ASTDiff.cpp revision 353358
1//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains definitons for the AST differencing interface.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Tooling/ASTDiff/ASTDiff.h"
14
15#include "clang/AST/RecursiveASTVisitor.h"
16#include "clang/Lex/Lexer.h"
17#include "llvm/ADT/PriorityQueue.h"
18
19#include <limits>
20#include <memory>
21#include <unordered_set>
22
23using namespace llvm;
24using namespace clang;
25
26namespace clang {
27namespace diff {
28
29namespace {
30/// Maps nodes of the left tree to ones on the right, and vice versa.
31class Mapping {
32public:
33  Mapping() = default;
34  Mapping(Mapping &&Other) = default;
35  Mapping &operator=(Mapping &&Other) = default;
36
37  Mapping(size_t Size) {
38    SrcToDst = llvm::make_unique<NodeId[]>(Size);
39    DstToSrc = llvm::make_unique<NodeId[]>(Size);
40  }
41
42  void link(NodeId Src, NodeId Dst) {
43    SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
44  }
45
46  NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
47  NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
48  bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
49  bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
50
51private:
52  std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
53};
54} // end anonymous namespace
55
56class ASTDiff::Impl {
57public:
58  SyntaxTree::Impl &T1, &T2;
59  Mapping TheMapping;
60
61  Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
62       const ComparisonOptions &Options);
63
64  /// Matches nodes one-by-one based on their similarity.
65  void computeMapping();
66
67  // Compute Change for each node based on similarity.
68  void computeChangeKinds(Mapping &M);
69
70  NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
71                   NodeId Id) const {
72    if (&*Tree == &T1)
73      return TheMapping.getDst(Id);
74    assert(&*Tree == &T2 && "Invalid tree.");
75    return TheMapping.getSrc(Id);
76  }
77
78private:
79  // Returns true if the two subtrees are identical.
80  bool identical(NodeId Id1, NodeId Id2) const;
81
82  // Returns false if the nodes must not be mached.
83  bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
84
85  // Returns true if the nodes' parents are matched.
86  bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
87
88  // Uses an optimal albeit slow algorithm to compute a mapping between two
89  // subtrees, but only if both have fewer nodes than MaxSize.
90  void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
91
92  // Computes the ratio of common descendants between the two nodes.
93  // Descendants are only considered to be equal when they are mapped in M.
94  double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
95
96  // Returns the node that has the highest degree of similarity.
97  NodeId findCandidate(const Mapping &M, NodeId Id1) const;
98
99  // Returns a mapping of identical subtrees.
100  Mapping matchTopDown() const;
101
102  // Tries to match any yet unmapped nodes, in a bottom-up fashion.
103  void matchBottomUp(Mapping &M) const;
104
105  const ComparisonOptions &Options;
106
107  friend class ZhangShashaMatcher;
108};
109
110/// Represents the AST of a TranslationUnit.
111class SyntaxTree::Impl {
112public:
113  Impl(SyntaxTree *Parent, ASTContext &AST);
114  /// Constructs a tree from an AST node.
115  Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
116  Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
117  template <class T>
118  Impl(SyntaxTree *Parent,
119       typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
120       ASTContext &AST)
121      : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
122  template <class T>
123  Impl(SyntaxTree *Parent,
124       typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
125       ASTContext &AST)
126      : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
127
128  SyntaxTree *Parent;
129  ASTContext &AST;
130  PrintingPolicy TypePP;
131  /// Nodes in preorder.
132  std::vector<Node> Nodes;
133  std::vector<NodeId> Leaves;
134  // Maps preorder indices to postorder ones.
135  std::vector<int> PostorderIds;
136  std::vector<NodeId> NodesBfs;
137
138  int getSize() const { return Nodes.size(); }
139  NodeId getRootId() const { return 0; }
140  PreorderIterator begin() const { return getRootId(); }
141  PreorderIterator end() const { return getSize(); }
142
143  const Node &getNode(NodeId Id) const { return Nodes[Id]; }
144  Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
145  bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
146  void addNode(Node &N) { Nodes.push_back(N); }
147  int getNumberOfDescendants(NodeId Id) const;
148  bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
149  int findPositionInParent(NodeId Id, bool Shifted = false) const;
150
151  std::string getRelativeName(const NamedDecl *ND,
152                              const DeclContext *Context) const;
153  std::string getRelativeName(const NamedDecl *ND) const;
154
155  std::string getNodeValue(NodeId Id) const;
156  std::string getNodeValue(const Node &Node) const;
157  std::string getDeclValue(const Decl *D) const;
158  std::string getStmtValue(const Stmt *S) const;
159
160private:
161  void initTree();
162  void setLeftMostDescendants();
163};
164
165static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
166static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
167static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
168  return !I->isWritten();
169}
170
171template <class T>
172static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
173  if (!N)
174    return true;
175  SourceLocation SLoc = N->getSourceRange().getBegin();
176  if (SLoc.isValid()) {
177    // Ignore everything from other files.
178    if (!SrcMgr.isInMainFile(SLoc))
179      return true;
180    // Ignore macros.
181    if (SLoc != SrcMgr.getSpellingLoc(SLoc))
182      return true;
183  }
184  return isSpecializedNodeExcluded(N);
185}
186
187namespace {
188// Sets Height, Parent and Children for each node.
189struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
190  int Id = 0, Depth = 0;
191  NodeId Parent;
192  SyntaxTree::Impl &Tree;
193
194  PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
195
196  template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
197    NodeId MyId = Id;
198    Tree.Nodes.emplace_back();
199    Node &N = Tree.getMutableNode(MyId);
200    N.Parent = Parent;
201    N.Depth = Depth;
202    N.ASTNode = DynTypedNode::create(*ASTNode);
203    assert(!N.ASTNode.getNodeKind().isNone() &&
204           "Expected nodes to have a valid kind.");
205    if (Parent.isValid()) {
206      Node &P = Tree.getMutableNode(Parent);
207      P.Children.push_back(MyId);
208    }
209    Parent = MyId;
210    ++Id;
211    ++Depth;
212    return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
213  }
214  void PostTraverse(std::tuple<NodeId, NodeId> State) {
215    NodeId MyId, PreviousParent;
216    std::tie(MyId, PreviousParent) = State;
217    assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
218    Parent = PreviousParent;
219    --Depth;
220    Node &N = Tree.getMutableNode(MyId);
221    N.RightMostDescendant = Id - 1;
222    assert(N.RightMostDescendant >= 0 &&
223           N.RightMostDescendant < Tree.getSize() &&
224           "Rightmost descendant must be a valid tree node.");
225    if (N.isLeaf())
226      Tree.Leaves.push_back(MyId);
227    N.Height = 1;
228    for (NodeId Child : N.Children)
229      N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
230  }
231  bool TraverseDecl(Decl *D) {
232    if (isNodeExcluded(Tree.AST.getSourceManager(), D))
233      return true;
234    auto SavedState = PreTraverse(D);
235    RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
236    PostTraverse(SavedState);
237    return true;
238  }
239  bool TraverseStmt(Stmt *S) {
240    if (auto *E = dyn_cast_or_null<Expr>(S))
241      S = E->IgnoreImplicit();
242    if (isNodeExcluded(Tree.AST.getSourceManager(), S))
243      return true;
244    auto SavedState = PreTraverse(S);
245    RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
246    PostTraverse(SavedState);
247    return true;
248  }
249  bool TraverseType(QualType T) { return true; }
250  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
251    if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
252      return true;
253    auto SavedState = PreTraverse(Init);
254    RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
255    PostTraverse(SavedState);
256    return true;
257  }
258};
259} // end anonymous namespace
260
261SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
262    : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
263  TypePP.AnonymousTagLocations = false;
264}
265
266SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
267    : Impl(Parent, AST) {
268  PreorderVisitor PreorderWalker(*this);
269  PreorderWalker.TraverseDecl(N);
270  initTree();
271}
272
273SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
274    : Impl(Parent, AST) {
275  PreorderVisitor PreorderWalker(*this);
276  PreorderWalker.TraverseStmt(N);
277  initTree();
278}
279
280static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
281                                               NodeId Root) {
282  std::vector<NodeId> Postorder;
283  std::function<void(NodeId)> Traverse = [&](NodeId Id) {
284    const Node &N = Tree.getNode(Id);
285    for (NodeId Child : N.Children)
286      Traverse(Child);
287    Postorder.push_back(Id);
288  };
289  Traverse(Root);
290  return Postorder;
291}
292
293static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
294                                         NodeId Root) {
295  std::vector<NodeId> Ids;
296  size_t Expanded = 0;
297  Ids.push_back(Root);
298  while (Expanded < Ids.size())
299    for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
300      Ids.push_back(Child);
301  return Ids;
302}
303
304void SyntaxTree::Impl::initTree() {
305  setLeftMostDescendants();
306  int PostorderId = 0;
307  PostorderIds.resize(getSize());
308  std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
309    for (NodeId Child : getNode(Id).Children)
310      PostorderTraverse(Child);
311    PostorderIds[Id] = PostorderId;
312    ++PostorderId;
313  };
314  PostorderTraverse(getRootId());
315  NodesBfs = getSubtreeBfs(*this, getRootId());
316}
317
318void SyntaxTree::Impl::setLeftMostDescendants() {
319  for (NodeId Leaf : Leaves) {
320    getMutableNode(Leaf).LeftMostDescendant = Leaf;
321    NodeId Parent, Cur = Leaf;
322    while ((Parent = getNode(Cur).Parent).isValid() &&
323           getNode(Parent).Children[0] == Cur) {
324      Cur = Parent;
325      getMutableNode(Cur).LeftMostDescendant = Leaf;
326    }
327  }
328}
329
330int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
331  return getNode(Id).RightMostDescendant - Id + 1;
332}
333
334bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
335  return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
336}
337
338int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
339  NodeId Parent = getNode(Id).Parent;
340  if (Parent.isInvalid())
341    return 0;
342  const auto &Siblings = getNode(Parent).Children;
343  int Position = 0;
344  for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
345    if (Shifted)
346      Position += getNode(Siblings[I]).Shift;
347    if (Siblings[I] == Id) {
348      Position += I;
349      return Position;
350    }
351  }
352  llvm_unreachable("Node not found in parent's children.");
353}
354
355// Returns the qualified name of ND. If it is subordinate to Context,
356// then the prefix of the latter is removed from the returned value.
357std::string
358SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
359                                  const DeclContext *Context) const {
360  std::string Val = ND->getQualifiedNameAsString();
361  std::string ContextPrefix;
362  if (!Context)
363    return Val;
364  if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
365    ContextPrefix = Namespace->getQualifiedNameAsString();
366  else if (auto *Record = dyn_cast<RecordDecl>(Context))
367    ContextPrefix = Record->getQualifiedNameAsString();
368  else if (AST.getLangOpts().CPlusPlus11)
369    if (auto *Tag = dyn_cast<TagDecl>(Context))
370      ContextPrefix = Tag->getQualifiedNameAsString();
371  // Strip the qualifier, if Val refers to something in the current scope.
372  // But leave one leading ':' in place, so that we know that this is a
373  // relative path.
374  if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
375    Val = Val.substr(ContextPrefix.size() + 1);
376  return Val;
377}
378
379std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
380  return getRelativeName(ND, ND->getDeclContext());
381}
382
383static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
384                                                  const Stmt *S) {
385  while (S) {
386    const auto &Parents = AST.getParents(*S);
387    if (Parents.empty())
388      return nullptr;
389    const auto &P = Parents[0];
390    if (const auto *D = P.get<Decl>())
391      return D->getDeclContext();
392    S = P.get<Stmt>();
393  }
394  return nullptr;
395}
396
397static std::string getInitializerValue(const CXXCtorInitializer *Init,
398                                       const PrintingPolicy &TypePP) {
399  if (Init->isAnyMemberInitializer())
400    return Init->getAnyMember()->getName();
401  if (Init->isBaseInitializer())
402    return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
403  if (Init->isDelegatingInitializer())
404    return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
405  llvm_unreachable("Unknown initializer type");
406}
407
408std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
409  return getNodeValue(getNode(Id));
410}
411
412std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
413  const DynTypedNode &DTN = N.ASTNode;
414  if (auto *S = DTN.get<Stmt>())
415    return getStmtValue(S);
416  if (auto *D = DTN.get<Decl>())
417    return getDeclValue(D);
418  if (auto *Init = DTN.get<CXXCtorInitializer>())
419    return getInitializerValue(Init, TypePP);
420  llvm_unreachable("Fatal: unhandled AST node.\n");
421}
422
423std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
424  std::string Value;
425  if (auto *V = dyn_cast<ValueDecl>(D))
426    return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
427  if (auto *N = dyn_cast<NamedDecl>(D))
428    Value += getRelativeName(N) + ";";
429  if (auto *T = dyn_cast<TypedefNameDecl>(D))
430    return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
431  if (auto *T = dyn_cast<TypeDecl>(D))
432    if (T->getTypeForDecl())
433      Value +=
434          T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
435          ";";
436  if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
437    return U->getNominatedNamespace()->getName();
438  if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
439    CharSourceRange Range(A->getSourceRange(), false);
440    return Lexer::getSourceText(Range, AST.getSourceManager(),
441                                AST.getLangOpts());
442  }
443  return Value;
444}
445
446std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
447  if (auto *U = dyn_cast<UnaryOperator>(S))
448    return UnaryOperator::getOpcodeStr(U->getOpcode());
449  if (auto *B = dyn_cast<BinaryOperator>(S))
450    return B->getOpcodeStr();
451  if (auto *M = dyn_cast<MemberExpr>(S))
452    return getRelativeName(M->getMemberDecl());
453  if (auto *I = dyn_cast<IntegerLiteral>(S)) {
454    SmallString<256> Str;
455    I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
456    return Str.str();
457  }
458  if (auto *F = dyn_cast<FloatingLiteral>(S)) {
459    SmallString<256> Str;
460    F->getValue().toString(Str);
461    return Str.str();
462  }
463  if (auto *D = dyn_cast<DeclRefExpr>(S))
464    return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
465  if (auto *String = dyn_cast<StringLiteral>(S))
466    return String->getString();
467  if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
468    return B->getValue() ? "true" : "false";
469  return "";
470}
471
472/// Identifies a node in a subtree by its postorder offset, starting at 1.
473struct SNodeId {
474  int Id = 0;
475
476  explicit SNodeId(int Id) : Id(Id) {}
477  explicit SNodeId() = default;
478
479  operator int() const { return Id; }
480  SNodeId &operator++() { return ++Id, *this; }
481  SNodeId &operator--() { return --Id, *this; }
482  SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
483};
484
485class Subtree {
486private:
487  /// The parent tree.
488  const SyntaxTree::Impl &Tree;
489  /// Maps SNodeIds to original ids.
490  std::vector<NodeId> RootIds;
491  /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
492  std::vector<SNodeId> LeftMostDescendants;
493
494public:
495  std::vector<SNodeId> KeyRoots;
496
497  Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
498    RootIds = getSubtreePostorder(Tree, SubtreeRoot);
499    int NumLeaves = setLeftMostDescendants();
500    computeKeyRoots(NumLeaves);
501  }
502  int getSize() const { return RootIds.size(); }
503  NodeId getIdInRoot(SNodeId Id) const {
504    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
505    return RootIds[Id - 1];
506  }
507  const Node &getNode(SNodeId Id) const {
508    return Tree.getNode(getIdInRoot(Id));
509  }
510  SNodeId getLeftMostDescendant(SNodeId Id) const {
511    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
512    return LeftMostDescendants[Id - 1];
513  }
514  /// Returns the postorder index of the leftmost descendant in the subtree.
515  NodeId getPostorderOffset() const {
516    return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
517  }
518  std::string getNodeValue(SNodeId Id) const {
519    return Tree.getNodeValue(getIdInRoot(Id));
520  }
521
522private:
523  /// Returns the number of leafs in the subtree.
524  int setLeftMostDescendants() {
525    int NumLeaves = 0;
526    LeftMostDescendants.resize(getSize());
527    for (int I = 0; I < getSize(); ++I) {
528      SNodeId SI(I + 1);
529      const Node &N = getNode(SI);
530      NumLeaves += N.isLeaf();
531      assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
532             "Postorder traversal in subtree should correspond to traversal in "
533             "the root tree by a constant offset.");
534      LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
535                                       getPostorderOffset());
536    }
537    return NumLeaves;
538  }
539  void computeKeyRoots(int Leaves) {
540    KeyRoots.resize(Leaves);
541    std::unordered_set<int> Visited;
542    int K = Leaves - 1;
543    for (SNodeId I(getSize()); I > 0; --I) {
544      SNodeId LeftDesc = getLeftMostDescendant(I);
545      if (Visited.count(LeftDesc))
546        continue;
547      assert(K >= 0 && "K should be non-negative");
548      KeyRoots[K] = I;
549      Visited.insert(LeftDesc);
550      --K;
551    }
552  }
553};
554
555/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
556/// Computes an optimal mapping between two trees using only insertion,
557/// deletion and update as edit actions (similar to the Levenshtein distance).
558class ZhangShashaMatcher {
559  const ASTDiff::Impl &DiffImpl;
560  Subtree S1;
561  Subtree S2;
562  std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
563
564public:
565  ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
566                     const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
567      : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
568    TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
569        size_t(S1.getSize()) + 1);
570    ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
571        size_t(S1.getSize()) + 1);
572    for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
573      TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
574      ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
575    }
576  }
577
578  std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
579    std::vector<std::pair<NodeId, NodeId>> Matches;
580    std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
581
582    computeTreeDist();
583
584    bool RootNodePair = true;
585
586    TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
587
588    while (!TreePairs.empty()) {
589      SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
590      std::tie(LastRow, LastCol) = TreePairs.back();
591      TreePairs.pop_back();
592
593      if (!RootNodePair) {
594        computeForestDist(LastRow, LastCol);
595      }
596
597      RootNodePair = false;
598
599      FirstRow = S1.getLeftMostDescendant(LastRow);
600      FirstCol = S2.getLeftMostDescendant(LastCol);
601
602      Row = LastRow;
603      Col = LastCol;
604
605      while (Row > FirstRow || Col > FirstCol) {
606        if (Row > FirstRow &&
607            ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
608          --Row;
609        } else if (Col > FirstCol &&
610                   ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
611          --Col;
612        } else {
613          SNodeId LMD1 = S1.getLeftMostDescendant(Row);
614          SNodeId LMD2 = S2.getLeftMostDescendant(Col);
615          if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
616              LMD2 == S2.getLeftMostDescendant(LastCol)) {
617            NodeId Id1 = S1.getIdInRoot(Row);
618            NodeId Id2 = S2.getIdInRoot(Col);
619            assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
620                   "These nodes must not be matched.");
621            Matches.emplace_back(Id1, Id2);
622            --Row;
623            --Col;
624          } else {
625            TreePairs.emplace_back(Row, Col);
626            Row = LMD1;
627            Col = LMD2;
628          }
629        }
630      }
631    }
632    return Matches;
633  }
634
635private:
636  /// We use a simple cost model for edit actions, which seems good enough.
637  /// Simple cost model for edit actions. This seems to make the matching
638  /// algorithm perform reasonably well.
639  /// The values range between 0 and 1, or infinity if this edit action should
640  /// always be avoided.
641  static constexpr double DeletionCost = 1;
642  static constexpr double InsertionCost = 1;
643
644  double getUpdateCost(SNodeId Id1, SNodeId Id2) {
645    if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
646      return std::numeric_limits<double>::max();
647    return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
648  }
649
650  void computeTreeDist() {
651    for (SNodeId Id1 : S1.KeyRoots)
652      for (SNodeId Id2 : S2.KeyRoots)
653        computeForestDist(Id1, Id2);
654  }
655
656  void computeForestDist(SNodeId Id1, SNodeId Id2) {
657    assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
658    SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
659    SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
660
661    ForestDist[LMD1][LMD2] = 0;
662    for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
663      ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
664      for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
665        ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
666        SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
667        SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
668        if (DLMD1 == LMD1 && DLMD2 == LMD2) {
669          double UpdateCost = getUpdateCost(D1, D2);
670          ForestDist[D1][D2] =
671              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
672                        ForestDist[D1][D2 - 1] + InsertionCost,
673                        ForestDist[D1 - 1][D2 - 1] + UpdateCost});
674          TreeDist[D1][D2] = ForestDist[D1][D2];
675        } else {
676          ForestDist[D1][D2] =
677              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
678                        ForestDist[D1][D2 - 1] + InsertionCost,
679                        ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
680        }
681      }
682    }
683  }
684};
685
686ast_type_traits::ASTNodeKind Node::getType() const {
687  return ASTNode.getNodeKind();
688}
689
690StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
691
692llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
693  if (auto *ND = ASTNode.get<NamedDecl>()) {
694    if (ND->getDeclName().isIdentifier())
695      return ND->getQualifiedNameAsString();
696  }
697  return llvm::None;
698}
699
700llvm::Optional<StringRef> Node::getIdentifier() const {
701  if (auto *ND = ASTNode.get<NamedDecl>()) {
702    if (ND->getDeclName().isIdentifier())
703      return ND->getName();
704  }
705  return llvm::None;
706}
707
708namespace {
709// Compares nodes by their depth.
710struct HeightLess {
711  const SyntaxTree::Impl &Tree;
712  HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
713  bool operator()(NodeId Id1, NodeId Id2) const {
714    return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
715  }
716};
717} // end anonymous namespace
718
719namespace {
720// Priority queue for nodes, sorted descendingly by their height.
721class PriorityList {
722  const SyntaxTree::Impl &Tree;
723  HeightLess Cmp;
724  std::vector<NodeId> Container;
725  PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
726
727public:
728  PriorityList(const SyntaxTree::Impl &Tree)
729      : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
730
731  void push(NodeId id) { List.push(id); }
732
733  std::vector<NodeId> pop() {
734    int Max = peekMax();
735    std::vector<NodeId> Result;
736    if (Max == 0)
737      return Result;
738    while (peekMax() == Max) {
739      Result.push_back(List.top());
740      List.pop();
741    }
742    // TODO this is here to get a stable output, not a good heuristic
743    llvm::sort(Result);
744    return Result;
745  }
746  int peekMax() const {
747    if (List.empty())
748      return 0;
749    return Tree.getNode(List.top()).Height;
750  }
751  void open(NodeId Id) {
752    for (NodeId Child : Tree.getNode(Id).Children)
753      push(Child);
754  }
755};
756} // end anonymous namespace
757
758bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
759  const Node &N1 = T1.getNode(Id1);
760  const Node &N2 = T2.getNode(Id2);
761  if (N1.Children.size() != N2.Children.size() ||
762      !isMatchingPossible(Id1, Id2) ||
763      T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
764    return false;
765  for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
766    if (!identical(N1.Children[Id], N2.Children[Id]))
767      return false;
768  return true;
769}
770
771bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
772  return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
773}
774
775bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
776                                    NodeId Id2) const {
777  NodeId P1 = T1.getNode(Id1).Parent;
778  NodeId P2 = T2.getNode(Id2).Parent;
779  return (P1.isInvalid() && P2.isInvalid()) ||
780         (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
781}
782
783void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
784                                      NodeId Id2) const {
785  if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
786      Options.MaxSize)
787    return;
788  ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
789  std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
790  for (const auto Tuple : R) {
791    NodeId Src = Tuple.first;
792    NodeId Dst = Tuple.second;
793    if (!M.hasSrc(Src) && !M.hasDst(Dst))
794      M.link(Src, Dst);
795  }
796}
797
798double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
799                                           NodeId Id2) const {
800  int CommonDescendants = 0;
801  const Node &N1 = T1.getNode(Id1);
802  // Count the common descendants, excluding the subtree root.
803  for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
804    NodeId Dst = M.getDst(Src);
805    CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
806  }
807  // We need to subtract 1 to get the number of descendants excluding the root.
808  double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
809                       T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
810  // CommonDescendants is less than the size of one subtree.
811  assert(Denominator >= 0 && "Expected non-negative denominator.");
812  if (Denominator == 0)
813    return 0;
814  return CommonDescendants / Denominator;
815}
816
817NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
818  NodeId Candidate;
819  double HighestSimilarity = 0.0;
820  for (NodeId Id2 : T2) {
821    if (!isMatchingPossible(Id1, Id2))
822      continue;
823    if (M.hasDst(Id2))
824      continue;
825    double Similarity = getJaccardSimilarity(M, Id1, Id2);
826    if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
827      HighestSimilarity = Similarity;
828      Candidate = Id2;
829    }
830  }
831  return Candidate;
832}
833
834void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
835  std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
836  for (NodeId Id1 : Postorder) {
837    if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
838        !M.hasDst(T2.getRootId())) {
839      if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
840        M.link(T1.getRootId(), T2.getRootId());
841        addOptimalMapping(M, T1.getRootId(), T2.getRootId());
842      }
843      break;
844    }
845    bool Matched = M.hasSrc(Id1);
846    const Node &N1 = T1.getNode(Id1);
847    bool MatchedChildren = llvm::any_of(
848        N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
849    if (Matched || !MatchedChildren)
850      continue;
851    NodeId Id2 = findCandidate(M, Id1);
852    if (Id2.isValid()) {
853      M.link(Id1, Id2);
854      addOptimalMapping(M, Id1, Id2);
855    }
856  }
857}
858
859Mapping ASTDiff::Impl::matchTopDown() const {
860  PriorityList L1(T1);
861  PriorityList L2(T2);
862
863  Mapping M(T1.getSize() + T2.getSize());
864
865  L1.push(T1.getRootId());
866  L2.push(T2.getRootId());
867
868  int Max1, Max2;
869  while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
870         Options.MinHeight) {
871    if (Max1 > Max2) {
872      for (NodeId Id : L1.pop())
873        L1.open(Id);
874      continue;
875    }
876    if (Max2 > Max1) {
877      for (NodeId Id : L2.pop())
878        L2.open(Id);
879      continue;
880    }
881    std::vector<NodeId> H1, H2;
882    H1 = L1.pop();
883    H2 = L2.pop();
884    for (NodeId Id1 : H1) {
885      for (NodeId Id2 : H2) {
886        if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
887          for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
888            M.link(Id1 + I, Id2 + I);
889        }
890      }
891    }
892    for (NodeId Id1 : H1) {
893      if (!M.hasSrc(Id1))
894        L1.open(Id1);
895    }
896    for (NodeId Id2 : H2) {
897      if (!M.hasDst(Id2))
898        L2.open(Id2);
899    }
900  }
901  return M;
902}
903
904ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
905                    const ComparisonOptions &Options)
906    : T1(T1), T2(T2), Options(Options) {
907  computeMapping();
908  computeChangeKinds(TheMapping);
909}
910
911void ASTDiff::Impl::computeMapping() {
912  TheMapping = matchTopDown();
913  if (Options.StopAfterTopDown)
914    return;
915  matchBottomUp(TheMapping);
916}
917
918void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
919  for (NodeId Id1 : T1) {
920    if (!M.hasSrc(Id1)) {
921      T1.getMutableNode(Id1).Change = Delete;
922      T1.getMutableNode(Id1).Shift -= 1;
923    }
924  }
925  for (NodeId Id2 : T2) {
926    if (!M.hasDst(Id2)) {
927      T2.getMutableNode(Id2).Change = Insert;
928      T2.getMutableNode(Id2).Shift -= 1;
929    }
930  }
931  for (NodeId Id1 : T1.NodesBfs) {
932    NodeId Id2 = M.getDst(Id1);
933    if (Id2.isInvalid())
934      continue;
935    if (!haveSameParents(M, Id1, Id2) ||
936        T1.findPositionInParent(Id1, true) !=
937            T2.findPositionInParent(Id2, true)) {
938      T1.getMutableNode(Id1).Shift -= 1;
939      T2.getMutableNode(Id2).Shift -= 1;
940    }
941  }
942  for (NodeId Id2 : T2.NodesBfs) {
943    NodeId Id1 = M.getSrc(Id2);
944    if (Id1.isInvalid())
945      continue;
946    Node &N1 = T1.getMutableNode(Id1);
947    Node &N2 = T2.getMutableNode(Id2);
948    if (Id1.isInvalid())
949      continue;
950    if (!haveSameParents(M, Id1, Id2) ||
951        T1.findPositionInParent(Id1, true) !=
952            T2.findPositionInParent(Id2, true)) {
953      N1.Change = N2.Change = Move;
954    }
955    if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
956      N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
957    }
958  }
959}
960
961ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
962                 const ComparisonOptions &Options)
963    : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
964
965ASTDiff::~ASTDiff() = default;
966
967NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
968  return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
969}
970
971SyntaxTree::SyntaxTree(ASTContext &AST)
972    : TreeImpl(llvm::make_unique<SyntaxTree::Impl>(
973          this, AST.getTranslationUnitDecl(), AST)) {}
974
975SyntaxTree::~SyntaxTree() = default;
976
977const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
978
979const Node &SyntaxTree::getNode(NodeId Id) const {
980  return TreeImpl->getNode(Id);
981}
982
983int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
984NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
985SyntaxTree::PreorderIterator SyntaxTree::begin() const {
986  return TreeImpl->begin();
987}
988SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
989
990int SyntaxTree::findPositionInParent(NodeId Id) const {
991  return TreeImpl->findPositionInParent(Id);
992}
993
994std::pair<unsigned, unsigned>
995SyntaxTree::getSourceRangeOffsets(const Node &N) const {
996  const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
997  SourceRange Range = N.ASTNode.getSourceRange();
998  SourceLocation BeginLoc = Range.getBegin();
999  SourceLocation EndLoc = Lexer::getLocForEndOfToken(
1000      Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1001  if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1002    if (ThisExpr->isImplicit())
1003      EndLoc = BeginLoc;
1004  }
1005  unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1006  unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1007  return {Begin, End};
1008}
1009
1010std::string SyntaxTree::getNodeValue(NodeId Id) const {
1011  return TreeImpl->getNodeValue(Id);
1012}
1013
1014std::string SyntaxTree::getNodeValue(const Node &N) const {
1015  return TreeImpl->getNodeValue(N);
1016}
1017
1018} // end namespace diff
1019} // end namespace clang
1020