes[] = { kSuppressionLeak };
71static const char kStdSuppressions[] =
72#if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
73  // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
74  // definition.
75  "leak:*pthread_exit*\n"
76#endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
77#if SANITIZER_MAC
78  // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
79  "leak:*_os_trace*\n"
80#endif
81  // TLS leak in some glibc versions, described in
82  // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
83  "leak:*tls_get_addr*\n";
84
85void InitializeSuppressions() {
86  CHECK_EQ(nullptr, suppression_ctx);
87  suppression_ctx = new (suppression_placeholder)
88      SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
89  suppression_ctx->ParseFromFile(flags()->suppressions);
90  if (&__lsan_default_suppressions)
91    suppression_ctx->Parse(__lsan_default_suppressions());
92  suppression_ctx->Parse(kStdSuppressions);
93}
94
95static SuppressionContext *GetSuppressionContext() {
96  CHECK(suppression_ctx);
97  return suppression_ctx;
98}
99
100static InternalMmapVector<RootRegion> *root_regions;
101
102InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
103
104void InitializeRootRegions() {
105  CHECK(!root_regions);
106  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
107  root_regions = new (placeholder) InternalMmapVector<RootRegion>();
108}
109
110const char *MaybeCallLsanDefaultOptions() {
111  return (&__lsan_default_options) ? __lsan_default_options() : "";
112}
113
114void InitCommonLsan() {
115  InitializeRootRegions();
116  if (common_flags()->detect_leaks) {
117    // Initialization which can fail or print warnings should only be done if
118    // LSan is actually enabled.
119    InitializeSuppressions();
120    InitializePlatformSpecificModules();
121  }
122}
123
124class Decorator: public __sanitizer::SanitizerCommonDecorator {
125 public:
126  Decorator() : SanitizerCommonDecorator() { }
127  const char *Error() { return Red(); }
128  const char *Leak() { return Blue(); }
129};
130
131static inline bool CanBeAHeapPointer(uptr p) {
132  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
133  // bound on heap addresses.
134  const uptr kMinAddress = 4 * 4096;
135  if (p < kMinAddress) return false;
136#if defined(__x86_64__)
137  // Accept only canonical form user-space addresses.
138  return ((p >> 47) == 0);
139#elif defined(__mips64)
140  return ((p >> 40) == 0);
141#elif defined(__aarch64__)
142  unsigned runtimeVMA =
143    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
144  return ((p >> runtimeVMA) == 0);
145#else
146  return true;
147#endif
148}
149
150// Scans the memory range, looking for byte patterns that point into allocator
151// chunks. Marks those chunks with |tag| and adds them to |frontier|.
152// There are two usage modes for this function: finding reachable chunks
153// (|tag| = kReachable) and finding indirectly leaked chunks
154// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
155// so |frontier| = 0.
156void ScanRangeForPointers(uptr begin, uptr end,
157                          Frontier *frontier,
158                          const char *region_type, ChunkTag tag) {
159  CHECK(tag == kReachable || tag == kIndirectlyLeaked);
160  const uptr alignment = flags()->pointer_alignment();
161  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
162  uptr pp = begin;
163  if (pp % alignment)
164    pp = pp + alignment - pp % alignment;
165  for (; pp + sizeof(void *) <= end; pp += alignment) {
166    void *p = *reinterpret_cast<void **>(pp);
167    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
168    uptr chunk = PointsIntoChunk(p);
169    if (!chunk) continue;
170    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
171    if (chunk == begin) continue;
172    LsanMetadata m(chunk);
173    if (m.tag() == kReachable || m.tag() == kIgnored) continue;
174
175    // Do this check relatively late so we can log only the interesting cases.
176    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
177      LOG_POINTERS(
178          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
179          "%zu.\n",
180          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
181      continue;
182    }
183
184    m.set_tag(tag);
185    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
186                 chunk, chunk + m.requested_size(), m.requested_size());
187    if (frontier)
188      frontier->push_back(chunk);
189  }
190}
191
192// Scans a global range for pointers
193void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
194  uptr allocator_begin = 0, allocator_end = 0;
195  GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
196  if (begin <= allocator_begin && allocator_begin < end) {
197    CHECK_LE(allocator_begin, allocator_end);
198    CHECK_LE(allocator_end, end);
199    if (begin < allocator_begin)
200      ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
201                           kReachable);
202    if (allocator_end < end)
203      ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
204  } else {
205    ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
206  }
207}
208
209void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
210  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
211  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
212}
213
214// Scans thread data (stacks and TLS) for heap pointers.
215static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
216                           Frontier *frontier) {
217  InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
218  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
219  uptr registers_end =
220      reinterpret_cast<uptr>(registers.data() + registers.size());
221  for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
222    tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
223    LOG_THREADS("Processing thread %d.\n", os_id);
224    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
225    DTLS *dtls;
226    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
227                                              &tls_begin, &tls_end,
228                                              &cache_begin, &cache_end, &dtls);
229    if (!thread_found) {
230      // If a thread can't be found in the thread registry, it's probably in the
231      // process of destruction. Log this event and move on.
232      LOG_THREADS("Thread %d not found in registry.\n", os_id);
233      continue;
234    }
235    uptr sp;
236    PtraceRegistersStatus have_registers =
237        suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
238    if (have_registers != REGISTERS_AVAILABLE) {
239      Report("Unable to get registers from thread %d.\n", os_id);
240      // If unable to get SP, consider the entire stack to be reachable unless
241      // GetRegistersAndSP failed with ESRCH.
242      if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
243      sp = stack_begin;
244    }
245
246    if (flags()->use_registers && have_registers)
247      ScanRangeForPointers(registers_begin, registers_end, frontier,
248                           "REGISTERS", kReachable);
249
250    if (flags()->use_stacks) {
251      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
252      if (sp < stack_begin || sp >= stack_end) {
253        // SP is outside the recorded stack range (e.g. the thread is running a
254        // signal handler on alternate stack, or swapcontext was used).
255        // Again, consider the entire stack range to be reachable.
256        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
257        uptr page_size = GetPageSizeCached();
258        int skipped = 0;
259        while (stack_begin < stack_end &&
260               !IsAccessibleMemoryRange(stack_begin, 1)) {
261          skipped++;
262          stack_begin += page_size;
263        }
264        LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
265                    skipped, stack_begin, stack_end);
266      } else {
267        // Shrink the stack range to ignore out-of-scope values.
268        stack_begin = sp;
269      }
270      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
271                           kReachable);
272      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
273    }
274
275    if (flags()->use_tls) {
276      if (tls_begin) {
277        LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
278        // If the tls and cache ranges don't overlap, scan full tls range,
279        // otherwise, only scan the non-overlapping portions
280        if (cache_begin == cache_end || tls_end < cache_begin ||
281            tls_begin > cache_end) {
282          ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
283        } else {
284          if (tls_begin < cache_begin)
285            ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
286                                 kReachable);
287          if (tls_end > cache_end)
288            ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
289                                 kReachable);
290        }
291      }
292      if (dtls && !DTLSInDestruction(dtls)) {
293        for (uptr j = 0; j < dtls->dtv_size; ++j) {
294          uptr dtls_beg = dtls->dtv[j].beg;
295          uptr dtls_end = dtls_beg + dtls->dtv[j].size;
296          if (dtls_beg < dtls_end) {
297            LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
298            ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
299                                 kReachable);
300          }
301        }
302      } else {
303        // We are handling a thread with DTLS under destruction. Log about
304        // this and continue.
305        LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
306      }
307    }
308  }
309}
310
311void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
312                    uptr region_begin, uptr region_end, bool is_readable) {
313  uptr intersection_begin = Max(root_region.begin, region_begin);
314  uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
315  if (intersection_begin >= intersection_end) return;
316  LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
317               root_region.begin, root_region.begin + root_region.size,
318               region_begin, region_end,
319               is_readable ? "readable" : "unreadable");
320  if (is_readable)
321    ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
322                         kReachable);
323}
324
325static void ProcessRootRegion(Frontier *frontier,
326                              const RootRegion &root_region) {
327  MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
328  MemoryMappedSegment segment;
329  while (proc_maps.Next(&segment)) {
330    ScanRootRegion(frontier, root_region, segment.start, segment.end,
331                   segment.IsReadable());
332  }
333}
334
335// Scans root regions for heap pointers.
336static void ProcessRootRegions(Frontier *frontier) {
337  if (!flags()->use_root_regions) return;
338  CHECK(root_regions);
339  for (uptr i = 0; i < root_regions->size(); i++) {
340    ProcessRootRegion(frontier, (*root_regions)[i]);
341  }
342}
343
344static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
345  while (frontier->size()) {
346    uptr next_chunk = frontier->back();
347    frontier->pop_back();
348    LsanMetadata m(next_chunk);
349    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
350                         "HEAP", tag);
351  }
352}
353
354// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
355// which are reachable from it as indirectly leaked.
356static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
357  chunk = GetUserBegin(chunk);
358  LsanMetadata m(chunk);
359  if (m.allocated() && m.tag() != kReachable) {
360    ScanRangeForPointers(chunk, chunk + m.requested_size(),
361                         /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
362  }
363}
364
365// ForEachChunk callback. If chunk is marked as ignored, adds its address to
366// frontier.
367static void CollectIgnoredCb(uptr chunk, void *arg) {
368  CHECK(arg);
369  chunk = GetUserBegin(chunk);
370  LsanMetadata m(chunk);
371  if (m.allocated() && m.tag() == kIgnored) {
372    LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
373                 chunk, chunk + m.requested_size(), m.requested_size());
374    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
375  }
376}
377
378static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
379  CHECK(stack_id);
380  StackTrace stack = map->Get(stack_id);
381  // The top frame is our malloc/calloc/etc. The next frame is the caller.
382  if (stack.size >= 2)
383    return stack.trace[1];
384  return 0;
385}
386
387struct InvalidPCParam {
388  Frontier *frontier;
389  StackDepotReverseMap *stack_depot_reverse_map;
390  bool skip_linker_allocations;
391};
392
393// ForEachChunk callback. If the caller pc is invalid or is within the linker,
394// mark as reachable. Called by ProcessPlatformSpecificAllocations.
395static void MarkInvalidPCCb(uptr chunk, void *arg) {
396  CHECK(arg);
397  InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
398  chunk = GetUserBegin(chunk);
399  LsanMetadata m(chunk);
400  if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
401    u32 stack_id = m.stack_trace_id();
402    uptr caller_pc = 0;
403    if (stack_id > 0)
404      caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
405    // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
406    // it as reachable, as we can't properly report its allocation stack anyway.
407    if (caller_pc == 0 || (param->skip_linker_allocations &&
408                           GetLinker()->containsAddress(caller_pc))) {
409      m.set_tag(kReachable);
410      param->frontier->push_back(chunk);
411    }
412  }
413}
414
415// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
416// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
417// modules accounting etc.
418// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
419// They are allocated with a __libc_memalign() call in allocate_and_init()
420// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
421// blocks, but we can make sure they come from our own allocator by intercepting
422// __libc_memalign(). On top of that, there is no easy way to reach them. Their
423// addresses are stored in a dynamically allocated array (the DTV) which is
424// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
425// being reachable from the static TLS, and the dynamic TLS being reachable from
426// the DTV. This is because the initial DTV is allocated before our interception
427// mechanism kicks in, and thus we don't recognize it as allocated memory. We
428// can't special-case it either, since we don't know its size.
429// Our solution is to include in the root set all allocations made from
430// ld-linux.so (which is where allocate_and_init() is implemented). This is
431// guaranteed to include all dynamic TLS blocks (and possibly other allocations
432// which we don't care about).
433// On all other platforms, this simply checks to ensure that the caller pc is
434// valid before reporting chunks as leaked.
435void ProcessPC(Frontier *frontier) {
436  StackDepotReverseMap stack_depot_reverse_map;
437  InvalidPCParam arg;
438  arg.frontier = frontier;
439  arg.stack_depot_reverse_map = &stack_depot_reverse_map;
440  arg.skip_linker_allocations =
441      flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
442  ForEachChunk(MarkInvalidPCCb, &arg);
443}
444
445// Sets the appropriate tag on each chunk.
446static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
447  // Holds the flood fill frontier.
448  Frontier frontier;
449
450  ForEachChunk(CollectIgnoredCb, &frontier);
451  ProcessGlobalRegions(&frontier);
452  ProcessThreads(suspended_threads, &frontier);
453  ProcessRootRegions(&frontier);
454  FloodFillTag(&frontier, kReachable);
455
456  CHECK_EQ(0, frontier.size());
457  ProcessPC(&frontier);
458
459  // The check here is relatively expensive, so we do this in a separate flood
460  // fill. That way we can skip the check for chunks that are reachable
461  // otherwise.
462  LOG_POINTERS("Processing platform-specific allocations.\n");
463  ProcessPlatformSpecificAllocations(&frontier);
464  FloodFillTag(&frontier, kReachable);
465
466  // Iterate over leaked chunks and mark those that are reachable from other
467  // leaked chunks.
468  LOG_POINTERS("Scanning leaked chunks.\n");
469  ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
470}
471
472// ForEachChunk callback. Resets the tags to pre-leak-check state.
473static void ResetTagsCb(uptr chunk, void *arg) {
474  (void)arg;
475  chunk = GetUserBegin(chunk);
476  LsanMetadata m(chunk);
477  if (m.allocated() && m.tag() != kIgnored)
478    m.set_tag(kDirectlyLeaked);
479}
480
481static void PrintStackTraceById(u32 stack_trace_id) {
482  CHECK(stack_trace_id);
483  StackDepotGet(stack_trace_id).Print();
484}
485
486// ForEachChunk callback. Aggregates information about unreachable chunks into
487// a LeakReport.
488static void CollectLeaksCb(uptr chunk, void *arg) {
489  CHECK(arg);
490  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
491  chunk = GetUserBegin(chunk);
492  LsanMetadata m(chunk);
493  if (!m.allocated()) return;
494  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
495    u32 resolution = flags()->resolution;
496    u32 stack_trace_id = 0;
497    if (resolution > 0) {
498      StackTrace stack = StackDepotGet(m.stack_trace_id());
499      stack.size = Min(stack.size, resolution);
500      stack_trace_id = StackDepotPut(stack);
501    } else {
502      stack_trace_id = m.stack_trace_id();
503    }
504    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
505                                m.tag());
506  }
507}
508
509static void PrintMatchedSuppressions() {
510  InternalMmapVector<Suppression *> matched;
511  GetSuppressionContext()->GetMatched(&matched);
512  if (!matched.size())
513    return;
514  const char *line = "-----------------------------------------------------";
515  Printf("%s\n", line);
516  Printf("Suppressions used:\n");
517  Printf("  count      bytes template\n");
518  for (uptr i = 0; i < matched.size(); i++)
519    Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
520        &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
521  Printf("%s\n\n", line);
522}
523
524struct CheckForLeaksParam {
525  bool success;
526  LeakReport leak_report;
527};
528
529static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
530  const InternalMmapVector<tid_t> &suspended_threads =
531      *(const InternalMmapVector<tid_t> *)arg;
532  if (tctx->status == ThreadStatusRunning) {
533    uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
534                                tctx->os_id, CompareLess<int>());
535    if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
536      Report("Running thread %d was not suspended. False leaks are possible.\n",
537             tctx->os_id);
538  }
539}
540
541static void ReportUnsuspendedThreads(
542    const SuspendedThreadsList &suspended_threads) {
543  InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
544  for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
545    threads[i] = suspended_threads.GetThreadID(i);
546
547  Sort(threads.data(), threads.size());
548
549  GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
550      &ReportIfNotSuspended, &threads);
551}
552
553static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
554                                  void *arg) {
555  CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
556  CHECK(param);
557  CHECK(!param->success);
558  ReportUnsuspendedThreads(suspended_threads);
559  ClassifyAllChunks(suspended_threads);
560  ForEachChunk(CollectLeaksCb, &param->leak_report);
561  // Clean up for subsequent leak checks. This assumes we did not overwrite any
562  // kIgnored tags.
563  ForEachChunk(ResetTagsCb, nullptr);
564  param->success = true;
565}
566
567static bool CheckForLeaks() {
568  if (&__lsan_is_turned_off && __lsan_is_turned_off())
569      return false;
570  EnsureMainThreadIDIsCorrect();
571  CheckForLeaksParam param;
572  param.success = false;
573  LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
574
575  if (!param.success) {
576    Report("LeakSanitizer has encountered a fatal error.\n");
577    Report(
578        "HINT: For debugging, try setting environment variable "
579        "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
580    Report(
581        "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
582    Die();
583  }
584  param.leak_report.ApplySuppressions();
585  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
586  if (unsuppressed_count > 0) {
587    Decorator d;
588    Printf("\n"
589           "================================================================="
590           "\n");
591    Printf("%s", d.Error());
592    Report("ERROR: LeakSanitizer: detected memory leaks\n");
593    Printf("%s", d.Default());
594    param.leak_report.ReportTopLeaks(flags()->max_leaks);
595  }
596  if (common_flags()->print_suppressions)
597    PrintMatchedSuppressions();
598  if (unsuppressed_count > 0) {
599    param.leak_report.PrintSummary();
600    return true;
601  }
602  return false;
603}
604
605static bool has_reported_leaks = false;
606bool HasReportedLeaks() { return has_reported_leaks; }
607
608void DoLeakCheck() {
609  BlockingMutexLock l(&global_mutex);
610  static bool already_done;
611  if (already_done) return;
612  already_done = true;
613  has_reported_leaks = CheckForLeaks();
614  if (has_reported_leaks) HandleLeaks();
615}
616
617static int DoRecoverableLeakCheck() {
618  BlockingMutexLock l(&global_mutex);
619  bool have_leaks = CheckForLeaks();
620  return have_leaks ? 1 : 0;
621}
622
623void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
624
625static Suppression *GetSuppressionForAddr(uptr addr) {
626  Suppression *s = nullptr;
627
628  // Suppress by module name.
629  SuppressionContext *suppressions = GetSuppressionContext();
630  if (const char *module_name =
631          Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
632    if (suppressions->Match(module_name, kSuppressionLeak, &s))
633      return s;
634
635  // Suppress by file or function name.
636  SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
637  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
638    if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
639        suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
640      break;
641    }
642  }
643  frames->ClearAll();
644  return s;
645}
646
647static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
648  StackTrace stack = StackDepotGet(stack_trace_id);
649  for (uptr i = 0; i < stack.size; i++) {
650    Suppression *s = GetSuppressionForAddr(
651        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
652    if (s) return s;
653  }
654  return nullptr;
655}
656
657///// LeakReport implementation. /////
658
659// A hard limit on the number of distinct leaks, to avoid quadratic complexity
660// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
661// in real-world applications.
662// FIXME: Get rid of this limit by changing the implementation of LeakReport to
663// use a hash table.
664const uptr kMaxLeaksConsidered = 5000;
665
666void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
667                                uptr leaked_size, ChunkTag tag) {
668  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
669  bool is_directly_leaked = (tag == kDirectlyLeaked);
670  uptr i;
671  for (i = 0; i < leaks_.size(); i++) {
672    if (leaks_[i].stack_trace_id == stack_trace_id &&
673        leaks_[i].is_directly_leaked == is_directly_leaked) {
674      leaks_[i].hit_count++;
675      leaks_[i].total_size += leaked_size;
676      break;
677    }
678  }
679  if (i == leaks_.size()) {
680    if (leaks_.size() == kMaxLeaksConsidered) return;
681    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
682                  is_directly_leaked, /* is_suppressed */ false };
683    leaks_.push_back(leak);
684  }
685  if (flags()->report_objects) {
686    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
687    leaked_objects_.push_back(obj);
688  }
689}
690
691static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
692  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
693    return leak1.total_size > leak2.total_size;
694  else
695    return leak1.is_directly_leaked;
696}
697
698void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
699  CHECK(leaks_.size() <= kMaxLeaksConsidered);
700  Printf("\n");
701  if (leaks_.size() == kMaxLeaksConsidered)
702    Printf("Too many leaks! Only the first %zu leaks encountered will be "
703           "reported.\n",
704           kMaxLeaksConsidered);
705
706  uptr unsuppressed_count = UnsuppressedLeakCount();
707  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
708    Printf("The %zu top leak(s):\n", num_leaks_to_report);
709  Sort(leaks_.data(), leaks_.size(), &LeakComparator);
710  uptr leaks_reported = 0;
711  for (uptr i = 0; i < leaks_.size(); i++) {
712    if (leaks_[i].is_suppressed) continue;
713    PrintReportForLeak(i);
714    leaks_reported++;
715    if (leaks_reported == num_leaks_to_report) break;
716  }
717  if (leaks_reported < unsuppressed_count) {
718    uptr remaining = unsuppressed_count - leaks_reported;
719    Printf("Omitting %zu more leak(s).\n", remaining);
720  }
721}
722
723void LeakReport::PrintReportForLeak(uptr index) {
724  Decorator d;
725  Printf("%s", d.Leak());
726  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
727         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
728         leaks_[index].total_size, leaks_[index].hit_count);
729  Printf("%s", d.Default());
730
731  PrintStackTraceById(leaks_[index].stack_trace_id);
732
733  if (flags()->report_objects) {
734    Printf("Objects leaked above:\n");
735    PrintLeakedObjectsForLeak(index);
736    Printf("\n");
737  }
738}
739
740void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
741  u32 leak_id = leaks_[index].id;
742  for (uptr j = 0; j < leaked_objects_.size(); j++) {
743    if (leaked_objects_[j].leak_id == leak_id)
744      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
745             leaked_objects_[j].size);
746  }
747}
748
749void LeakReport::PrintSummary() {
750  CHECK(leaks_.size() <= kMaxLeaksConsidered);
751  uptr bytes = 0, allocations = 0;
752  for (uptr i = 0; i < leaks_.size(); i++) {
753      if (leaks_[i].is_suppressed) continue;
754      bytes += leaks_[i].total_size;
755      allocations += leaks_[i].hit_count;
756  }
757  InternalScopedString summary(kMaxSummaryLength);
758  summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
759                 allocations);
760  ReportErrorSummary(summary.data());
761}
762
763void LeakReport::ApplySuppressions() {
764  for (uptr i = 0; i < leaks_.size(); i++) {
765    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
766    if (s) {
767      s->weight += leaks_[i].total_size;
768      atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
769          leaks_[i].hit_count);
770      leaks_[i].is_suppressed = true;
771    }
772  }
773}
774
775uptr LeakReport::UnsuppressedLeakCount() {
776  uptr result = 0;
777  for (uptr i = 0; i < leaks_.size(); i++)
778    if (!leaks_[i].is_suppressed) result++;
779  return result;
780}
781
782} // namespace __lsan
783#else // CAN_SANITIZE_LEAKS
784namespace __lsan {
785void InitCommonLsan() { }
786void DoLeakCheck() { }
787void DoRecoverableLeakCheckVoid() { }
788void DisableInThisThread() { }
789void EnableInThisThread() { }
790}
791#endif // CAN_SANITIZE_LEAKS
792
793using namespace __lsan;
794
795extern "C" {
796SANITIZER_INTERFACE_ATTRIBUTE
797void __lsan_ignore_object(const void *p) {
798#if CAN_SANITIZE_LEAKS
799  if (!common_flags()->detect_leaks)
800    return;
801  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
802  // locked.
803  BlockingMutexLock l(&global_mutex);
804  IgnoreObjectResult res = IgnoreObjectLocked(p);
805  if (res == kIgnoreObjectInvalid)
806    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
807  if (res == kIgnoreObjectAlreadyIgnored)
808    VReport(1, "__lsan_ignore_object(): "
809           "heap object at %p is already being ignored\n", p);
810  if (res == kIgnoreObjectSuccess)
811    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
812#endif // CAN_SANITIZE_LEAKS
813}
814
815SANITIZER_INTERFACE_ATTRIBUTE
816void __lsan_register_root_region(const void *begin, uptr size) {
817#if CAN_SANITIZE_LEAKS
818  BlockingMutexLock l(&global_mutex);
819  CHECK(root_regions);
820  RootRegion region = {reinterpret_cast<uptr>(begin), size};
821  root_regions->push_back(region);
822  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
823#endif // CAN_SANITIZE_LEAKS
824}
825
826SANITIZER_INTERFACE_ATTRIBUTE
827void __lsan_unregister_root_region(const void *begin, uptr size) {
828#if CAN_SANITIZE_LEAKS
829  BlockingMutexLock l(&global_mutex);
830  CHECK(root_regions);
831  bool removed = false;
832  for (uptr i = 0; i < root_regions->size(); i++) {
833    RootRegion region = (*root_regions)[i];
834    if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
835      removed = true;
836      uptr last_index = root_regions->size() - 1;
837      (*root_regions)[i] = (*root_regions)[last_index];
838      root_regions->pop_back();
839      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
840      break;
841    }
842  }
843  if (!removed) {
844    Report(
845        "__lsan_unregister_root_region(): region at %p of size %llu has not "
846        "been registered.\n",
847        begin, size);
848    Die();
849  }
850#endif // CAN_SANITIZE_LEAKS
851}
852
853SANITIZER_INTERFACE_ATTRIBUTE
854void __lsan_disable() {
855#if CAN_SANITIZE_LEAKS
856  __lsan::DisableInThisThread();
857#endif
858}
859
860SANITIZER_INTERFACE_ATTRIBUTE
861void __lsan_enable() {
862#if CAN_SANITIZE_LEAKS
863  __lsan::EnableInThisThread();
864#endif
865}
866
867SANITIZER_INTERFACE_ATTRIBUTE
868void __lsan_do_leak_check() {
869#if CAN_SANITIZE_LEAKS
870  if (common_flags()->detect_leaks)
871    __lsan::DoLeakCheck();
872#endif // CAN_SANITIZE_LEAKS
873}
874
875SANITIZER_INTERFACE_ATTRIBUTE
876int __lsan_do_recoverable_leak_check() {
877#if CAN_SANITIZE_LEAKS
878  if (common_flags()->detect_leaks)
879    return __lsan::DoRecoverableLeakCheck();
880#endif // CAN_SANITIZE_LEAKS
881  return 0;
882}
883
884#if !SANITIZER_SUPPORTS_WEAK_HOOKS
885SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
886const char * __lsan_default_options() {
887  return "";
888}
889
890SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
891int __lsan_is_turned_off() {
892  return 0;
893}
894
895SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
896const char *__lsan_default_suppressions() {
897  return "";
898}
899#endif
900} // extern "C"
901