USRLocFinder.cpp revision 341825
1//===--- USRLocFinder.cpp - Clang refactoring library ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// Methods for finding all instances of a USR. Our strategy is very
12/// simple; we just compare the USR at every relevant AST node with the one
13/// provided.
14///
15//===----------------------------------------------------------------------===//
16
17#include "clang/Tooling/Refactoring/Rename/USRLocFinder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Lex/Lexer.h"
24#include "clang/Tooling/Core/Lookup.h"
25#include "clang/Tooling/Refactoring/RecursiveSymbolVisitor.h"
26#include "clang/Tooling/Refactoring/Rename/SymbolName.h"
27#include "clang/Tooling/Refactoring/Rename/USRFinder.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/Support/Casting.h"
30#include <cstddef>
31#include <set>
32#include <string>
33#include <vector>
34
35using namespace llvm;
36
37namespace clang {
38namespace tooling {
39
40namespace {
41
42// Returns true if the given Loc is valid for edit. We don't edit the
43// SourceLocations that are valid or in temporary buffer.
44bool IsValidEditLoc(const clang::SourceManager& SM, clang::SourceLocation Loc) {
45  if (Loc.isInvalid())
46    return false;
47  const clang::FullSourceLoc FullLoc(Loc, SM);
48  std::pair<clang::FileID, unsigned> FileIdAndOffset =
49      FullLoc.getSpellingLoc().getDecomposedLoc();
50  return SM.getFileEntryForID(FileIdAndOffset.first) != nullptr;
51}
52
53// This visitor recursively searches for all instances of a USR in a
54// translation unit and stores them for later usage.
55class USRLocFindingASTVisitor
56    : public RecursiveSymbolVisitor<USRLocFindingASTVisitor> {
57public:
58  explicit USRLocFindingASTVisitor(const std::vector<std::string> &USRs,
59                                   StringRef PrevName,
60                                   const ASTContext &Context)
61      : RecursiveSymbolVisitor(Context.getSourceManager(),
62                               Context.getLangOpts()),
63        USRSet(USRs.begin(), USRs.end()), PrevName(PrevName), Context(Context) {
64  }
65
66  bool visitSymbolOccurrence(const NamedDecl *ND,
67                             ArrayRef<SourceRange> NameRanges) {
68    if (USRSet.find(getUSRForDecl(ND)) != USRSet.end()) {
69      assert(NameRanges.size() == 1 &&
70             "Multiple name pieces are not supported yet!");
71      SourceLocation Loc = NameRanges[0].getBegin();
72      const SourceManager &SM = Context.getSourceManager();
73      // TODO: Deal with macro occurrences correctly.
74      if (Loc.isMacroID())
75        Loc = SM.getSpellingLoc(Loc);
76      checkAndAddLocation(Loc);
77    }
78    return true;
79  }
80
81  // Non-visitors:
82
83  /// Returns a set of unique symbol occurrences. Duplicate or
84  /// overlapping occurrences are erroneous and should be reported!
85  SymbolOccurrences takeOccurrences() { return std::move(Occurrences); }
86
87private:
88  void checkAndAddLocation(SourceLocation Loc) {
89    const SourceLocation BeginLoc = Loc;
90    const SourceLocation EndLoc = Lexer::getLocForEndOfToken(
91        BeginLoc, 0, Context.getSourceManager(), Context.getLangOpts());
92    StringRef TokenName =
93        Lexer::getSourceText(CharSourceRange::getTokenRange(BeginLoc, EndLoc),
94                             Context.getSourceManager(), Context.getLangOpts());
95    size_t Offset = TokenName.find(PrevName.getNamePieces()[0]);
96
97    // The token of the source location we find actually has the old
98    // name.
99    if (Offset != StringRef::npos)
100      Occurrences.emplace_back(PrevName, SymbolOccurrence::MatchingSymbol,
101                               BeginLoc.getLocWithOffset(Offset));
102  }
103
104  const std::set<std::string> USRSet;
105  const SymbolName PrevName;
106  SymbolOccurrences Occurrences;
107  const ASTContext &Context;
108};
109
110SourceLocation StartLocationForType(TypeLoc TL) {
111  // For elaborated types (e.g. `struct a::A`) we want the portion after the
112  // `struct` but including the namespace qualifier, `a::`.
113  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>()) {
114    NestedNameSpecifierLoc NestedNameSpecifier =
115        ElaboratedTypeLoc.getQualifierLoc();
116    if (NestedNameSpecifier.getNestedNameSpecifier())
117      return NestedNameSpecifier.getBeginLoc();
118    TL = TL.getNextTypeLoc();
119  }
120  return TL.getLocStart();
121}
122
123SourceLocation EndLocationForType(TypeLoc TL) {
124  // Dig past any namespace or keyword qualifications.
125  while (TL.getTypeLocClass() == TypeLoc::Elaborated ||
126         TL.getTypeLocClass() == TypeLoc::Qualified)
127    TL = TL.getNextTypeLoc();
128
129  // The location for template specializations (e.g. Foo<int>) includes the
130  // templated types in its location range.  We want to restrict this to just
131  // before the `<` character.
132  if (TL.getTypeLocClass() == TypeLoc::TemplateSpecialization) {
133    return TL.castAs<TemplateSpecializationTypeLoc>()
134        .getLAngleLoc()
135        .getLocWithOffset(-1);
136  }
137  return TL.getEndLoc();
138}
139
140NestedNameSpecifier *GetNestedNameForType(TypeLoc TL) {
141  // Dig past any keyword qualifications.
142  while (TL.getTypeLocClass() == TypeLoc::Qualified)
143    TL = TL.getNextTypeLoc();
144
145  // For elaborated types (e.g. `struct a::A`) we want the portion after the
146  // `struct` but including the namespace qualifier, `a::`.
147  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>())
148    return ElaboratedTypeLoc.getQualifierLoc().getNestedNameSpecifier();
149  return nullptr;
150}
151
152// Find all locations identified by the given USRs for rename.
153//
154// This class will traverse the AST and find every AST node whose USR is in the
155// given USRs' set.
156class RenameLocFinder : public RecursiveASTVisitor<RenameLocFinder> {
157public:
158  RenameLocFinder(llvm::ArrayRef<std::string> USRs, ASTContext &Context)
159      : USRSet(USRs.begin(), USRs.end()), Context(Context) {}
160
161  // A structure records all information of a symbol reference being renamed.
162  // We try to add as few prefix qualifiers as possible.
163  struct RenameInfo {
164    // The begin location of a symbol being renamed.
165    SourceLocation Begin;
166    // The end location of a symbol being renamed.
167    SourceLocation End;
168    // The declaration of a symbol being renamed (can be nullptr).
169    const NamedDecl *FromDecl;
170    // The declaration in which the nested name is contained (can be nullptr).
171    const Decl *Context;
172    // The nested name being replaced (can be nullptr).
173    const NestedNameSpecifier *Specifier;
174    // Determine whether the prefix qualifiers of the NewName should be ignored.
175    // Normally, we set it to true for the symbol declaration and definition to
176    // avoid adding prefix qualifiers.
177    // For example, if it is true and NewName is "a::b::foo", then the symbol
178    // occurrence which the RenameInfo points to will be renamed to "foo".
179    bool IgnorePrefixQualifers;
180  };
181
182  bool VisitNamedDecl(const NamedDecl *Decl) {
183    // UsingDecl has been handled in other place.
184    if (llvm::isa<UsingDecl>(Decl))
185      return true;
186
187    // DestructorDecl has been handled in Typeloc.
188    if (llvm::isa<CXXDestructorDecl>(Decl))
189      return true;
190
191    if (Decl->isImplicit())
192      return true;
193
194    if (isInUSRSet(Decl)) {
195      // For the case of renaming an alias template, we actually rename the
196      // underlying alias declaration of the template.
197      if (const auto* TAT = dyn_cast<TypeAliasTemplateDecl>(Decl))
198        Decl = TAT->getTemplatedDecl();
199
200      auto StartLoc = Decl->getLocation();
201      auto EndLoc = StartLoc;
202      if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
203        RenameInfo Info = {StartLoc,
204                           EndLoc,
205                           /*FromDecl=*/nullptr,
206                           /*Context=*/nullptr,
207                           /*Specifier=*/nullptr,
208                           /*IgnorePrefixQualifers=*/true};
209        RenameInfos.push_back(Info);
210      }
211    }
212    return true;
213  }
214
215  bool VisitMemberExpr(const MemberExpr *Expr) {
216    const NamedDecl *Decl = Expr->getFoundDecl();
217    auto StartLoc = Expr->getMemberLoc();
218    auto EndLoc = Expr->getMemberLoc();
219    if (isInUSRSet(Decl)) {
220      RenameInfos.push_back({StartLoc, EndLoc,
221                            /*FromDecl=*/nullptr,
222                            /*Context=*/nullptr,
223                            /*Specifier=*/nullptr,
224                            /*IgnorePrefixQualifiers=*/true});
225    }
226    return true;
227  }
228
229  bool VisitCXXConstructorDecl(const CXXConstructorDecl *CD) {
230    // Fix the constructor initializer when renaming class members.
231    for (const auto *Initializer : CD->inits()) {
232      // Ignore implicit initializers.
233      if (!Initializer->isWritten())
234        continue;
235
236      if (const FieldDecl *FD = Initializer->getMember()) {
237        if (isInUSRSet(FD)) {
238          auto Loc = Initializer->getSourceLocation();
239          RenameInfos.push_back({Loc, Loc,
240                                 /*FromDecl=*/nullptr,
241                                 /*Context=*/nullptr,
242                                 /*Specifier=*/nullptr,
243                                 /*IgnorePrefixQualifiers=*/true});
244        }
245      }
246    }
247    return true;
248  }
249
250  bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
251    const NamedDecl *Decl = Expr->getFoundDecl();
252    // Get the underlying declaration of the shadow declaration introduced by a
253    // using declaration.
254    if (auto *UsingShadow = llvm::dyn_cast<UsingShadowDecl>(Decl)) {
255      Decl = UsingShadow->getTargetDecl();
256    }
257
258    auto StartLoc = Expr->getLocStart();
259    // For template function call expressions like `foo<int>()`, we want to
260    // restrict the end of location to just before the `<` character.
261    SourceLocation EndLoc = Expr->hasExplicitTemplateArgs()
262                                ? Expr->getLAngleLoc().getLocWithOffset(-1)
263                                : Expr->getLocEnd();
264
265    if (const auto *MD = llvm::dyn_cast<CXXMethodDecl>(Decl)) {
266      if (isInUSRSet(MD)) {
267        // Handle renaming static template class methods, we only rename the
268        // name without prefix qualifiers and restrict the source range to the
269        // name.
270        RenameInfos.push_back({EndLoc, EndLoc,
271                               /*FromDecl=*/nullptr,
272                               /*Context=*/nullptr,
273                               /*Specifier=*/nullptr,
274                               /*IgnorePrefixQualifiers=*/true});
275        return true;
276      }
277    }
278
279    // In case of renaming an enum declaration, we have to explicitly handle
280    // unscoped enum constants referenced in expressions (e.g.
281    // "auto r = ns1::ns2::Green" where Green is an enum constant of an unscoped
282    // enum decl "ns1::ns2::Color") as these enum constants cannot be caught by
283    // TypeLoc.
284    if (const auto *T = llvm::dyn_cast<EnumConstantDecl>(Decl)) {
285      // FIXME: Handle the enum constant without prefix qualifiers (`a = Green`)
286      // when renaming an unscoped enum declaration with a new namespace.
287      if (!Expr->hasQualifier())
288        return true;
289
290      if (const auto *ED =
291              llvm::dyn_cast_or_null<EnumDecl>(getClosestAncestorDecl(*T))) {
292        if (ED->isScoped())
293          return true;
294        Decl = ED;
295      }
296      // The current fix would qualify "ns1::ns2::Green" as
297      // "ns1::ns2::Color::Green".
298      //
299      // Get the EndLoc of the replacement by moving 1 character backward (
300      // to exclude the last '::').
301      //
302      //    ns1::ns2::Green;
303      //    ^      ^^
304      // BeginLoc  |EndLoc of the qualifier
305      //           new EndLoc
306      EndLoc = Expr->getQualifierLoc().getEndLoc().getLocWithOffset(-1);
307      assert(EndLoc.isValid() &&
308             "The enum constant should have prefix qualifers.");
309    }
310    if (isInUSRSet(Decl) &&
311        IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
312      RenameInfo Info = {StartLoc,
313                         EndLoc,
314                         Decl,
315                         getClosestAncestorDecl(*Expr),
316                         Expr->getQualifier(),
317                         /*IgnorePrefixQualifers=*/false};
318      RenameInfos.push_back(Info);
319    }
320
321    return true;
322  }
323
324  bool VisitUsingDecl(const UsingDecl *Using) {
325    for (const auto *UsingShadow : Using->shadows()) {
326      if (isInUSRSet(UsingShadow->getTargetDecl())) {
327        UsingDecls.push_back(Using);
328        break;
329      }
330    }
331    return true;
332  }
333
334  bool VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc) {
335    if (!NestedLoc.getNestedNameSpecifier()->getAsType())
336      return true;
337
338    if (const auto *TargetDecl =
339            getSupportedDeclFromTypeLoc(NestedLoc.getTypeLoc())) {
340      if (isInUSRSet(TargetDecl)) {
341        RenameInfo Info = {NestedLoc.getBeginLoc(),
342                           EndLocationForType(NestedLoc.getTypeLoc()),
343                           TargetDecl,
344                           getClosestAncestorDecl(NestedLoc),
345                           NestedLoc.getNestedNameSpecifier()->getPrefix(),
346                           /*IgnorePrefixQualifers=*/false};
347        RenameInfos.push_back(Info);
348      }
349    }
350    return true;
351  }
352
353  bool VisitTypeLoc(TypeLoc Loc) {
354    auto Parents = Context.getParents(Loc);
355    TypeLoc ParentTypeLoc;
356    if (!Parents.empty()) {
357      // Handle cases of nested name specificier locations.
358      //
359      // The VisitNestedNameSpecifierLoc interface is not impelmented in
360      // RecursiveASTVisitor, we have to handle it explicitly.
361      if (const auto *NSL = Parents[0].get<NestedNameSpecifierLoc>()) {
362        VisitNestedNameSpecifierLocations(*NSL);
363        return true;
364      }
365
366      if (const auto *TL = Parents[0].get<TypeLoc>())
367        ParentTypeLoc = *TL;
368    }
369
370    // Handle the outermost TypeLoc which is directly linked to the interesting
371    // declaration and don't handle nested name specifier locations.
372    if (const auto *TargetDecl = getSupportedDeclFromTypeLoc(Loc)) {
373      if (isInUSRSet(TargetDecl)) {
374        // Only handle the outermost typeLoc.
375        //
376        // For a type like "a::Foo", there will be two typeLocs for it.
377        // One ElaboratedType, the other is RecordType:
378        //
379        //   ElaboratedType 0x33b9390 'a::Foo' sugar
380        //   `-RecordType 0x338fef0 'class a::Foo'
381        //     `-CXXRecord 0x338fe58 'Foo'
382        //
383        // Skip if this is an inner typeLoc.
384        if (!ParentTypeLoc.isNull() &&
385            isInUSRSet(getSupportedDeclFromTypeLoc(ParentTypeLoc)))
386          return true;
387
388        auto StartLoc = StartLocationForType(Loc);
389        auto EndLoc = EndLocationForType(Loc);
390        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
391          RenameInfo Info = {StartLoc,
392                             EndLoc,
393                             TargetDecl,
394                             getClosestAncestorDecl(Loc),
395                             GetNestedNameForType(Loc),
396                             /*IgnorePrefixQualifers=*/false};
397          RenameInfos.push_back(Info);
398        }
399        return true;
400      }
401    }
402
403    // Handle specific template class specialiation cases.
404    if (const auto *TemplateSpecType =
405            dyn_cast<TemplateSpecializationType>(Loc.getType())) {
406      TypeLoc TargetLoc = Loc;
407      if (!ParentTypeLoc.isNull()) {
408        if (llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
409          TargetLoc = ParentTypeLoc;
410      }
411
412      if (isInUSRSet(TemplateSpecType->getTemplateName().getAsTemplateDecl())) {
413        TypeLoc TargetLoc = Loc;
414        // FIXME: Find a better way to handle this case.
415        // For the qualified template class specification type like
416        // "ns::Foo<int>" in "ns::Foo<int>& f();", we want the parent typeLoc
417        // (ElaboratedType) of the TemplateSpecializationType in order to
418        // catch the prefix qualifiers "ns::".
419        if (!ParentTypeLoc.isNull() &&
420            llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
421          TargetLoc = ParentTypeLoc;
422
423        auto StartLoc = StartLocationForType(TargetLoc);
424        auto EndLoc = EndLocationForType(TargetLoc);
425        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
426          RenameInfo Info = {
427              StartLoc,
428              EndLoc,
429              TemplateSpecType->getTemplateName().getAsTemplateDecl(),
430              getClosestAncestorDecl(
431                  ast_type_traits::DynTypedNode::create(TargetLoc)),
432              GetNestedNameForType(TargetLoc),
433              /*IgnorePrefixQualifers=*/false};
434          RenameInfos.push_back(Info);
435        }
436      }
437    }
438    return true;
439  }
440
441  // Returns a list of RenameInfo.
442  const std::vector<RenameInfo> &getRenameInfos() const { return RenameInfos; }
443
444  // Returns a list of using declarations which are needed to update.
445  const std::vector<const UsingDecl *> &getUsingDecls() const {
446    return UsingDecls;
447  }
448
449private:
450  // Get the supported declaration from a given typeLoc. If the declaration type
451  // is not supported, returns nullptr.
452  const NamedDecl *getSupportedDeclFromTypeLoc(TypeLoc Loc) {
453    if (const auto* TT = Loc.getType()->getAs<clang::TypedefType>())
454      return TT->getDecl();
455    if (const auto *RD = Loc.getType()->getAsCXXRecordDecl())
456      return RD;
457    if (const auto *ED =
458            llvm::dyn_cast_or_null<EnumDecl>(Loc.getType()->getAsTagDecl()))
459      return ED;
460    return nullptr;
461  }
462
463  // Get the closest ancester which is a declaration of a given AST node.
464  template <typename ASTNodeType>
465  const Decl *getClosestAncestorDecl(const ASTNodeType &Node) {
466    auto Parents = Context.getParents(Node);
467    // FIXME: figure out how to handle it when there are multiple parents.
468    if (Parents.size() != 1)
469      return nullptr;
470    if (ast_type_traits::ASTNodeKind::getFromNodeKind<Decl>().isBaseOf(
471            Parents[0].getNodeKind()))
472      return Parents[0].template get<Decl>();
473    return getClosestAncestorDecl(Parents[0]);
474  }
475
476  // Get the parent typeLoc of a given typeLoc. If there is no such parent,
477  // return nullptr.
478  const TypeLoc *getParentTypeLoc(TypeLoc Loc) const {
479    auto Parents = Context.getParents(Loc);
480    // FIXME: figure out how to handle it when there are multiple parents.
481    if (Parents.size() != 1)
482      return nullptr;
483    return Parents[0].get<TypeLoc>();
484  }
485
486  // Check whether the USR of a given Decl is in the USRSet.
487  bool isInUSRSet(const Decl *Decl) const {
488    auto USR = getUSRForDecl(Decl);
489    if (USR.empty())
490      return false;
491    return llvm::is_contained(USRSet, USR);
492  }
493
494  const std::set<std::string> USRSet;
495  ASTContext &Context;
496  std::vector<RenameInfo> RenameInfos;
497  // Record all interested using declarations which contains the using-shadow
498  // declarations of the symbol declarations being renamed.
499  std::vector<const UsingDecl *> UsingDecls;
500};
501
502} // namespace
503
504SymbolOccurrences getOccurrencesOfUSRs(ArrayRef<std::string> USRs,
505                                       StringRef PrevName, Decl *Decl) {
506  USRLocFindingASTVisitor Visitor(USRs, PrevName, Decl->getASTContext());
507  Visitor.TraverseDecl(Decl);
508  return Visitor.takeOccurrences();
509}
510
511std::vector<tooling::AtomicChange>
512createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,
513                          llvm::StringRef NewName, Decl *TranslationUnitDecl) {
514  RenameLocFinder Finder(USRs, TranslationUnitDecl->getASTContext());
515  Finder.TraverseDecl(TranslationUnitDecl);
516
517  const SourceManager &SM =
518      TranslationUnitDecl->getASTContext().getSourceManager();
519
520  std::vector<tooling::AtomicChange> AtomicChanges;
521  auto Replace = [&](SourceLocation Start, SourceLocation End,
522                     llvm::StringRef Text) {
523    tooling::AtomicChange ReplaceChange = tooling::AtomicChange(SM, Start);
524    llvm::Error Err = ReplaceChange.replace(
525        SM, CharSourceRange::getTokenRange(Start, End), Text);
526    if (Err) {
527      llvm::errs() << "Failed to add replacement to AtomicChange: "
528                   << llvm::toString(std::move(Err)) << "\n";
529      return;
530    }
531    AtomicChanges.push_back(std::move(ReplaceChange));
532  };
533
534  for (const auto &RenameInfo : Finder.getRenameInfos()) {
535    std::string ReplacedName = NewName.str();
536    if (RenameInfo.IgnorePrefixQualifers) {
537      // Get the name without prefix qualifiers from NewName.
538      size_t LastColonPos = NewName.find_last_of(':');
539      if (LastColonPos != std::string::npos)
540        ReplacedName = NewName.substr(LastColonPos + 1);
541    } else {
542      if (RenameInfo.FromDecl && RenameInfo.Context) {
543        if (!llvm::isa<clang::TranslationUnitDecl>(
544                RenameInfo.Context->getDeclContext())) {
545          ReplacedName = tooling::replaceNestedName(
546              RenameInfo.Specifier, RenameInfo.Context->getDeclContext(),
547              RenameInfo.FromDecl,
548              NewName.startswith("::") ? NewName.str()
549                                       : ("::" + NewName).str());
550        } else {
551          // This fixes the case where type `T` is a parameter inside a function
552          // type (e.g. `std::function<void(T)>`) and the DeclContext of `T`
553          // becomes the translation unit. As a workaround, we simply use
554          // fully-qualified name here for all references whose `DeclContext` is
555          // the translation unit and ignore the possible existence of
556          // using-decls (in the global scope) that can shorten the replaced
557          // name.
558          llvm::StringRef ActualName = Lexer::getSourceText(
559              CharSourceRange::getTokenRange(
560                  SourceRange(RenameInfo.Begin, RenameInfo.End)),
561              SM, TranslationUnitDecl->getASTContext().getLangOpts());
562          // Add the leading "::" back if the name written in the code contains
563          // it.
564          if (ActualName.startswith("::") && !NewName.startswith("::")) {
565            ReplacedName = "::" + NewName.str();
566          }
567        }
568      }
569      // If the NewName contains leading "::", add it back.
570      if (NewName.startswith("::") && NewName.substr(2) == ReplacedName)
571        ReplacedName = NewName.str();
572    }
573    Replace(RenameInfo.Begin, RenameInfo.End, ReplacedName);
574  }
575
576  // Hanlde using declarations explicitly as "using a::Foo" don't trigger
577  // typeLoc for "a::Foo".
578  for (const auto *Using : Finder.getUsingDecls())
579    Replace(Using->getLocStart(), Using->getLocEnd(), "using " + NewName.str());
580
581  return AtomicChanges;
582}
583
584} // end namespace tooling
585} // end namespace clang
586