ASTDiff.cpp revision 326941
1//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains definitons for the AST differencing interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Tooling/ASTDiff/ASTDiff.h"
15
16#include "clang/AST/RecursiveASTVisitor.h"
17#include "clang/Lex/Lexer.h"
18#include "llvm/ADT/PriorityQueue.h"
19
20#include <limits>
21#include <memory>
22#include <unordered_set>
23
24using namespace llvm;
25using namespace clang;
26
27namespace clang {
28namespace diff {
29
30namespace {
31/// Maps nodes of the left tree to ones on the right, and vice versa.
32class Mapping {
33public:
34  Mapping() = default;
35  Mapping(Mapping &&Other) = default;
36  Mapping &operator=(Mapping &&Other) = default;
37
38  Mapping(size_t Size) {
39    SrcToDst = llvm::make_unique<NodeId[]>(Size);
40    DstToSrc = llvm::make_unique<NodeId[]>(Size);
41  }
42
43  void link(NodeId Src, NodeId Dst) {
44    SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
45  }
46
47  NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
48  NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
49  bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
50  bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
51
52private:
53  std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
54};
55} // end anonymous namespace
56
57class ASTDiff::Impl {
58public:
59  SyntaxTree::Impl &T1, &T2;
60  Mapping TheMapping;
61
62  Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
63       const ComparisonOptions &Options);
64
65  /// Matches nodes one-by-one based on their similarity.
66  void computeMapping();
67
68  // Compute Change for each node based on similarity.
69  void computeChangeKinds(Mapping &M);
70
71  NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
72                   NodeId Id) const {
73    if (&*Tree == &T1)
74      return TheMapping.getDst(Id);
75    assert(&*Tree == &T2 && "Invalid tree.");
76    return TheMapping.getSrc(Id);
77  }
78
79private:
80  // Returns true if the two subtrees are identical.
81  bool identical(NodeId Id1, NodeId Id2) const;
82
83  // Returns false if the nodes must not be mached.
84  bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
85
86  // Returns true if the nodes' parents are matched.
87  bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
88
89  // Uses an optimal albeit slow algorithm to compute a mapping between two
90  // subtrees, but only if both have fewer nodes than MaxSize.
91  void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
92
93  // Computes the ratio of common descendants between the two nodes.
94  // Descendants are only considered to be equal when they are mapped in M.
95  double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
96
97  // Returns the node that has the highest degree of similarity.
98  NodeId findCandidate(const Mapping &M, NodeId Id1) const;
99
100  // Returns a mapping of identical subtrees.
101  Mapping matchTopDown() const;
102
103  // Tries to match any yet unmapped nodes, in a bottom-up fashion.
104  void matchBottomUp(Mapping &M) const;
105
106  const ComparisonOptions &Options;
107
108  friend class ZhangShashaMatcher;
109};
110
111/// Represents the AST of a TranslationUnit.
112class SyntaxTree::Impl {
113public:
114  Impl(SyntaxTree *Parent, ASTContext &AST);
115  /// Constructs a tree from an AST node.
116  Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
117  Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
118  template <class T>
119  Impl(SyntaxTree *Parent,
120       typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
121       ASTContext &AST)
122      : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
123  template <class T>
124  Impl(SyntaxTree *Parent,
125       typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
126       ASTContext &AST)
127      : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
128
129  SyntaxTree *Parent;
130  ASTContext &AST;
131  PrintingPolicy TypePP;
132  /// Nodes in preorder.
133  std::vector<Node> Nodes;
134  std::vector<NodeId> Leaves;
135  // Maps preorder indices to postorder ones.
136  std::vector<int> PostorderIds;
137  std::vector<NodeId> NodesBfs;
138
139  int getSize() const { return Nodes.size(); }
140  NodeId getRootId() const { return 0; }
141  PreorderIterator begin() const { return getRootId(); }
142  PreorderIterator end() const { return getSize(); }
143
144  const Node &getNode(NodeId Id) const { return Nodes[Id]; }
145  Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
146  bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
147  void addNode(Node &N) { Nodes.push_back(N); }
148  int getNumberOfDescendants(NodeId Id) const;
149  bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
150  int findPositionInParent(NodeId Id, bool Shifted = false) const;
151
152  std::string getRelativeName(const NamedDecl *ND,
153                              const DeclContext *Context) const;
154  std::string getRelativeName(const NamedDecl *ND) const;
155
156  std::string getNodeValue(NodeId Id) const;
157  std::string getNodeValue(const Node &Node) const;
158  std::string getDeclValue(const Decl *D) const;
159  std::string getStmtValue(const Stmt *S) const;
160
161private:
162  void initTree();
163  void setLeftMostDescendants();
164};
165
166static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
167static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
168static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
169  return !I->isWritten();
170}
171
172template <class T>
173static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
174  if (!N)
175    return true;
176  SourceLocation SLoc = N->getSourceRange().getBegin();
177  if (SLoc.isValid()) {
178    // Ignore everything from other files.
179    if (!SrcMgr.isInMainFile(SLoc))
180      return true;
181    // Ignore macros.
182    if (SLoc != SrcMgr.getSpellingLoc(SLoc))
183      return true;
184  }
185  return isSpecializedNodeExcluded(N);
186}
187
188namespace {
189// Sets Height, Parent and Children for each node.
190struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
191  int Id = 0, Depth = 0;
192  NodeId Parent;
193  SyntaxTree::Impl &Tree;
194
195  PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
196
197  template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
198    NodeId MyId = Id;
199    Tree.Nodes.emplace_back();
200    Node &N = Tree.getMutableNode(MyId);
201    N.Parent = Parent;
202    N.Depth = Depth;
203    N.ASTNode = DynTypedNode::create(*ASTNode);
204    assert(!N.ASTNode.getNodeKind().isNone() &&
205           "Expected nodes to have a valid kind.");
206    if (Parent.isValid()) {
207      Node &P = Tree.getMutableNode(Parent);
208      P.Children.push_back(MyId);
209    }
210    Parent = MyId;
211    ++Id;
212    ++Depth;
213    return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
214  }
215  void PostTraverse(std::tuple<NodeId, NodeId> State) {
216    NodeId MyId, PreviousParent;
217    std::tie(MyId, PreviousParent) = State;
218    assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
219    Parent = PreviousParent;
220    --Depth;
221    Node &N = Tree.getMutableNode(MyId);
222    N.RightMostDescendant = Id - 1;
223    assert(N.RightMostDescendant >= 0 &&
224           N.RightMostDescendant < Tree.getSize() &&
225           "Rightmost descendant must be a valid tree node.");
226    if (N.isLeaf())
227      Tree.Leaves.push_back(MyId);
228    N.Height = 1;
229    for (NodeId Child : N.Children)
230      N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
231  }
232  bool TraverseDecl(Decl *D) {
233    if (isNodeExcluded(Tree.AST.getSourceManager(), D))
234      return true;
235    auto SavedState = PreTraverse(D);
236    RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
237    PostTraverse(SavedState);
238    return true;
239  }
240  bool TraverseStmt(Stmt *S) {
241    if (S)
242      S = S->IgnoreImplicit();
243    if (isNodeExcluded(Tree.AST.getSourceManager(), S))
244      return true;
245    auto SavedState = PreTraverse(S);
246    RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
247    PostTraverse(SavedState);
248    return true;
249  }
250  bool TraverseType(QualType T) { return true; }
251  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
252    if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
253      return true;
254    auto SavedState = PreTraverse(Init);
255    RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
256    PostTraverse(SavedState);
257    return true;
258  }
259};
260} // end anonymous namespace
261
262SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
263    : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
264  TypePP.AnonymousTagLocations = false;
265}
266
267SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
268    : Impl(Parent, AST) {
269  PreorderVisitor PreorderWalker(*this);
270  PreorderWalker.TraverseDecl(N);
271  initTree();
272}
273
274SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
275    : Impl(Parent, AST) {
276  PreorderVisitor PreorderWalker(*this);
277  PreorderWalker.TraverseStmt(N);
278  initTree();
279}
280
281static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
282                                               NodeId Root) {
283  std::vector<NodeId> Postorder;
284  std::function<void(NodeId)> Traverse = [&](NodeId Id) {
285    const Node &N = Tree.getNode(Id);
286    for (NodeId Child : N.Children)
287      Traverse(Child);
288    Postorder.push_back(Id);
289  };
290  Traverse(Root);
291  return Postorder;
292}
293
294static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
295                                         NodeId Root) {
296  std::vector<NodeId> Ids;
297  size_t Expanded = 0;
298  Ids.push_back(Root);
299  while (Expanded < Ids.size())
300    for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
301      Ids.push_back(Child);
302  return Ids;
303}
304
305void SyntaxTree::Impl::initTree() {
306  setLeftMostDescendants();
307  int PostorderId = 0;
308  PostorderIds.resize(getSize());
309  std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
310    for (NodeId Child : getNode(Id).Children)
311      PostorderTraverse(Child);
312    PostorderIds[Id] = PostorderId;
313    ++PostorderId;
314  };
315  PostorderTraverse(getRootId());
316  NodesBfs = getSubtreeBfs(*this, getRootId());
317}
318
319void SyntaxTree::Impl::setLeftMostDescendants() {
320  for (NodeId Leaf : Leaves) {
321    getMutableNode(Leaf).LeftMostDescendant = Leaf;
322    NodeId Parent, Cur = Leaf;
323    while ((Parent = getNode(Cur).Parent).isValid() &&
324           getNode(Parent).Children[0] == Cur) {
325      Cur = Parent;
326      getMutableNode(Cur).LeftMostDescendant = Leaf;
327    }
328  }
329}
330
331int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
332  return getNode(Id).RightMostDescendant - Id + 1;
333}
334
335bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
336  return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
337}
338
339int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
340  NodeId Parent = getNode(Id).Parent;
341  if (Parent.isInvalid())
342    return 0;
343  const auto &Siblings = getNode(Parent).Children;
344  int Position = 0;
345  for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
346    if (Shifted)
347      Position += getNode(Siblings[I]).Shift;
348    if (Siblings[I] == Id) {
349      Position += I;
350      return Position;
351    }
352  }
353  llvm_unreachable("Node not found in parent's children.");
354}
355
356// Returns the qualified name of ND. If it is subordinate to Context,
357// then the prefix of the latter is removed from the returned value.
358std::string
359SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
360                                  const DeclContext *Context) const {
361  std::string Val = ND->getQualifiedNameAsString();
362  std::string ContextPrefix;
363  if (!Context)
364    return Val;
365  if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
366    ContextPrefix = Namespace->getQualifiedNameAsString();
367  else if (auto *Record = dyn_cast<RecordDecl>(Context))
368    ContextPrefix = Record->getQualifiedNameAsString();
369  else if (AST.getLangOpts().CPlusPlus11)
370    if (auto *Tag = dyn_cast<TagDecl>(Context))
371      ContextPrefix = Tag->getQualifiedNameAsString();
372  // Strip the qualifier, if Val refers to somthing in the current scope.
373  // But leave one leading ':' in place, so that we know that this is a
374  // relative path.
375  if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
376    Val = Val.substr(ContextPrefix.size() + 1);
377  return Val;
378}
379
380std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
381  return getRelativeName(ND, ND->getDeclContext());
382}
383
384static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
385                                                  const Stmt *S) {
386  while (S) {
387    const auto &Parents = AST.getParents(*S);
388    if (Parents.empty())
389      return nullptr;
390    const auto &P = Parents[0];
391    if (const auto *D = P.get<Decl>())
392      return D->getDeclContext();
393    S = P.get<Stmt>();
394  }
395  return nullptr;
396}
397
398static std::string getInitializerValue(const CXXCtorInitializer *Init,
399                                       const PrintingPolicy &TypePP) {
400  if (Init->isAnyMemberInitializer())
401    return Init->getAnyMember()->getName();
402  if (Init->isBaseInitializer())
403    return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
404  if (Init->isDelegatingInitializer())
405    return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
406  llvm_unreachable("Unknown initializer type");
407}
408
409std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
410  return getNodeValue(getNode(Id));
411}
412
413std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
414  const DynTypedNode &DTN = N.ASTNode;
415  if (auto *S = DTN.get<Stmt>())
416    return getStmtValue(S);
417  if (auto *D = DTN.get<Decl>())
418    return getDeclValue(D);
419  if (auto *Init = DTN.get<CXXCtorInitializer>())
420    return getInitializerValue(Init, TypePP);
421  llvm_unreachable("Fatal: unhandled AST node.\n");
422}
423
424std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
425  std::string Value;
426  if (auto *V = dyn_cast<ValueDecl>(D))
427    return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
428  if (auto *N = dyn_cast<NamedDecl>(D))
429    Value += getRelativeName(N) + ";";
430  if (auto *T = dyn_cast<TypedefNameDecl>(D))
431    return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
432  if (auto *T = dyn_cast<TypeDecl>(D))
433    if (T->getTypeForDecl())
434      Value +=
435          T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
436          ";";
437  if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
438    return U->getNominatedNamespace()->getName();
439  if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
440    CharSourceRange Range(A->getSourceRange(), false);
441    return Lexer::getSourceText(Range, AST.getSourceManager(),
442                                AST.getLangOpts());
443  }
444  return Value;
445}
446
447std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
448  if (auto *U = dyn_cast<UnaryOperator>(S))
449    return UnaryOperator::getOpcodeStr(U->getOpcode());
450  if (auto *B = dyn_cast<BinaryOperator>(S))
451    return B->getOpcodeStr();
452  if (auto *M = dyn_cast<MemberExpr>(S))
453    return getRelativeName(M->getMemberDecl());
454  if (auto *I = dyn_cast<IntegerLiteral>(S)) {
455    SmallString<256> Str;
456    I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
457    return Str.str();
458  }
459  if (auto *F = dyn_cast<FloatingLiteral>(S)) {
460    SmallString<256> Str;
461    F->getValue().toString(Str);
462    return Str.str();
463  }
464  if (auto *D = dyn_cast<DeclRefExpr>(S))
465    return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
466  if (auto *String = dyn_cast<StringLiteral>(S))
467    return String->getString();
468  if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
469    return B->getValue() ? "true" : "false";
470  return "";
471}
472
473/// Identifies a node in a subtree by its postorder offset, starting at 1.
474struct SNodeId {
475  int Id = 0;
476
477  explicit SNodeId(int Id) : Id(Id) {}
478  explicit SNodeId() = default;
479
480  operator int() const { return Id; }
481  SNodeId &operator++() { return ++Id, *this; }
482  SNodeId &operator--() { return --Id, *this; }
483  SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
484};
485
486class Subtree {
487private:
488  /// The parent tree.
489  const SyntaxTree::Impl &Tree;
490  /// Maps SNodeIds to original ids.
491  std::vector<NodeId> RootIds;
492  /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
493  std::vector<SNodeId> LeftMostDescendants;
494
495public:
496  std::vector<SNodeId> KeyRoots;
497
498  Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
499    RootIds = getSubtreePostorder(Tree, SubtreeRoot);
500    int NumLeaves = setLeftMostDescendants();
501    computeKeyRoots(NumLeaves);
502  }
503  int getSize() const { return RootIds.size(); }
504  NodeId getIdInRoot(SNodeId Id) const {
505    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
506    return RootIds[Id - 1];
507  }
508  const Node &getNode(SNodeId Id) const {
509    return Tree.getNode(getIdInRoot(Id));
510  }
511  SNodeId getLeftMostDescendant(SNodeId Id) const {
512    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
513    return LeftMostDescendants[Id - 1];
514  }
515  /// Returns the postorder index of the leftmost descendant in the subtree.
516  NodeId getPostorderOffset() const {
517    return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
518  }
519  std::string getNodeValue(SNodeId Id) const {
520    return Tree.getNodeValue(getIdInRoot(Id));
521  }
522
523private:
524  /// Returns the number of leafs in the subtree.
525  int setLeftMostDescendants() {
526    int NumLeaves = 0;
527    LeftMostDescendants.resize(getSize());
528    for (int I = 0; I < getSize(); ++I) {
529      SNodeId SI(I + 1);
530      const Node &N = getNode(SI);
531      NumLeaves += N.isLeaf();
532      assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
533             "Postorder traversal in subtree should correspond to traversal in "
534             "the root tree by a constant offset.");
535      LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
536                                       getPostorderOffset());
537    }
538    return NumLeaves;
539  }
540  void computeKeyRoots(int Leaves) {
541    KeyRoots.resize(Leaves);
542    std::unordered_set<int> Visited;
543    int K = Leaves - 1;
544    for (SNodeId I(getSize()); I > 0; --I) {
545      SNodeId LeftDesc = getLeftMostDescendant(I);
546      if (Visited.count(LeftDesc))
547        continue;
548      assert(K >= 0 && "K should be non-negative");
549      KeyRoots[K] = I;
550      Visited.insert(LeftDesc);
551      --K;
552    }
553  }
554};
555
556/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
557/// Computes an optimal mapping between two trees using only insertion,
558/// deletion and update as edit actions (similar to the Levenshtein distance).
559class ZhangShashaMatcher {
560  const ASTDiff::Impl &DiffImpl;
561  Subtree S1;
562  Subtree S2;
563  std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
564
565public:
566  ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
567                     const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
568      : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
569    TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
570        size_t(S1.getSize()) + 1);
571    ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
572        size_t(S1.getSize()) + 1);
573    for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
574      TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
575      ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
576    }
577  }
578
579  std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
580    std::vector<std::pair<NodeId, NodeId>> Matches;
581    std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
582
583    computeTreeDist();
584
585    bool RootNodePair = true;
586
587    TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
588
589    while (!TreePairs.empty()) {
590      SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
591      std::tie(LastRow, LastCol) = TreePairs.back();
592      TreePairs.pop_back();
593
594      if (!RootNodePair) {
595        computeForestDist(LastRow, LastCol);
596      }
597
598      RootNodePair = false;
599
600      FirstRow = S1.getLeftMostDescendant(LastRow);
601      FirstCol = S2.getLeftMostDescendant(LastCol);
602
603      Row = LastRow;
604      Col = LastCol;
605
606      while (Row > FirstRow || Col > FirstCol) {
607        if (Row > FirstRow &&
608            ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
609          --Row;
610        } else if (Col > FirstCol &&
611                   ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
612          --Col;
613        } else {
614          SNodeId LMD1 = S1.getLeftMostDescendant(Row);
615          SNodeId LMD2 = S2.getLeftMostDescendant(Col);
616          if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
617              LMD2 == S2.getLeftMostDescendant(LastCol)) {
618            NodeId Id1 = S1.getIdInRoot(Row);
619            NodeId Id2 = S2.getIdInRoot(Col);
620            assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
621                   "These nodes must not be matched.");
622            Matches.emplace_back(Id1, Id2);
623            --Row;
624            --Col;
625          } else {
626            TreePairs.emplace_back(Row, Col);
627            Row = LMD1;
628            Col = LMD2;
629          }
630        }
631      }
632    }
633    return Matches;
634  }
635
636private:
637  /// We use a simple cost model for edit actions, which seems good enough.
638  /// Simple cost model for edit actions. This seems to make the matching
639  /// algorithm perform reasonably well.
640  /// The values range between 0 and 1, or infinity if this edit action should
641  /// always be avoided.
642  static constexpr double DeletionCost = 1;
643  static constexpr double InsertionCost = 1;
644
645  double getUpdateCost(SNodeId Id1, SNodeId Id2) {
646    if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
647      return std::numeric_limits<double>::max();
648    return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
649  }
650
651  void computeTreeDist() {
652    for (SNodeId Id1 : S1.KeyRoots)
653      for (SNodeId Id2 : S2.KeyRoots)
654        computeForestDist(Id1, Id2);
655  }
656
657  void computeForestDist(SNodeId Id1, SNodeId Id2) {
658    assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
659    SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
660    SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
661
662    ForestDist[LMD1][LMD2] = 0;
663    for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
664      ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
665      for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
666        ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
667        SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
668        SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
669        if (DLMD1 == LMD1 && DLMD2 == LMD2) {
670          double UpdateCost = getUpdateCost(D1, D2);
671          ForestDist[D1][D2] =
672              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
673                        ForestDist[D1][D2 - 1] + InsertionCost,
674                        ForestDist[D1 - 1][D2 - 1] + UpdateCost});
675          TreeDist[D1][D2] = ForestDist[D1][D2];
676        } else {
677          ForestDist[D1][D2] =
678              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
679                        ForestDist[D1][D2 - 1] + InsertionCost,
680                        ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
681        }
682      }
683    }
684  }
685};
686
687ast_type_traits::ASTNodeKind Node::getType() const {
688  return ASTNode.getNodeKind();
689}
690
691StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
692
693llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
694  if (auto *ND = ASTNode.get<NamedDecl>()) {
695    if (ND->getDeclName().isIdentifier())
696      return ND->getQualifiedNameAsString();
697  }
698  return llvm::None;
699}
700
701llvm::Optional<StringRef> Node::getIdentifier() const {
702  if (auto *ND = ASTNode.get<NamedDecl>()) {
703    if (ND->getDeclName().isIdentifier())
704      return ND->getName();
705  }
706  return llvm::None;
707}
708
709namespace {
710// Compares nodes by their depth.
711struct HeightLess {
712  const SyntaxTree::Impl &Tree;
713  HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
714  bool operator()(NodeId Id1, NodeId Id2) const {
715    return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
716  }
717};
718} // end anonymous namespace
719
720namespace {
721// Priority queue for nodes, sorted descendingly by their height.
722class PriorityList {
723  const SyntaxTree::Impl &Tree;
724  HeightLess Cmp;
725  std::vector<NodeId> Container;
726  PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
727
728public:
729  PriorityList(const SyntaxTree::Impl &Tree)
730      : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
731
732  void push(NodeId id) { List.push(id); }
733
734  std::vector<NodeId> pop() {
735    int Max = peekMax();
736    std::vector<NodeId> Result;
737    if (Max == 0)
738      return Result;
739    while (peekMax() == Max) {
740      Result.push_back(List.top());
741      List.pop();
742    }
743    // TODO this is here to get a stable output, not a good heuristic
744    std::sort(Result.begin(), Result.end());
745    return Result;
746  }
747  int peekMax() const {
748    if (List.empty())
749      return 0;
750    return Tree.getNode(List.top()).Height;
751  }
752  void open(NodeId Id) {
753    for (NodeId Child : Tree.getNode(Id).Children)
754      push(Child);
755  }
756};
757} // end anonymous namespace
758
759bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
760  const Node &N1 = T1.getNode(Id1);
761  const Node &N2 = T2.getNode(Id2);
762  if (N1.Children.size() != N2.Children.size() ||
763      !isMatchingPossible(Id1, Id2) ||
764      T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
765    return false;
766  for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
767    if (!identical(N1.Children[Id], N2.Children[Id]))
768      return false;
769  return true;
770}
771
772bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
773  return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
774}
775
776bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
777                                    NodeId Id2) const {
778  NodeId P1 = T1.getNode(Id1).Parent;
779  NodeId P2 = T2.getNode(Id2).Parent;
780  return (P1.isInvalid() && P2.isInvalid()) ||
781         (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
782}
783
784void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
785                                      NodeId Id2) const {
786  if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
787      Options.MaxSize)
788    return;
789  ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
790  std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
791  for (const auto Tuple : R) {
792    NodeId Src = Tuple.first;
793    NodeId Dst = Tuple.second;
794    if (!M.hasSrc(Src) && !M.hasDst(Dst))
795      M.link(Src, Dst);
796  }
797}
798
799double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
800                                           NodeId Id2) const {
801  int CommonDescendants = 0;
802  const Node &N1 = T1.getNode(Id1);
803  // Count the common descendants, excluding the subtree root.
804  for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
805    NodeId Dst = M.getDst(Src);
806    CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
807  }
808  // We need to subtract 1 to get the number of descendants excluding the root.
809  double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
810                       T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
811  // CommonDescendants is less than the size of one subtree.
812  assert(Denominator >= 0 && "Expected non-negative denominator.");
813  if (Denominator == 0)
814    return 0;
815  return CommonDescendants / Denominator;
816}
817
818NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
819  NodeId Candidate;
820  double HighestSimilarity = 0.0;
821  for (NodeId Id2 : T2) {
822    if (!isMatchingPossible(Id1, Id2))
823      continue;
824    if (M.hasDst(Id2))
825      continue;
826    double Similarity = getJaccardSimilarity(M, Id1, Id2);
827    if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
828      HighestSimilarity = Similarity;
829      Candidate = Id2;
830    }
831  }
832  return Candidate;
833}
834
835void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
836  std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
837  for (NodeId Id1 : Postorder) {
838    if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
839        !M.hasDst(T2.getRootId())) {
840      if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
841        M.link(T1.getRootId(), T2.getRootId());
842        addOptimalMapping(M, T1.getRootId(), T2.getRootId());
843      }
844      break;
845    }
846    bool Matched = M.hasSrc(Id1);
847    const Node &N1 = T1.getNode(Id1);
848    bool MatchedChildren =
849        std::any_of(N1.Children.begin(), N1.Children.end(),
850                    [&](NodeId Child) { return M.hasSrc(Child); });
851    if (Matched || !MatchedChildren)
852      continue;
853    NodeId Id2 = findCandidate(M, Id1);
854    if (Id2.isValid()) {
855      M.link(Id1, Id2);
856      addOptimalMapping(M, Id1, Id2);
857    }
858  }
859}
860
861Mapping ASTDiff::Impl::matchTopDown() const {
862  PriorityList L1(T1);
863  PriorityList L2(T2);
864
865  Mapping M(T1.getSize() + T2.getSize());
866
867  L1.push(T1.getRootId());
868  L2.push(T2.getRootId());
869
870  int Max1, Max2;
871  while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
872         Options.MinHeight) {
873    if (Max1 > Max2) {
874      for (NodeId Id : L1.pop())
875        L1.open(Id);
876      continue;
877    }
878    if (Max2 > Max1) {
879      for (NodeId Id : L2.pop())
880        L2.open(Id);
881      continue;
882    }
883    std::vector<NodeId> H1, H2;
884    H1 = L1.pop();
885    H2 = L2.pop();
886    for (NodeId Id1 : H1) {
887      for (NodeId Id2 : H2) {
888        if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
889          for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
890            M.link(Id1 + I, Id2 + I);
891        }
892      }
893    }
894    for (NodeId Id1 : H1) {
895      if (!M.hasSrc(Id1))
896        L1.open(Id1);
897    }
898    for (NodeId Id2 : H2) {
899      if (!M.hasDst(Id2))
900        L2.open(Id2);
901    }
902  }
903  return M;
904}
905
906ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
907                    const ComparisonOptions &Options)
908    : T1(T1), T2(T2), Options(Options) {
909  computeMapping();
910  computeChangeKinds(TheMapping);
911}
912
913void ASTDiff::Impl::computeMapping() {
914  TheMapping = matchTopDown();
915  if (Options.StopAfterTopDown)
916    return;
917  matchBottomUp(TheMapping);
918}
919
920void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
921  for (NodeId Id1 : T1) {
922    if (!M.hasSrc(Id1)) {
923      T1.getMutableNode(Id1).Change = Delete;
924      T1.getMutableNode(Id1).Shift -= 1;
925    }
926  }
927  for (NodeId Id2 : T2) {
928    if (!M.hasDst(Id2)) {
929      T2.getMutableNode(Id2).Change = Insert;
930      T2.getMutableNode(Id2).Shift -= 1;
931    }
932  }
933  for (NodeId Id1 : T1.NodesBfs) {
934    NodeId Id2 = M.getDst(Id1);
935    if (Id2.isInvalid())
936      continue;
937    if (!haveSameParents(M, Id1, Id2) ||
938        T1.findPositionInParent(Id1, true) !=
939            T2.findPositionInParent(Id2, true)) {
940      T1.getMutableNode(Id1).Shift -= 1;
941      T2.getMutableNode(Id2).Shift -= 1;
942    }
943  }
944  for (NodeId Id2 : T2.NodesBfs) {
945    NodeId Id1 = M.getSrc(Id2);
946    if (Id1.isInvalid())
947      continue;
948    Node &N1 = T1.getMutableNode(Id1);
949    Node &N2 = T2.getMutableNode(Id2);
950    if (Id1.isInvalid())
951      continue;
952    if (!haveSameParents(M, Id1, Id2) ||
953        T1.findPositionInParent(Id1, true) !=
954            T2.findPositionInParent(Id2, true)) {
955      N1.Change = N2.Change = Move;
956    }
957    if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
958      N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
959    }
960  }
961}
962
963ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
964                 const ComparisonOptions &Options)
965    : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
966
967ASTDiff::~ASTDiff() = default;
968
969NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
970  return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
971}
972
973SyntaxTree::SyntaxTree(ASTContext &AST)
974    : TreeImpl(llvm::make_unique<SyntaxTree::Impl>(
975          this, AST.getTranslationUnitDecl(), AST)) {}
976
977SyntaxTree::~SyntaxTree() = default;
978
979const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
980
981const Node &SyntaxTree::getNode(NodeId Id) const {
982  return TreeImpl->getNode(Id);
983}
984
985int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
986NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
987SyntaxTree::PreorderIterator SyntaxTree::begin() const {
988  return TreeImpl->begin();
989}
990SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
991
992int SyntaxTree::findPositionInParent(NodeId Id) const {
993  return TreeImpl->findPositionInParent(Id);
994}
995
996std::pair<unsigned, unsigned>
997SyntaxTree::getSourceRangeOffsets(const Node &N) const {
998  const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
999  SourceRange Range = N.ASTNode.getSourceRange();
1000  SourceLocation BeginLoc = Range.getBegin();
1001  SourceLocation EndLoc = Lexer::getLocForEndOfToken(
1002      Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1003  if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1004    if (ThisExpr->isImplicit())
1005      EndLoc = BeginLoc;
1006  }
1007  unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1008  unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1009  return {Begin, End};
1010}
1011
1012std::string SyntaxTree::getNodeValue(NodeId Id) const {
1013  return TreeImpl->getNodeValue(Id);
1014}
1015
1016std::string SyntaxTree::getNodeValue(const Node &N) const {
1017  return TreeImpl->getNodeValue(N);
1018}
1019
1020} // end namespace diff
1021} // end namespace clang
1022