RegionStore.cpp revision 360784
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a basic region store model. In this model, we do have field
10// sensitivity. But we assume nothing about the heap shape. So recursive data
11// structures are largely ignored. Basically we do 1-limiting analysis.
12// Parameter pointers are assumed with no aliasing. Pointee objects of
13// parameters are created lazily.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/ASTMatchers/ASTMatchFinder.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisDeclContext.h"
22#include "clang/Basic/JsonSupport.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
29#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/Support/raw_ostream.h"
33#include <utility>
34
35using namespace clang;
36using namespace ento;
37
38//===----------------------------------------------------------------------===//
39// Representation of binding keys.
40//===----------------------------------------------------------------------===//
41
42namespace {
43class BindingKey {
44public:
45  enum Kind { Default = 0x0, Direct = 0x1 };
46private:
47  enum { Symbolic = 0x2 };
48
49  llvm::PointerIntPair<const MemRegion *, 2> P;
50  uint64_t Data;
51
52  /// Create a key for a binding to region \p r, which has a symbolic offset
53  /// from region \p Base.
54  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56    assert(r && Base && "Must have known regions.");
57    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58  }
59
60  /// Create a key for a binding at \p offset from base region \p r.
61  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62    : P(r, k), Data(offset) {
63    assert(r && "Must have known regions.");
64    assert(getOffset() == offset && "Failed to store offset");
65    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
66            isa <CXXDerivedObjectRegion>(r)) &&
67           "Not a base");
68  }
69public:
70
71  bool isDirect() const { return P.getInt() & Direct; }
72  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73
74  const MemRegion *getRegion() const { return P.getPointer(); }
75  uint64_t getOffset() const {
76    assert(!hasSymbolicOffset());
77    return Data;
78  }
79
80  const SubRegion *getConcreteOffsetRegion() const {
81    assert(hasSymbolicOffset());
82    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83  }
84
85  const MemRegion *getBaseRegion() const {
86    if (hasSymbolicOffset())
87      return getConcreteOffsetRegion()->getBaseRegion();
88    return getRegion()->getBaseRegion();
89  }
90
91  void Profile(llvm::FoldingSetNodeID& ID) const {
92    ID.AddPointer(P.getOpaqueValue());
93    ID.AddInteger(Data);
94  }
95
96  static BindingKey Make(const MemRegion *R, Kind k);
97
98  bool operator<(const BindingKey &X) const {
99    if (P.getOpaqueValue() < X.P.getOpaqueValue())
100      return true;
101    if (P.getOpaqueValue() > X.P.getOpaqueValue())
102      return false;
103    return Data < X.Data;
104  }
105
106  bool operator==(const BindingKey &X) const {
107    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108           Data == X.Data;
109  }
110
111  LLVM_DUMP_METHOD void dump() const;
112};
113} // end anonymous namespace
114
115BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116  const RegionOffset &RO = R->getAsOffset();
117  if (RO.hasSymbolicOffset())
118    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119
120  return BindingKey(RO.getRegion(), RO.getOffset(), k);
121}
122
123namespace llvm {
124static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126      << "\", \"offset\": ";
127
128  if (!K.hasSymbolicOffset())
129    Out << K.getOffset();
130  else
131    Out << "null";
132
133  return Out;
134}
135
136} // namespace llvm
137
138#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139void BindingKey::dump() const { llvm::errs() << *this; }
140#endif
141
142//===----------------------------------------------------------------------===//
143// Actual Store type.
144//===----------------------------------------------------------------------===//
145
146typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148typedef std::pair<BindingKey, SVal> BindingPair;
149
150typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151        RegionBindings;
152
153namespace {
154class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                 ClusterBindings> {
156  ClusterBindings::Factory *CBFactory;
157
158  // This flag indicates whether the current bindings are within the analysis
159  // that has started from main(). It affects how we perform loads from
160  // global variables that have initializers: if we have observed the
161  // program execution from the start and we know that these variables
162  // have not been overwritten yet, we can be sure that their initializers
163  // are still relevant. This flag never gets changed when the bindings are
164  // updated, so it could potentially be moved into RegionStoreManager
165  // (as if it's the same bindings but a different loading procedure)
166  // however that would have made the manager needlessly stateful.
167  bool IsMainAnalysis;
168
169public:
170  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171          ParentTy;
172
173  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                    const RegionBindings::TreeTy *T,
175                    RegionBindings::TreeTy::Factory *F,
176                    bool IsMainAnalysis)
177      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179
180  RegionBindingsRef(const ParentTy &P,
181                    ClusterBindings::Factory &CBFactory,
182                    bool IsMainAnalysis)
183      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185
186  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                             *CBFactory, IsMainAnalysis);
189  }
190
191  RegionBindingsRef remove(key_type_ref K) const {
192    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                             *CBFactory, IsMainAnalysis);
194  }
195
196  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197
198  RegionBindingsRef addBinding(const MemRegion *R,
199                               BindingKey::Kind k, SVal V) const;
200
201  const SVal *lookup(BindingKey K) const;
202  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204
205  RegionBindingsRef removeBinding(BindingKey K);
206
207  RegionBindingsRef removeBinding(const MemRegion *R,
208                                  BindingKey::Kind k);
209
210  RegionBindingsRef removeBinding(const MemRegion *R) {
211    return removeBinding(R, BindingKey::Direct).
212           removeBinding(R, BindingKey::Default);
213  }
214
215  Optional<SVal> getDirectBinding(const MemRegion *R) const;
216
217  /// getDefaultBinding - Returns an SVal* representing an optional default
218  ///  binding associated with a region and its subregions.
219  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220
221  /// Return the internal tree as a Store.
222  Store asStore() const {
223    llvm::PointerIntPair<Store, 1, bool> Ptr = {
224        asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225    return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226  }
227
228  bool isMainAnalysis() const {
229    return IsMainAnalysis;
230  }
231
232  void printJson(raw_ostream &Out, const char *NL = "\n",
233                 unsigned int Space = 0, bool IsDot = false) const {
234    for (iterator I = begin(); I != end(); ++I) {
235      // TODO: We might need a .printJson for I.getKey() as well.
236      Indent(Out, Space, IsDot)
237          << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238          << (const void *)I.getKey() << "\", \"items\": [" << NL;
239
240      ++Space;
241      const ClusterBindings &CB = I.getData();
242      for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243        Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244        CI.getData().printJson(Out, /*AddQuotes=*/true);
245        Out << " }";
246        if (std::next(CI) != CB.end())
247          Out << ',';
248        Out << NL;
249      }
250
251      --Space;
252      Indent(Out, Space, IsDot) << "]}";
253      if (std::next(I) != end())
254        Out << ',';
255      Out << NL;
256    }
257  }
258
259  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260};
261} // end anonymous namespace
262
263typedef const RegionBindingsRef& RegionBindingsConstRef;
264
265Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267}
268
269Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270  return Optional<SVal>::create(lookup(R, BindingKey::Default));
271}
272
273RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274  const MemRegion *Base = K.getBaseRegion();
275
276  const ClusterBindings *ExistingCluster = lookup(Base);
277  ClusterBindings Cluster =
278      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279
280  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281  return add(Base, NewCluster);
282}
283
284
285RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286                                                BindingKey::Kind k,
287                                                SVal V) const {
288  return addBinding(BindingKey::Make(R, k), V);
289}
290
291const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293  if (!Cluster)
294    return nullptr;
295  return Cluster->lookup(K);
296}
297
298const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299                                      BindingKey::Kind k) const {
300  return lookup(BindingKey::Make(R, k));
301}
302
303RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304  const MemRegion *Base = K.getBaseRegion();
305  const ClusterBindings *Cluster = lookup(Base);
306  if (!Cluster)
307    return *this;
308
309  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310  if (NewCluster.isEmpty())
311    return remove(Base);
312  return add(Base, NewCluster);
313}
314
315RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316                                                BindingKey::Kind k){
317  return removeBinding(BindingKey::Make(R, k));
318}
319
320//===----------------------------------------------------------------------===//
321// Fine-grained control of RegionStoreManager.
322//===----------------------------------------------------------------------===//
323
324namespace {
325struct minimal_features_tag {};
326struct maximal_features_tag {};
327
328class RegionStoreFeatures {
329  bool SupportsFields;
330public:
331  RegionStoreFeatures(minimal_features_tag) :
332    SupportsFields(false) {}
333
334  RegionStoreFeatures(maximal_features_tag) :
335    SupportsFields(true) {}
336
337  void enableFields(bool t) { SupportsFields = t; }
338
339  bool supportsFields() const { return SupportsFields; }
340};
341}
342
343//===----------------------------------------------------------------------===//
344// Main RegionStore logic.
345//===----------------------------------------------------------------------===//
346
347namespace {
348class InvalidateRegionsWorker;
349
350class RegionStoreManager : public StoreManager {
351public:
352  const RegionStoreFeatures Features;
353
354  RegionBindings::Factory RBFactory;
355  mutable ClusterBindings::Factory CBFactory;
356
357  typedef std::vector<SVal> SValListTy;
358private:
359  typedef llvm::DenseMap<const LazyCompoundValData *,
360                         SValListTy> LazyBindingsMapTy;
361  LazyBindingsMapTy LazyBindingsMap;
362
363  /// The largest number of fields a struct can have and still be
364  /// considered "small".
365  ///
366  /// This is currently used to decide whether or not it is worth "forcing" a
367  /// LazyCompoundVal on bind.
368  ///
369  /// This is controlled by 'region-store-small-struct-limit' option.
370  /// To disable all small-struct-dependent behavior, set the option to "0".
371  unsigned SmallStructLimit;
372
373  /// A helper used to populate the work list with the given set of
374  /// regions.
375  void populateWorkList(InvalidateRegionsWorker &W,
376                        ArrayRef<SVal> Values,
377                        InvalidatedRegions *TopLevelRegions);
378
379public:
380  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
381    : StoreManager(mgr), Features(f),
382      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
383      SmallStructLimit(0) {
384    SubEngine &Eng = StateMgr.getOwningEngine();
385    AnalyzerOptions &Options = Eng.getAnalysisManager().options;
386    SmallStructLimit = Options.RegionStoreSmallStructLimit;
387  }
388
389
390  /// setImplicitDefaultValue - Set the default binding for the provided
391  ///  MemRegion to the value implicitly defined for compound literals when
392  ///  the value is not specified.
393  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
394                                            const MemRegion *R, QualType T);
395
396  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
397  ///  type.  'Array' represents the lvalue of the array being decayed
398  ///  to a pointer, and the returned SVal represents the decayed
399  ///  version of that lvalue (i.e., a pointer to the first element of
400  ///  the array).  This is called by ExprEngine when evaluating
401  ///  casts from arrays to pointers.
402  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
403
404  /// Creates the Store that correctly represents memory contents before
405  /// the beginning of the analysis of the given top-level stack frame.
406  StoreRef getInitialStore(const LocationContext *InitLoc) override {
407    bool IsMainAnalysis = false;
408    if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
409      IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
410    return StoreRef(RegionBindingsRef(
411        RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
412        CBFactory, IsMainAnalysis).asStore(), *this);
413  }
414
415  //===-------------------------------------------------------------------===//
416  // Binding values to regions.
417  //===-------------------------------------------------------------------===//
418  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
419                                           const Expr *Ex,
420                                           unsigned Count,
421                                           const LocationContext *LCtx,
422                                           RegionBindingsRef B,
423                                           InvalidatedRegions *Invalidated);
424
425  StoreRef invalidateRegions(Store store,
426                             ArrayRef<SVal> Values,
427                             const Expr *E, unsigned Count,
428                             const LocationContext *LCtx,
429                             const CallEvent *Call,
430                             InvalidatedSymbols &IS,
431                             RegionAndSymbolInvalidationTraits &ITraits,
432                             InvalidatedRegions *Invalidated,
433                             InvalidatedRegions *InvalidatedTopLevel) override;
434
435  bool scanReachableSymbols(Store S, const MemRegion *R,
436                            ScanReachableSymbols &Callbacks) override;
437
438  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
439                                            const SubRegion *R);
440
441public: // Part of public interface to class.
442
443  StoreRef Bind(Store store, Loc LV, SVal V) override {
444    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
445  }
446
447  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
448
449  // BindDefaultInitial is only used to initialize a region with
450  // a default value.
451  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
452                              SVal V) override {
453    RegionBindingsRef B = getRegionBindings(store);
454    // Use other APIs when you have to wipe the region that was initialized
455    // earlier.
456    assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
457           "Double initialization!");
458    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
459    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
460  }
461
462  // BindDefaultZero is used for zeroing constructors that may accidentally
463  // overwrite existing bindings.
464  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
465    // FIXME: The offsets of empty bases can be tricky because of
466    // of the so called "empty base class optimization".
467    // If a base class has been optimized out
468    // we should not try to create a binding, otherwise we should.
469    // Unfortunately, at the moment ASTRecordLayout doesn't expose
470    // the actual sizes of the empty bases
471    // and trying to infer them from offsets/alignments
472    // seems to be error-prone and non-trivial because of the trailing padding.
473    // As a temporary mitigation we don't create bindings for empty bases.
474    if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
475      if (BR->getDecl()->isEmpty())
476        return StoreRef(store, *this);
477
478    RegionBindingsRef B = getRegionBindings(store);
479    SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
480    B = removeSubRegionBindings(B, cast<SubRegion>(R));
481    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
482    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
483  }
484
485  /// Attempt to extract the fields of \p LCV and bind them to the struct region
486  /// \p R.
487  ///
488  /// This path is used when it seems advantageous to "force" loading the values
489  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
490  /// than using a Default binding at the base of the entire region. This is a
491  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
492  ///
493  /// \returns The updated store bindings, or \c None if binding non-lazily
494  ///          would be too expensive.
495  Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
496                                                 const TypedValueRegion *R,
497                                                 const RecordDecl *RD,
498                                                 nonloc::LazyCompoundVal LCV);
499
500  /// BindStruct - Bind a compound value to a structure.
501  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
502                               const TypedValueRegion* R, SVal V);
503
504  /// BindVector - Bind a compound value to a vector.
505  RegionBindingsRef bindVector(RegionBindingsConstRef B,
506                               const TypedValueRegion* R, SVal V);
507
508  RegionBindingsRef bindArray(RegionBindingsConstRef B,
509                              const TypedValueRegion* R,
510                              SVal V);
511
512  /// Clears out all bindings in the given region and assigns a new value
513  /// as a Default binding.
514  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
515                                  const TypedRegion *R,
516                                  SVal DefaultVal);
517
518  /// Create a new store with the specified binding removed.
519  /// \param ST the original store, that is the basis for the new store.
520  /// \param L the location whose binding should be removed.
521  StoreRef killBinding(Store ST, Loc L) override;
522
523  void incrementReferenceCount(Store store) override {
524    getRegionBindings(store).manualRetain();
525  }
526
527  /// If the StoreManager supports it, decrement the reference count of
528  /// the specified Store object.  If the reference count hits 0, the memory
529  /// associated with the object is recycled.
530  void decrementReferenceCount(Store store) override {
531    getRegionBindings(store).manualRelease();
532  }
533
534  bool includedInBindings(Store store, const MemRegion *region) const override;
535
536  /// Return the value bound to specified location in a given state.
537  ///
538  /// The high level logic for this method is this:
539  /// getBinding (L)
540  ///   if L has binding
541  ///     return L's binding
542  ///   else if L is in killset
543  ///     return unknown
544  ///   else
545  ///     if L is on stack or heap
546  ///       return undefined
547  ///     else
548  ///       return symbolic
549  SVal getBinding(Store S, Loc L, QualType T) override {
550    return getBinding(getRegionBindings(S), L, T);
551  }
552
553  Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
554    RegionBindingsRef B = getRegionBindings(S);
555    // Default bindings are always applied over a base region so look up the
556    // base region's default binding, otherwise the lookup will fail when R
557    // is at an offset from R->getBaseRegion().
558    return B.getDefaultBinding(R->getBaseRegion());
559  }
560
561  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
562
563  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
564
565  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
566
567  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
568
569  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
570
571  SVal getBindingForLazySymbol(const TypedValueRegion *R);
572
573  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
574                                         const TypedValueRegion *R,
575                                         QualType Ty);
576
577  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
578                      RegionBindingsRef LazyBinding);
579
580  /// Get bindings for the values in a struct and return a CompoundVal, used
581  /// when doing struct copy:
582  /// struct s x, y;
583  /// x = y;
584  /// y's value is retrieved by this method.
585  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
586  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
587  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
588
589  /// Used to lazily generate derived symbols for bindings that are defined
590  /// implicitly by default bindings in a super region.
591  ///
592  /// Note that callers may need to specially handle LazyCompoundVals, which
593  /// are returned as is in case the caller needs to treat them differently.
594  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
595                                                  const MemRegion *superR,
596                                                  const TypedValueRegion *R,
597                                                  QualType Ty);
598
599  /// Get the state and region whose binding this region \p R corresponds to.
600  ///
601  /// If there is no lazy binding for \p R, the returned value will have a null
602  /// \c second. Note that a null pointer can represents a valid Store.
603  std::pair<Store, const SubRegion *>
604  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
605                  const SubRegion *originalRegion);
606
607  /// Returns the cached set of interesting SVals contained within a lazy
608  /// binding.
609  ///
610  /// The precise value of "interesting" is determined for the purposes of
611  /// RegionStore's internal analysis. It must always contain all regions and
612  /// symbols, but may omit constants and other kinds of SVal.
613  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
614
615  //===------------------------------------------------------------------===//
616  // State pruning.
617  //===------------------------------------------------------------------===//
618
619  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
620  ///  It returns a new Store with these values removed.
621  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
622                              SymbolReaper& SymReaper) override;
623
624  //===------------------------------------------------------------------===//
625  // Region "extents".
626  //===------------------------------------------------------------------===//
627
628  // FIXME: This method will soon be eliminated; see the note in Store.h.
629  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
630                                         const MemRegion* R,
631                                         QualType EleTy) override;
632
633  //===------------------------------------------------------------------===//
634  // Utility methods.
635  //===------------------------------------------------------------------===//
636
637  RegionBindingsRef getRegionBindings(Store store) const {
638    llvm::PointerIntPair<Store, 1, bool> Ptr;
639    Ptr.setFromOpaqueValue(const_cast<void *>(store));
640    return RegionBindingsRef(
641        CBFactory,
642        static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
643        RBFactory.getTreeFactory(),
644        Ptr.getInt());
645  }
646
647  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
648                 unsigned int Space = 0, bool IsDot = false) const override;
649
650  void iterBindings(Store store, BindingsHandler& f) override {
651    RegionBindingsRef B = getRegionBindings(store);
652    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
653      const ClusterBindings &Cluster = I.getData();
654      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
655           CI != CE; ++CI) {
656        const BindingKey &K = CI.getKey();
657        if (!K.isDirect())
658          continue;
659        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
660          // FIXME: Possibly incorporate the offset?
661          if (!f.HandleBinding(*this, store, R, CI.getData()))
662            return;
663        }
664      }
665    }
666  }
667};
668
669} // end anonymous namespace
670
671//===----------------------------------------------------------------------===//
672// RegionStore creation.
673//===----------------------------------------------------------------------===//
674
675std::unique_ptr<StoreManager>
676ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
677  RegionStoreFeatures F = maximal_features_tag();
678  return std::make_unique<RegionStoreManager>(StMgr, F);
679}
680
681std::unique_ptr<StoreManager>
682ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
683  RegionStoreFeatures F = minimal_features_tag();
684  F.enableFields(true);
685  return std::make_unique<RegionStoreManager>(StMgr, F);
686}
687
688
689//===----------------------------------------------------------------------===//
690// Region Cluster analysis.
691//===----------------------------------------------------------------------===//
692
693namespace {
694/// Used to determine which global regions are automatically included in the
695/// initial worklist of a ClusterAnalysis.
696enum GlobalsFilterKind {
697  /// Don't include any global regions.
698  GFK_None,
699  /// Only include system globals.
700  GFK_SystemOnly,
701  /// Include all global regions.
702  GFK_All
703};
704
705template <typename DERIVED>
706class ClusterAnalysis  {
707protected:
708  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
709  typedef const MemRegion * WorkListElement;
710  typedef SmallVector<WorkListElement, 10> WorkList;
711
712  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
713
714  WorkList WL;
715
716  RegionStoreManager &RM;
717  ASTContext &Ctx;
718  SValBuilder &svalBuilder;
719
720  RegionBindingsRef B;
721
722
723protected:
724  const ClusterBindings *getCluster(const MemRegion *R) {
725    return B.lookup(R);
726  }
727
728  /// Returns true if all clusters in the given memspace should be initially
729  /// included in the cluster analysis. Subclasses may provide their
730  /// own implementation.
731  bool includeEntireMemorySpace(const MemRegion *Base) {
732    return false;
733  }
734
735public:
736  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
737                  RegionBindingsRef b)
738      : RM(rm), Ctx(StateMgr.getContext()),
739        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
740
741  RegionBindingsRef getRegionBindings() const { return B; }
742
743  bool isVisited(const MemRegion *R) {
744    return Visited.count(getCluster(R));
745  }
746
747  void GenerateClusters() {
748    // Scan the entire set of bindings and record the region clusters.
749    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
750         RI != RE; ++RI){
751      const MemRegion *Base = RI.getKey();
752
753      const ClusterBindings &Cluster = RI.getData();
754      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
755      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
756
757      // If the base's memspace should be entirely invalidated, add the cluster
758      // to the workspace up front.
759      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
760        AddToWorkList(WorkListElement(Base), &Cluster);
761    }
762  }
763
764  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
765    if (C && !Visited.insert(C).second)
766      return false;
767    WL.push_back(E);
768    return true;
769  }
770
771  bool AddToWorkList(const MemRegion *R) {
772    return static_cast<DERIVED*>(this)->AddToWorkList(R);
773  }
774
775  void RunWorkList() {
776    while (!WL.empty()) {
777      WorkListElement E = WL.pop_back_val();
778      const MemRegion *BaseR = E;
779
780      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
781    }
782  }
783
784  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
785  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
786
787  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
788                    bool Flag) {
789    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
790  }
791};
792}
793
794//===----------------------------------------------------------------------===//
795// Binding invalidation.
796//===----------------------------------------------------------------------===//
797
798bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
799                                              ScanReachableSymbols &Callbacks) {
800  assert(R == R->getBaseRegion() && "Should only be called for base regions");
801  RegionBindingsRef B = getRegionBindings(S);
802  const ClusterBindings *Cluster = B.lookup(R);
803
804  if (!Cluster)
805    return true;
806
807  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
808       RI != RE; ++RI) {
809    if (!Callbacks.scan(RI.getData()))
810      return false;
811  }
812
813  return true;
814}
815
816static inline bool isUnionField(const FieldRegion *FR) {
817  return FR->getDecl()->getParent()->isUnion();
818}
819
820typedef SmallVector<const FieldDecl *, 8> FieldVector;
821
822static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
823  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
824
825  const MemRegion *Base = K.getConcreteOffsetRegion();
826  const MemRegion *R = K.getRegion();
827
828  while (R != Base) {
829    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
830      if (!isUnionField(FR))
831        Fields.push_back(FR->getDecl());
832
833    R = cast<SubRegion>(R)->getSuperRegion();
834  }
835}
836
837static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
838  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
839
840  if (Fields.empty())
841    return true;
842
843  FieldVector FieldsInBindingKey;
844  getSymbolicOffsetFields(K, FieldsInBindingKey);
845
846  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
847  if (Delta >= 0)
848    return std::equal(FieldsInBindingKey.begin() + Delta,
849                      FieldsInBindingKey.end(),
850                      Fields.begin());
851  else
852    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
853                      Fields.begin() - Delta);
854}
855
856/// Collects all bindings in \p Cluster that may refer to bindings within
857/// \p Top.
858///
859/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
860/// \c second is the value (an SVal).
861///
862/// The \p IncludeAllDefaultBindings parameter specifies whether to include
863/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
864/// an aggregate within a larger aggregate with a default binding.
865static void
866collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
867                         SValBuilder &SVB, const ClusterBindings &Cluster,
868                         const SubRegion *Top, BindingKey TopKey,
869                         bool IncludeAllDefaultBindings) {
870  FieldVector FieldsInSymbolicSubregions;
871  if (TopKey.hasSymbolicOffset()) {
872    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
873    Top = TopKey.getConcreteOffsetRegion();
874    TopKey = BindingKey::Make(Top, BindingKey::Default);
875  }
876
877  // Find the length (in bits) of the region being invalidated.
878  uint64_t Length = UINT64_MAX;
879  SVal Extent = Top->getExtent(SVB);
880  if (Optional<nonloc::ConcreteInt> ExtentCI =
881          Extent.getAs<nonloc::ConcreteInt>()) {
882    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
883    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
884    // Extents are in bytes but region offsets are in bits. Be careful!
885    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
886  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
887    if (FR->getDecl()->isBitField())
888      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
889  }
890
891  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
892       I != E; ++I) {
893    BindingKey NextKey = I.getKey();
894    if (NextKey.getRegion() == TopKey.getRegion()) {
895      // FIXME: This doesn't catch the case where we're really invalidating a
896      // region with a symbolic offset. Example:
897      //      R: points[i].y
898      //   Next: points[0].x
899
900      if (NextKey.getOffset() > TopKey.getOffset() &&
901          NextKey.getOffset() - TopKey.getOffset() < Length) {
902        // Case 1: The next binding is inside the region we're invalidating.
903        // Include it.
904        Bindings.push_back(*I);
905
906      } else if (NextKey.getOffset() == TopKey.getOffset()) {
907        // Case 2: The next binding is at the same offset as the region we're
908        // invalidating. In this case, we need to leave default bindings alone,
909        // since they may be providing a default value for a regions beyond what
910        // we're invalidating.
911        // FIXME: This is probably incorrect; consider invalidating an outer
912        // struct whose first field is bound to a LazyCompoundVal.
913        if (IncludeAllDefaultBindings || NextKey.isDirect())
914          Bindings.push_back(*I);
915      }
916
917    } else if (NextKey.hasSymbolicOffset()) {
918      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
919      if (Top->isSubRegionOf(Base) && Top != Base) {
920        // Case 3: The next key is symbolic and we just changed something within
921        // its concrete region. We don't know if the binding is still valid, so
922        // we'll be conservative and include it.
923        if (IncludeAllDefaultBindings || NextKey.isDirect())
924          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
925            Bindings.push_back(*I);
926      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
927        // Case 4: The next key is symbolic, but we changed a known
928        // super-region. In this case the binding is certainly included.
929        if (BaseSR->isSubRegionOf(Top))
930          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
931            Bindings.push_back(*I);
932      }
933    }
934  }
935}
936
937static void
938collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
939                         SValBuilder &SVB, const ClusterBindings &Cluster,
940                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
941  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
942                           BindingKey::Make(Top, BindingKey::Default),
943                           IncludeAllDefaultBindings);
944}
945
946RegionBindingsRef
947RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
948                                            const SubRegion *Top) {
949  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
950  const MemRegion *ClusterHead = TopKey.getBaseRegion();
951
952  if (Top == ClusterHead) {
953    // We can remove an entire cluster's bindings all in one go.
954    return B.remove(Top);
955  }
956
957  const ClusterBindings *Cluster = B.lookup(ClusterHead);
958  if (!Cluster) {
959    // If we're invalidating a region with a symbolic offset, we need to make
960    // sure we don't treat the base region as uninitialized anymore.
961    if (TopKey.hasSymbolicOffset()) {
962      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
963      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
964    }
965    return B;
966  }
967
968  SmallVector<BindingPair, 32> Bindings;
969  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
970                           /*IncludeAllDefaultBindings=*/false);
971
972  ClusterBindingsRef Result(*Cluster, CBFactory);
973  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
974                                                    E = Bindings.end();
975       I != E; ++I)
976    Result = Result.remove(I->first);
977
978  // If we're invalidating a region with a symbolic offset, we need to make sure
979  // we don't treat the base region as uninitialized anymore.
980  // FIXME: This isn't very precise; see the example in
981  // collectSubRegionBindings.
982  if (TopKey.hasSymbolicOffset()) {
983    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
984    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
985                        UnknownVal());
986  }
987
988  if (Result.isEmpty())
989    return B.remove(ClusterHead);
990  return B.add(ClusterHead, Result.asImmutableMap());
991}
992
993namespace {
994class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
995{
996  const Expr *Ex;
997  unsigned Count;
998  const LocationContext *LCtx;
999  InvalidatedSymbols &IS;
1000  RegionAndSymbolInvalidationTraits &ITraits;
1001  StoreManager::InvalidatedRegions *Regions;
1002  GlobalsFilterKind GlobalsFilter;
1003public:
1004  InvalidateRegionsWorker(RegionStoreManager &rm,
1005                          ProgramStateManager &stateMgr,
1006                          RegionBindingsRef b,
1007                          const Expr *ex, unsigned count,
1008                          const LocationContext *lctx,
1009                          InvalidatedSymbols &is,
1010                          RegionAndSymbolInvalidationTraits &ITraitsIn,
1011                          StoreManager::InvalidatedRegions *r,
1012                          GlobalsFilterKind GFK)
1013     : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1014       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1015       GlobalsFilter(GFK) {}
1016
1017  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1018  void VisitBinding(SVal V);
1019
1020  using ClusterAnalysis::AddToWorkList;
1021
1022  bool AddToWorkList(const MemRegion *R);
1023
1024  /// Returns true if all clusters in the memory space for \p Base should be
1025  /// be invalidated.
1026  bool includeEntireMemorySpace(const MemRegion *Base);
1027
1028  /// Returns true if the memory space of the given region is one of the global
1029  /// regions specially included at the start of invalidation.
1030  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1031};
1032}
1033
1034bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1035  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1036      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1037  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1038  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1039}
1040
1041void InvalidateRegionsWorker::VisitBinding(SVal V) {
1042  // A symbol?  Mark it touched by the invalidation.
1043  if (SymbolRef Sym = V.getAsSymbol())
1044    IS.insert(Sym);
1045
1046  if (const MemRegion *R = V.getAsRegion()) {
1047    AddToWorkList(R);
1048    return;
1049  }
1050
1051  // Is it a LazyCompoundVal?  All references get invalidated as well.
1052  if (Optional<nonloc::LazyCompoundVal> LCS =
1053          V.getAs<nonloc::LazyCompoundVal>()) {
1054
1055    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1056
1057    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1058                                                        E = Vals.end();
1059         I != E; ++I)
1060      VisitBinding(*I);
1061
1062    return;
1063  }
1064}
1065
1066void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1067                                           const ClusterBindings *C) {
1068
1069  bool PreserveRegionsContents =
1070      ITraits.hasTrait(baseR,
1071                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1072
1073  if (C) {
1074    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1075      VisitBinding(I.getData());
1076
1077    // Invalidate regions contents.
1078    if (!PreserveRegionsContents)
1079      B = B.remove(baseR);
1080  }
1081
1082  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1083    if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1084
1085      // Lambdas can affect all static local variables without explicitly
1086      // capturing those.
1087      // We invalidate all static locals referenced inside the lambda body.
1088      if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1089        using namespace ast_matchers;
1090
1091        const char *DeclBind = "DeclBind";
1092        StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1093              to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1094        auto Matches =
1095            match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1096                  RD->getASTContext());
1097
1098        for (BoundNodes &Match : Matches) {
1099          auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1100          const VarRegion *ToInvalidate =
1101              RM.getRegionManager().getVarRegion(VD, LCtx);
1102          AddToWorkList(ToInvalidate);
1103        }
1104      }
1105    }
1106  }
1107
1108  // BlockDataRegion?  If so, invalidate captured variables that are passed
1109  // by reference.
1110  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1111    for (BlockDataRegion::referenced_vars_iterator
1112         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1113         BI != BE; ++BI) {
1114      const VarRegion *VR = BI.getCapturedRegion();
1115      const VarDecl *VD = VR->getDecl();
1116      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1117        AddToWorkList(VR);
1118      }
1119      else if (Loc::isLocType(VR->getValueType())) {
1120        // Map the current bindings to a Store to retrieve the value
1121        // of the binding.  If that binding itself is a region, we should
1122        // invalidate that region.  This is because a block may capture
1123        // a pointer value, but the thing pointed by that pointer may
1124        // get invalidated.
1125        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1126        if (Optional<Loc> L = V.getAs<Loc>()) {
1127          if (const MemRegion *LR = L->getAsRegion())
1128            AddToWorkList(LR);
1129        }
1130      }
1131    }
1132    return;
1133  }
1134
1135  // Symbolic region?
1136  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1137    IS.insert(SR->getSymbol());
1138
1139  // Nothing else should be done in the case when we preserve regions context.
1140  if (PreserveRegionsContents)
1141    return;
1142
1143  // Otherwise, we have a normal data region. Record that we touched the region.
1144  if (Regions)
1145    Regions->push_back(baseR);
1146
1147  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1148    // Invalidate the region by setting its default value to
1149    // conjured symbol. The type of the symbol is irrelevant.
1150    DefinedOrUnknownSVal V =
1151      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1152    B = B.addBinding(baseR, BindingKey::Default, V);
1153    return;
1154  }
1155
1156  if (!baseR->isBoundable())
1157    return;
1158
1159  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1160  QualType T = TR->getValueType();
1161
1162  if (isInitiallyIncludedGlobalRegion(baseR)) {
1163    // If the region is a global and we are invalidating all globals,
1164    // erasing the entry is good enough.  This causes all globals to be lazily
1165    // symbolicated from the same base symbol.
1166    return;
1167  }
1168
1169  if (T->isRecordType()) {
1170    // Invalidate the region by setting its default value to
1171    // conjured symbol. The type of the symbol is irrelevant.
1172    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1173                                                          Ctx.IntTy, Count);
1174    B = B.addBinding(baseR, BindingKey::Default, V);
1175    return;
1176  }
1177
1178  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1179    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1180        baseR,
1181        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1182
1183    if (doNotInvalidateSuperRegion) {
1184      // We are not doing blank invalidation of the whole array region so we
1185      // have to manually invalidate each elements.
1186      Optional<uint64_t> NumElements;
1187
1188      // Compute lower and upper offsets for region within array.
1189      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1190        NumElements = CAT->getSize().getZExtValue();
1191      if (!NumElements) // We are not dealing with a constant size array
1192        goto conjure_default;
1193      QualType ElementTy = AT->getElementType();
1194      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1195      const RegionOffset &RO = baseR->getAsOffset();
1196      const MemRegion *SuperR = baseR->getBaseRegion();
1197      if (RO.hasSymbolicOffset()) {
1198        // If base region has a symbolic offset,
1199        // we revert to invalidating the super region.
1200        if (SuperR)
1201          AddToWorkList(SuperR);
1202        goto conjure_default;
1203      }
1204
1205      uint64_t LowerOffset = RO.getOffset();
1206      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1207      bool UpperOverflow = UpperOffset < LowerOffset;
1208
1209      // Invalidate regions which are within array boundaries,
1210      // or have a symbolic offset.
1211      if (!SuperR)
1212        goto conjure_default;
1213
1214      const ClusterBindings *C = B.lookup(SuperR);
1215      if (!C)
1216        goto conjure_default;
1217
1218      for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1219           ++I) {
1220        const BindingKey &BK = I.getKey();
1221        Optional<uint64_t> ROffset =
1222            BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1223
1224        // Check offset is not symbolic and within array's boundaries.
1225        // Handles arrays of 0 elements and of 0-sized elements as well.
1226        if (!ROffset ||
1227            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1228             (UpperOverflow &&
1229              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1230             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1231          B = B.removeBinding(I.getKey());
1232          // Bound symbolic regions need to be invalidated for dead symbol
1233          // detection.
1234          SVal V = I.getData();
1235          const MemRegion *R = V.getAsRegion();
1236          if (R && isa<SymbolicRegion>(R))
1237            VisitBinding(V);
1238        }
1239      }
1240    }
1241  conjure_default:
1242      // Set the default value of the array to conjured symbol.
1243    DefinedOrUnknownSVal V =
1244    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1245                                     AT->getElementType(), Count);
1246    B = B.addBinding(baseR, BindingKey::Default, V);
1247    return;
1248  }
1249
1250  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1251                                                        T,Count);
1252  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1253  B = B.addBinding(baseR, BindingKey::Direct, V);
1254}
1255
1256bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1257    const MemRegion *R) {
1258  switch (GlobalsFilter) {
1259  case GFK_None:
1260    return false;
1261  case GFK_SystemOnly:
1262    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1263  case GFK_All:
1264    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1265  }
1266
1267  llvm_unreachable("unknown globals filter");
1268}
1269
1270bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1271  if (isInitiallyIncludedGlobalRegion(Base))
1272    return true;
1273
1274  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1275  return ITraits.hasTrait(MemSpace,
1276                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1277}
1278
1279RegionBindingsRef
1280RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1281                                           const Expr *Ex,
1282                                           unsigned Count,
1283                                           const LocationContext *LCtx,
1284                                           RegionBindingsRef B,
1285                                           InvalidatedRegions *Invalidated) {
1286  // Bind the globals memory space to a new symbol that we will use to derive
1287  // the bindings for all globals.
1288  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1289  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1290                                        /* type does not matter */ Ctx.IntTy,
1291                                        Count);
1292
1293  B = B.removeBinding(GS)
1294       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1295
1296  // Even if there are no bindings in the global scope, we still need to
1297  // record that we touched it.
1298  if (Invalidated)
1299    Invalidated->push_back(GS);
1300
1301  return B;
1302}
1303
1304void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1305                                          ArrayRef<SVal> Values,
1306                                          InvalidatedRegions *TopLevelRegions) {
1307  for (ArrayRef<SVal>::iterator I = Values.begin(),
1308                                E = Values.end(); I != E; ++I) {
1309    SVal V = *I;
1310    if (Optional<nonloc::LazyCompoundVal> LCS =
1311        V.getAs<nonloc::LazyCompoundVal>()) {
1312
1313      const SValListTy &Vals = getInterestingValues(*LCS);
1314
1315      for (SValListTy::const_iterator I = Vals.begin(),
1316                                      E = Vals.end(); I != E; ++I) {
1317        // Note: the last argument is false here because these are
1318        // non-top-level regions.
1319        if (const MemRegion *R = (*I).getAsRegion())
1320          W.AddToWorkList(R);
1321      }
1322      continue;
1323    }
1324
1325    if (const MemRegion *R = V.getAsRegion()) {
1326      if (TopLevelRegions)
1327        TopLevelRegions->push_back(R);
1328      W.AddToWorkList(R);
1329      continue;
1330    }
1331  }
1332}
1333
1334StoreRef
1335RegionStoreManager::invalidateRegions(Store store,
1336                                     ArrayRef<SVal> Values,
1337                                     const Expr *Ex, unsigned Count,
1338                                     const LocationContext *LCtx,
1339                                     const CallEvent *Call,
1340                                     InvalidatedSymbols &IS,
1341                                     RegionAndSymbolInvalidationTraits &ITraits,
1342                                     InvalidatedRegions *TopLevelRegions,
1343                                     InvalidatedRegions *Invalidated) {
1344  GlobalsFilterKind GlobalsFilter;
1345  if (Call) {
1346    if (Call->isInSystemHeader())
1347      GlobalsFilter = GFK_SystemOnly;
1348    else
1349      GlobalsFilter = GFK_All;
1350  } else {
1351    GlobalsFilter = GFK_None;
1352  }
1353
1354  RegionBindingsRef B = getRegionBindings(store);
1355  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1356                            Invalidated, GlobalsFilter);
1357
1358  // Scan the bindings and generate the clusters.
1359  W.GenerateClusters();
1360
1361  // Add the regions to the worklist.
1362  populateWorkList(W, Values, TopLevelRegions);
1363
1364  W.RunWorkList();
1365
1366  // Return the new bindings.
1367  B = W.getRegionBindings();
1368
1369  // For calls, determine which global regions should be invalidated and
1370  // invalidate them. (Note that function-static and immutable globals are never
1371  // invalidated by this.)
1372  // TODO: This could possibly be more precise with modules.
1373  switch (GlobalsFilter) {
1374  case GFK_All:
1375    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1376                               Ex, Count, LCtx, B, Invalidated);
1377    LLVM_FALLTHROUGH;
1378  case GFK_SystemOnly:
1379    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1380                               Ex, Count, LCtx, B, Invalidated);
1381    LLVM_FALLTHROUGH;
1382  case GFK_None:
1383    break;
1384  }
1385
1386  return StoreRef(B.asStore(), *this);
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// Extents for regions.
1391//===----------------------------------------------------------------------===//
1392
1393DefinedOrUnknownSVal
1394RegionStoreManager::getSizeInElements(ProgramStateRef state,
1395                                      const MemRegion *R,
1396                                      QualType EleTy) {
1397  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1398  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1399  if (!SizeInt)
1400    return UnknownVal();
1401
1402  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1403
1404  if (Ctx.getAsVariableArrayType(EleTy)) {
1405    // FIXME: We need to track extra state to properly record the size
1406    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1407    // we don't have a divide-by-zero below.
1408    return UnknownVal();
1409  }
1410
1411  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1412
1413  // If a variable is reinterpreted as a type that doesn't fit into a larger
1414  // type evenly, round it down.
1415  // This is a signed value, since it's used in arithmetic with signed indices.
1416  return svalBuilder.makeIntVal(RegionSize / EleSize,
1417                                svalBuilder.getArrayIndexType());
1418}
1419
1420//===----------------------------------------------------------------------===//
1421// Location and region casting.
1422//===----------------------------------------------------------------------===//
1423
1424/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1425///  type.  'Array' represents the lvalue of the array being decayed
1426///  to a pointer, and the returned SVal represents the decayed
1427///  version of that lvalue (i.e., a pointer to the first element of
1428///  the array).  This is called by ExprEngine when evaluating casts
1429///  from arrays to pointers.
1430SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1431  if (Array.getAs<loc::ConcreteInt>())
1432    return Array;
1433
1434  if (!Array.getAs<loc::MemRegionVal>())
1435    return UnknownVal();
1436
1437  const SubRegion *R =
1438      cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1439  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1440  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1441}
1442
1443//===----------------------------------------------------------------------===//
1444// Loading values from regions.
1445//===----------------------------------------------------------------------===//
1446
1447SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1448  assert(!L.getAs<UnknownVal>() && "location unknown");
1449  assert(!L.getAs<UndefinedVal>() && "location undefined");
1450
1451  // For access to concrete addresses, return UnknownVal.  Checks
1452  // for null dereferences (and similar errors) are done by checkers, not
1453  // the Store.
1454  // FIXME: We can consider lazily symbolicating such memory, but we really
1455  // should defer this when we can reason easily about symbolicating arrays
1456  // of bytes.
1457  if (L.getAs<loc::ConcreteInt>()) {
1458    return UnknownVal();
1459  }
1460  if (!L.getAs<loc::MemRegionVal>()) {
1461    return UnknownVal();
1462  }
1463
1464  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1465
1466  if (isa<BlockDataRegion>(MR)) {
1467    return UnknownVal();
1468  }
1469
1470  if (!isa<TypedValueRegion>(MR)) {
1471    if (T.isNull()) {
1472      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1473        T = TR->getLocationType()->getPointeeType();
1474      else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1475        T = SR->getSymbol()->getType()->getPointeeType();
1476    }
1477    assert(!T.isNull() && "Unable to auto-detect binding type!");
1478    assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1479    MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1480  } else {
1481    T = cast<TypedValueRegion>(MR)->getValueType();
1482  }
1483
1484  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1485  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1486  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1487  QualType RTy = R->getValueType();
1488
1489  // FIXME: we do not yet model the parts of a complex type, so treat the
1490  // whole thing as "unknown".
1491  if (RTy->isAnyComplexType())
1492    return UnknownVal();
1493
1494  // FIXME: We should eventually handle funny addressing.  e.g.:
1495  //
1496  //   int x = ...;
1497  //   int *p = &x;
1498  //   char *q = (char*) p;
1499  //   char c = *q;  // returns the first byte of 'x'.
1500  //
1501  // Such funny addressing will occur due to layering of regions.
1502  if (RTy->isStructureOrClassType())
1503    return getBindingForStruct(B, R);
1504
1505  // FIXME: Handle unions.
1506  if (RTy->isUnionType())
1507    return createLazyBinding(B, R);
1508
1509  if (RTy->isArrayType()) {
1510    if (RTy->isConstantArrayType())
1511      return getBindingForArray(B, R);
1512    else
1513      return UnknownVal();
1514  }
1515
1516  // FIXME: handle Vector types.
1517  if (RTy->isVectorType())
1518    return UnknownVal();
1519
1520  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1521    return CastRetrievedVal(getBindingForField(B, FR), FR, T);
1522
1523  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1524    // FIXME: Here we actually perform an implicit conversion from the loaded
1525    // value to the element type.  Eventually we want to compose these values
1526    // more intelligently.  For example, an 'element' can encompass multiple
1527    // bound regions (e.g., several bound bytes), or could be a subset of
1528    // a larger value.
1529    return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
1530  }
1531
1532  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1533    // FIXME: Here we actually perform an implicit conversion from the loaded
1534    // value to the ivar type.  What we should model is stores to ivars
1535    // that blow past the extent of the ivar.  If the address of the ivar is
1536    // reinterpretted, it is possible we stored a different value that could
1537    // fit within the ivar.  Either we need to cast these when storing them
1538    // or reinterpret them lazily (as we do here).
1539    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
1540  }
1541
1542  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1543    // FIXME: Here we actually perform an implicit conversion from the loaded
1544    // value to the variable type.  What we should model is stores to variables
1545    // that blow past the extent of the variable.  If the address of the
1546    // variable is reinterpretted, it is possible we stored a different value
1547    // that could fit within the variable.  Either we need to cast these when
1548    // storing them or reinterpret them lazily (as we do here).
1549    return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
1550  }
1551
1552  const SVal *V = B.lookup(R, BindingKey::Direct);
1553
1554  // Check if the region has a binding.
1555  if (V)
1556    return *V;
1557
1558  // The location does not have a bound value.  This means that it has
1559  // the value it had upon its creation and/or entry to the analyzed
1560  // function/method.  These are either symbolic values or 'undefined'.
1561  if (R->hasStackNonParametersStorage()) {
1562    // All stack variables are considered to have undefined values
1563    // upon creation.  All heap allocated blocks are considered to
1564    // have undefined values as well unless they are explicitly bound
1565    // to specific values.
1566    return UndefinedVal();
1567  }
1568
1569  // All other values are symbolic.
1570  return svalBuilder.getRegionValueSymbolVal(R);
1571}
1572
1573static QualType getUnderlyingType(const SubRegion *R) {
1574  QualType RegionTy;
1575  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1576    RegionTy = TVR->getValueType();
1577
1578  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1579    RegionTy = SR->getSymbol()->getType();
1580
1581  return RegionTy;
1582}
1583
1584/// Checks to see if store \p B has a lazy binding for region \p R.
1585///
1586/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1587/// if there are additional bindings within \p R.
1588///
1589/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1590/// for lazy bindings for super-regions of \p R.
1591static Optional<nonloc::LazyCompoundVal>
1592getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1593                       const SubRegion *R, bool AllowSubregionBindings) {
1594  Optional<SVal> V = B.getDefaultBinding(R);
1595  if (!V)
1596    return None;
1597
1598  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1599  if (!LCV)
1600    return None;
1601
1602  // If the LCV is for a subregion, the types might not match, and we shouldn't
1603  // reuse the binding.
1604  QualType RegionTy = getUnderlyingType(R);
1605  if (!RegionTy.isNull() &&
1606      !RegionTy->isVoidPointerType()) {
1607    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1608    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1609      return None;
1610  }
1611
1612  if (!AllowSubregionBindings) {
1613    // If there are any other bindings within this region, we shouldn't reuse
1614    // the top-level binding.
1615    SmallVector<BindingPair, 16> Bindings;
1616    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1617                             /*IncludeAllDefaultBindings=*/true);
1618    if (Bindings.size() > 1)
1619      return None;
1620  }
1621
1622  return *LCV;
1623}
1624
1625
1626std::pair<Store, const SubRegion *>
1627RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1628                                   const SubRegion *R,
1629                                   const SubRegion *originalRegion) {
1630  if (originalRegion != R) {
1631    if (Optional<nonloc::LazyCompoundVal> V =
1632          getExistingLazyBinding(svalBuilder, B, R, true))
1633      return std::make_pair(V->getStore(), V->getRegion());
1634  }
1635
1636  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1637  StoreRegionPair Result = StoreRegionPair();
1638
1639  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1640    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1641                             originalRegion);
1642
1643    if (Result.second)
1644      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1645
1646  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1647    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1648                                       originalRegion);
1649
1650    if (Result.second)
1651      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1652
1653  } else if (const CXXBaseObjectRegion *BaseReg =
1654               dyn_cast<CXXBaseObjectRegion>(R)) {
1655    // C++ base object region is another kind of region that we should blast
1656    // through to look for lazy compound value. It is like a field region.
1657    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1658                             originalRegion);
1659
1660    if (Result.second)
1661      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1662                                                            Result.second);
1663  }
1664
1665  return Result;
1666}
1667
1668SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1669                                              const ElementRegion* R) {
1670  // We do not currently model bindings of the CompoundLiteralregion.
1671  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1672    return UnknownVal();
1673
1674  // Check if the region has a binding.
1675  if (const Optional<SVal> &V = B.getDirectBinding(R))
1676    return *V;
1677
1678  const MemRegion* superR = R->getSuperRegion();
1679
1680  // Check if the region is an element region of a string literal.
1681  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1682    // FIXME: Handle loads from strings where the literal is treated as
1683    // an integer, e.g., *((unsigned int*)"hello")
1684    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1685    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1686      return UnknownVal();
1687
1688    const StringLiteral *Str = StrR->getStringLiteral();
1689    SVal Idx = R->getIndex();
1690    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1691      int64_t i = CI->getValue().getSExtValue();
1692      // Abort on string underrun.  This can be possible by arbitrary
1693      // clients of getBindingForElement().
1694      if (i < 0)
1695        return UndefinedVal();
1696      int64_t length = Str->getLength();
1697      // Technically, only i == length is guaranteed to be null.
1698      // However, such overflows should be caught before reaching this point;
1699      // the only time such an access would be made is if a string literal was
1700      // used to initialize a larger array.
1701      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1702      return svalBuilder.makeIntVal(c, T);
1703    }
1704  } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1705    // Check if the containing array has an initialized value that we can trust.
1706    // We can trust a const value or a value of a global initializer in main().
1707    const VarDecl *VD = VR->getDecl();
1708    if (VD->getType().isConstQualified() ||
1709        R->getElementType().isConstQualified() ||
1710        (B.isMainAnalysis() && VD->hasGlobalStorage())) {
1711      if (const Expr *Init = VD->getAnyInitializer()) {
1712        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1713          // The array index has to be known.
1714          if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1715            int64_t i = CI->getValue().getSExtValue();
1716            // If it is known that the index is out of bounds, we can return
1717            // an undefined value.
1718            if (i < 0)
1719              return UndefinedVal();
1720
1721            if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
1722              if (CAT->getSize().sle(i))
1723                return UndefinedVal();
1724
1725            // If there is a list, but no init, it must be zero.
1726            if (i >= InitList->getNumInits())
1727              return svalBuilder.makeZeroVal(R->getElementType());
1728
1729            if (const Expr *ElemInit = InitList->getInit(i))
1730              if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
1731                return *V;
1732          }
1733        }
1734      }
1735    }
1736  }
1737
1738  // Check for loads from a code text region.  For such loads, just give up.
1739  if (isa<CodeTextRegion>(superR))
1740    return UnknownVal();
1741
1742  // Handle the case where we are indexing into a larger scalar object.
1743  // For example, this handles:
1744  //   int x = ...
1745  //   char *y = &x;
1746  //   return *y;
1747  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1748  const RegionRawOffset &O = R->getAsArrayOffset();
1749
1750  // If we cannot reason about the offset, return an unknown value.
1751  if (!O.getRegion())
1752    return UnknownVal();
1753
1754  if (const TypedValueRegion *baseR =
1755        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1756    QualType baseT = baseR->getValueType();
1757    if (baseT->isScalarType()) {
1758      QualType elemT = R->getElementType();
1759      if (elemT->isScalarType()) {
1760        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1761          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1762            if (SymbolRef parentSym = V->getAsSymbol())
1763              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1764
1765            if (V->isUnknownOrUndef())
1766              return *V;
1767            // Other cases: give up.  We are indexing into a larger object
1768            // that has some value, but we don't know how to handle that yet.
1769            return UnknownVal();
1770          }
1771        }
1772      }
1773    }
1774  }
1775  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1776}
1777
1778SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1779                                            const FieldRegion* R) {
1780
1781  // Check if the region has a binding.
1782  if (const Optional<SVal> &V = B.getDirectBinding(R))
1783    return *V;
1784
1785  // Is the field declared constant and has an in-class initializer?
1786  const FieldDecl *FD = R->getDecl();
1787  QualType Ty = FD->getType();
1788  if (Ty.isConstQualified())
1789    if (const Expr *Init = FD->getInClassInitializer())
1790      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1791        return *V;
1792
1793  // If the containing record was initialized, try to get its constant value.
1794  const MemRegion* superR = R->getSuperRegion();
1795  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1796    const VarDecl *VD = VR->getDecl();
1797    QualType RecordVarTy = VD->getType();
1798    unsigned Index = FD->getFieldIndex();
1799    // Either the record variable or the field has an initializer that we can
1800    // trust. We trust initializers of constants and, additionally, respect
1801    // initializers of globals when analyzing main().
1802    if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1803        (B.isMainAnalysis() && VD->hasGlobalStorage()))
1804      if (const Expr *Init = VD->getAnyInitializer())
1805        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1806          if (Index < InitList->getNumInits()) {
1807            if (const Expr *FieldInit = InitList->getInit(Index))
1808              if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1809                return *V;
1810          } else {
1811            return svalBuilder.makeZeroVal(Ty);
1812          }
1813        }
1814  }
1815
1816  return getBindingForFieldOrElementCommon(B, R, Ty);
1817}
1818
1819Optional<SVal>
1820RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1821                                                     const MemRegion *superR,
1822                                                     const TypedValueRegion *R,
1823                                                     QualType Ty) {
1824
1825  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1826    const SVal &val = D.getValue();
1827    if (SymbolRef parentSym = val.getAsSymbol())
1828      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1829
1830    if (val.isZeroConstant())
1831      return svalBuilder.makeZeroVal(Ty);
1832
1833    if (val.isUnknownOrUndef())
1834      return val;
1835
1836    // Lazy bindings are usually handled through getExistingLazyBinding().
1837    // We should unify these two code paths at some point.
1838    if (val.getAs<nonloc::LazyCompoundVal>() ||
1839        val.getAs<nonloc::CompoundVal>())
1840      return val;
1841
1842    llvm_unreachable("Unknown default value");
1843  }
1844
1845  return None;
1846}
1847
1848SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1849                                        RegionBindingsRef LazyBinding) {
1850  SVal Result;
1851  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1852    Result = getBindingForElement(LazyBinding, ER);
1853  else
1854    Result = getBindingForField(LazyBinding,
1855                                cast<FieldRegion>(LazyBindingRegion));
1856
1857  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1858  // default value for /part/ of an aggregate from a default value for the
1859  // /entire/ aggregate. The most common case of this is when struct Outer
1860  // has as its first member a struct Inner, which is copied in from a stack
1861  // variable. In this case, even if the Outer's default value is symbolic, 0,
1862  // or unknown, it gets overridden by the Inner's default value of undefined.
1863  //
1864  // This is a general problem -- if the Inner is zero-initialized, the Outer
1865  // will now look zero-initialized. The proper way to solve this is with a
1866  // new version of RegionStore that tracks the extent of a binding as well
1867  // as the offset.
1868  //
1869  // This hack only takes care of the undefined case because that can very
1870  // quickly result in a warning.
1871  if (Result.isUndef())
1872    Result = UnknownVal();
1873
1874  return Result;
1875}
1876
1877SVal
1878RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1879                                                      const TypedValueRegion *R,
1880                                                      QualType Ty) {
1881
1882  // At this point we have already checked in either getBindingForElement or
1883  // getBindingForField if 'R' has a direct binding.
1884
1885  // Lazy binding?
1886  Store lazyBindingStore = nullptr;
1887  const SubRegion *lazyBindingRegion = nullptr;
1888  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1889  if (lazyBindingRegion)
1890    return getLazyBinding(lazyBindingRegion,
1891                          getRegionBindings(lazyBindingStore));
1892
1893  // Record whether or not we see a symbolic index.  That can completely
1894  // be out of scope of our lookup.
1895  bool hasSymbolicIndex = false;
1896
1897  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1898  // default value for /part/ of an aggregate from a default value for the
1899  // /entire/ aggregate. The most common case of this is when struct Outer
1900  // has as its first member a struct Inner, which is copied in from a stack
1901  // variable. In this case, even if the Outer's default value is symbolic, 0,
1902  // or unknown, it gets overridden by the Inner's default value of undefined.
1903  //
1904  // This is a general problem -- if the Inner is zero-initialized, the Outer
1905  // will now look zero-initialized. The proper way to solve this is with a
1906  // new version of RegionStore that tracks the extent of a binding as well
1907  // as the offset.
1908  //
1909  // This hack only takes care of the undefined case because that can very
1910  // quickly result in a warning.
1911  bool hasPartialLazyBinding = false;
1912
1913  const SubRegion *SR = R;
1914  while (SR) {
1915    const MemRegion *Base = SR->getSuperRegion();
1916    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1917      if (D->getAs<nonloc::LazyCompoundVal>()) {
1918        hasPartialLazyBinding = true;
1919        break;
1920      }
1921
1922      return *D;
1923    }
1924
1925    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1926      NonLoc index = ER->getIndex();
1927      if (!index.isConstant())
1928        hasSymbolicIndex = true;
1929    }
1930
1931    // If our super region is a field or element itself, walk up the region
1932    // hierarchy to see if there is a default value installed in an ancestor.
1933    SR = dyn_cast<SubRegion>(Base);
1934  }
1935
1936  if (R->hasStackNonParametersStorage()) {
1937    if (isa<ElementRegion>(R)) {
1938      // Currently we don't reason specially about Clang-style vectors.  Check
1939      // if superR is a vector and if so return Unknown.
1940      if (const TypedValueRegion *typedSuperR =
1941            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1942        if (typedSuperR->getValueType()->isVectorType())
1943          return UnknownVal();
1944      }
1945    }
1946
1947    // FIXME: We also need to take ElementRegions with symbolic indexes into
1948    // account.  This case handles both directly accessing an ElementRegion
1949    // with a symbolic offset, but also fields within an element with
1950    // a symbolic offset.
1951    if (hasSymbolicIndex)
1952      return UnknownVal();
1953
1954    // Additionally allow introspection of a block's internal layout.
1955    if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
1956      return UndefinedVal();
1957  }
1958
1959  // All other values are symbolic.
1960  return svalBuilder.getRegionValueSymbolVal(R);
1961}
1962
1963SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1964                                               const ObjCIvarRegion* R) {
1965  // Check if the region has a binding.
1966  if (const Optional<SVal> &V = B.getDirectBinding(R))
1967    return *V;
1968
1969  const MemRegion *superR = R->getSuperRegion();
1970
1971  // Check if the super region has a default binding.
1972  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1973    if (SymbolRef parentSym = V->getAsSymbol())
1974      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1975
1976    // Other cases: give up.
1977    return UnknownVal();
1978  }
1979
1980  return getBindingForLazySymbol(R);
1981}
1982
1983SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1984                                          const VarRegion *R) {
1985
1986  // Check if the region has a binding.
1987  if (Optional<SVal> V = B.getDirectBinding(R))
1988    return *V;
1989
1990  if (Optional<SVal> V = B.getDefaultBinding(R))
1991    return *V;
1992
1993  // Lazily derive a value for the VarRegion.
1994  const VarDecl *VD = R->getDecl();
1995  const MemSpaceRegion *MS = R->getMemorySpace();
1996
1997  // Arguments are always symbolic.
1998  if (isa<StackArgumentsSpaceRegion>(MS))
1999    return svalBuilder.getRegionValueSymbolVal(R);
2000
2001  // Is 'VD' declared constant?  If so, retrieve the constant value.
2002  if (VD->getType().isConstQualified()) {
2003    if (const Expr *Init = VD->getAnyInitializer()) {
2004      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2005        return *V;
2006
2007      // If the variable is const qualified and has an initializer but
2008      // we couldn't evaluate initializer to a value, treat the value as
2009      // unknown.
2010      return UnknownVal();
2011    }
2012  }
2013
2014  // This must come after the check for constants because closure-captured
2015  // constant variables may appear in UnknownSpaceRegion.
2016  if (isa<UnknownSpaceRegion>(MS))
2017    return svalBuilder.getRegionValueSymbolVal(R);
2018
2019  if (isa<GlobalsSpaceRegion>(MS)) {
2020    QualType T = VD->getType();
2021
2022    // If we're in main(), then global initializers have not become stale yet.
2023    if (B.isMainAnalysis())
2024      if (const Expr *Init = VD->getAnyInitializer())
2025        if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2026          return *V;
2027
2028    // Function-scoped static variables are default-initialized to 0; if they
2029    // have an initializer, it would have been processed by now.
2030    // FIXME: This is only true when we're starting analysis from main().
2031    // We're losing a lot of coverage here.
2032    if (isa<StaticGlobalSpaceRegion>(MS))
2033      return svalBuilder.makeZeroVal(T);
2034
2035    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2036      assert(!V->getAs<nonloc::LazyCompoundVal>());
2037      return V.getValue();
2038    }
2039
2040    return svalBuilder.getRegionValueSymbolVal(R);
2041  }
2042
2043  return UndefinedVal();
2044}
2045
2046SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2047  // All other values are symbolic.
2048  return svalBuilder.getRegionValueSymbolVal(R);
2049}
2050
2051const RegionStoreManager::SValListTy &
2052RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2053  // First, check the cache.
2054  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2055  if (I != LazyBindingsMap.end())
2056    return I->second;
2057
2058  // If we don't have a list of values cached, start constructing it.
2059  SValListTy List;
2060
2061  const SubRegion *LazyR = LCV.getRegion();
2062  RegionBindingsRef B = getRegionBindings(LCV.getStore());
2063
2064  // If this region had /no/ bindings at the time, there are no interesting
2065  // values to return.
2066  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2067  if (!Cluster)
2068    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2069
2070  SmallVector<BindingPair, 32> Bindings;
2071  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2072                           /*IncludeAllDefaultBindings=*/true);
2073  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2074                                                    E = Bindings.end();
2075       I != E; ++I) {
2076    SVal V = I->second;
2077    if (V.isUnknownOrUndef() || V.isConstant())
2078      continue;
2079
2080    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2081            V.getAs<nonloc::LazyCompoundVal>()) {
2082      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2083      List.insert(List.end(), InnerList.begin(), InnerList.end());
2084      continue;
2085    }
2086
2087    List.push_back(V);
2088  }
2089
2090  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2091}
2092
2093NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2094                                             const TypedValueRegion *R) {
2095  if (Optional<nonloc::LazyCompoundVal> V =
2096        getExistingLazyBinding(svalBuilder, B, R, false))
2097    return *V;
2098
2099  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2100}
2101
2102static bool isRecordEmpty(const RecordDecl *RD) {
2103  if (!RD->field_empty())
2104    return false;
2105  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2106    return CRD->getNumBases() == 0;
2107  return true;
2108}
2109
2110SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2111                                             const TypedValueRegion *R) {
2112  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2113  if (!RD->getDefinition() || isRecordEmpty(RD))
2114    return UnknownVal();
2115
2116  return createLazyBinding(B, R);
2117}
2118
2119SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2120                                            const TypedValueRegion *R) {
2121  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2122         "Only constant array types can have compound bindings.");
2123
2124  return createLazyBinding(B, R);
2125}
2126
2127bool RegionStoreManager::includedInBindings(Store store,
2128                                            const MemRegion *region) const {
2129  RegionBindingsRef B = getRegionBindings(store);
2130  region = region->getBaseRegion();
2131
2132  // Quick path: if the base is the head of a cluster, the region is live.
2133  if (B.lookup(region))
2134    return true;
2135
2136  // Slow path: if the region is the VALUE of any binding, it is live.
2137  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2138    const ClusterBindings &Cluster = RI.getData();
2139    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2140         CI != CE; ++CI) {
2141      const SVal &D = CI.getData();
2142      if (const MemRegion *R = D.getAsRegion())
2143        if (R->getBaseRegion() == region)
2144          return true;
2145    }
2146  }
2147
2148  return false;
2149}
2150
2151//===----------------------------------------------------------------------===//
2152// Binding values to regions.
2153//===----------------------------------------------------------------------===//
2154
2155StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2156  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2157    if (const MemRegion* R = LV->getRegion())
2158      return StoreRef(getRegionBindings(ST).removeBinding(R)
2159                                           .asImmutableMap()
2160                                           .getRootWithoutRetain(),
2161                      *this);
2162
2163  return StoreRef(ST, *this);
2164}
2165
2166RegionBindingsRef
2167RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2168  if (L.getAs<loc::ConcreteInt>())
2169    return B;
2170
2171  // If we get here, the location should be a region.
2172  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2173
2174  // Check if the region is a struct region.
2175  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2176    QualType Ty = TR->getValueType();
2177    if (Ty->isArrayType())
2178      return bindArray(B, TR, V);
2179    if (Ty->isStructureOrClassType())
2180      return bindStruct(B, TR, V);
2181    if (Ty->isVectorType())
2182      return bindVector(B, TR, V);
2183    if (Ty->isUnionType())
2184      return bindAggregate(B, TR, V);
2185  }
2186
2187  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2188    // Binding directly to a symbolic region should be treated as binding
2189    // to element 0.
2190    QualType T = SR->getSymbol()->getType();
2191    if (T->isAnyPointerType() || T->isReferenceType())
2192      T = T->getPointeeType();
2193
2194    R = GetElementZeroRegion(SR, T);
2195  }
2196
2197  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2198         "'this' pointer is not an l-value and is not assignable");
2199
2200  // Clear out bindings that may overlap with this binding.
2201  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2202  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2203}
2204
2205RegionBindingsRef
2206RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2207                                            const MemRegion *R,
2208                                            QualType T) {
2209  SVal V;
2210
2211  if (Loc::isLocType(T))
2212    V = svalBuilder.makeNull();
2213  else if (T->isIntegralOrEnumerationType())
2214    V = svalBuilder.makeZeroVal(T);
2215  else if (T->isStructureOrClassType() || T->isArrayType()) {
2216    // Set the default value to a zero constant when it is a structure
2217    // or array.  The type doesn't really matter.
2218    V = svalBuilder.makeZeroVal(Ctx.IntTy);
2219  }
2220  else {
2221    // We can't represent values of this type, but we still need to set a value
2222    // to record that the region has been initialized.
2223    // If this assertion ever fires, a new case should be added above -- we
2224    // should know how to default-initialize any value we can symbolicate.
2225    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2226    V = UnknownVal();
2227  }
2228
2229  return B.addBinding(R, BindingKey::Default, V);
2230}
2231
2232RegionBindingsRef
2233RegionStoreManager::bindArray(RegionBindingsConstRef B,
2234                              const TypedValueRegion* R,
2235                              SVal Init) {
2236
2237  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2238  QualType ElementTy = AT->getElementType();
2239  Optional<uint64_t> Size;
2240
2241  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2242    Size = CAT->getSize().getZExtValue();
2243
2244  // Check if the init expr is a literal. If so, bind the rvalue instead.
2245  // FIXME: It's not responsibility of the Store to transform this lvalue
2246  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2247  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2248    SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2249    return bindAggregate(B, R, V);
2250  }
2251
2252  // Handle lazy compound values.
2253  if (Init.getAs<nonloc::LazyCompoundVal>())
2254    return bindAggregate(B, R, Init);
2255
2256  if (Init.isUnknown())
2257    return bindAggregate(B, R, UnknownVal());
2258
2259  // Remaining case: explicit compound values.
2260  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2261  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2262  uint64_t i = 0;
2263
2264  RegionBindingsRef NewB(B);
2265
2266  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2267    // The init list might be shorter than the array length.
2268    if (VI == VE)
2269      break;
2270
2271    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2272    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2273
2274    if (ElementTy->isStructureOrClassType())
2275      NewB = bindStruct(NewB, ER, *VI);
2276    else if (ElementTy->isArrayType())
2277      NewB = bindArray(NewB, ER, *VI);
2278    else
2279      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2280  }
2281
2282  // If the init list is shorter than the array length (or the array has
2283  // variable length), set the array default value. Values that are already set
2284  // are not overwritten.
2285  if (!Size.hasValue() || i < Size.getValue())
2286    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2287
2288  return NewB;
2289}
2290
2291RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2292                                                 const TypedValueRegion* R,
2293                                                 SVal V) {
2294  QualType T = R->getValueType();
2295  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2296
2297  // Handle lazy compound values and symbolic values.
2298  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2299    return bindAggregate(B, R, V);
2300
2301  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2302  // that we are binding symbolic struct value. Kill the field values, and if
2303  // the value is symbolic go and bind it as a "default" binding.
2304  if (!V.getAs<nonloc::CompoundVal>()) {
2305    return bindAggregate(B, R, UnknownVal());
2306  }
2307
2308  QualType ElemType = VT->getElementType();
2309  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2310  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2311  unsigned index = 0, numElements = VT->getNumElements();
2312  RegionBindingsRef NewB(B);
2313
2314  for ( ; index != numElements ; ++index) {
2315    if (VI == VE)
2316      break;
2317
2318    NonLoc Idx = svalBuilder.makeArrayIndex(index);
2319    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2320
2321    if (ElemType->isArrayType())
2322      NewB = bindArray(NewB, ER, *VI);
2323    else if (ElemType->isStructureOrClassType())
2324      NewB = bindStruct(NewB, ER, *VI);
2325    else
2326      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2327  }
2328  return NewB;
2329}
2330
2331Optional<RegionBindingsRef>
2332RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2333                                       const TypedValueRegion *R,
2334                                       const RecordDecl *RD,
2335                                       nonloc::LazyCompoundVal LCV) {
2336  FieldVector Fields;
2337
2338  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2339    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2340      return None;
2341
2342  for (const auto *FD : RD->fields()) {
2343    if (FD->isUnnamedBitfield())
2344      continue;
2345
2346    // If there are too many fields, or if any of the fields are aggregates,
2347    // just use the LCV as a default binding.
2348    if (Fields.size() == SmallStructLimit)
2349      return None;
2350
2351    QualType Ty = FD->getType();
2352    if (!(Ty->isScalarType() || Ty->isReferenceType()))
2353      return None;
2354
2355    Fields.push_back(FD);
2356  }
2357
2358  RegionBindingsRef NewB = B;
2359
2360  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2361    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2362    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2363
2364    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2365    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2366  }
2367
2368  return NewB;
2369}
2370
2371RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2372                                                 const TypedValueRegion* R,
2373                                                 SVal V) {
2374  if (!Features.supportsFields())
2375    return B;
2376
2377  QualType T = R->getValueType();
2378  assert(T->isStructureOrClassType());
2379
2380  const RecordType* RT = T->castAs<RecordType>();
2381  const RecordDecl *RD = RT->getDecl();
2382
2383  if (!RD->isCompleteDefinition())
2384    return B;
2385
2386  // Handle lazy compound values and symbolic values.
2387  if (Optional<nonloc::LazyCompoundVal> LCV =
2388        V.getAs<nonloc::LazyCompoundVal>()) {
2389    if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2390      return *NewB;
2391    return bindAggregate(B, R, V);
2392  }
2393  if (V.getAs<nonloc::SymbolVal>())
2394    return bindAggregate(B, R, V);
2395
2396  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2397  // that we are binding symbolic struct value. Kill the field values, and if
2398  // the value is symbolic go and bind it as a "default" binding.
2399  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2400    return bindAggregate(B, R, UnknownVal());
2401
2402  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2403  // list of other values. It appears pretty much only when there's an actual
2404  // initializer list expression in the program, and the analyzer tries to
2405  // unwrap it as soon as possible.
2406  // This code is where such unwrap happens: when the compound value is put into
2407  // the object that it was supposed to initialize (it's an *initializer* list,
2408  // after all), instead of binding the whole value to the whole object, we bind
2409  // sub-values to sub-objects. Sub-values may themselves be compound values,
2410  // and in this case the procedure becomes recursive.
2411  // FIXME: The annoying part about compound values is that they don't carry
2412  // any sort of information about which value corresponds to which sub-object.
2413  // It's simply a list of values in the middle of nowhere; we expect to match
2414  // them to sub-objects, essentially, "by index": first value binds to
2415  // the first field, second value binds to the second field, etc.
2416  // It would have been much safer to organize non-lazy compound values as
2417  // a mapping from fields/bases to values.
2418  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2419  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2420
2421  RegionBindingsRef NewB(B);
2422
2423  // In C++17 aggregates may have base classes, handle those as well.
2424  // They appear before fields in the initializer list / compound value.
2425  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2426    // If the object was constructed with a constructor, its value is a
2427    // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2428    // performing aggregate initialization. The only exception from this
2429    // rule is sending an Objective-C++ message that returns a C++ object
2430    // to a nil receiver; in this case the semantics is to return a
2431    // zero-initialized object even if it's a C++ object that doesn't have
2432    // this sort of constructor; the CompoundVal is empty in this case.
2433    assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2434           "Non-aggregates are constructed with a constructor!");
2435
2436    for (const auto &B : CRD->bases()) {
2437      // (Multiple inheritance is fine though.)
2438      assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2439
2440      if (VI == VE)
2441        break;
2442
2443      QualType BTy = B.getType();
2444      assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2445
2446      const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2447      assert(BRD && "Base classes must be C++ classes!");
2448
2449      const CXXBaseObjectRegion *BR =
2450          MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2451
2452      NewB = bindStruct(NewB, BR, *VI);
2453
2454      ++VI;
2455    }
2456  }
2457
2458  RecordDecl::field_iterator FI, FE;
2459
2460  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2461
2462    if (VI == VE)
2463      break;
2464
2465    // Skip any unnamed bitfields to stay in sync with the initializers.
2466    if (FI->isUnnamedBitfield())
2467      continue;
2468
2469    QualType FTy = FI->getType();
2470    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2471
2472    if (FTy->isArrayType())
2473      NewB = bindArray(NewB, FR, *VI);
2474    else if (FTy->isStructureOrClassType())
2475      NewB = bindStruct(NewB, FR, *VI);
2476    else
2477      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2478    ++VI;
2479  }
2480
2481  // There may be fewer values in the initialize list than the fields of struct.
2482  if (FI != FE) {
2483    NewB = NewB.addBinding(R, BindingKey::Default,
2484                           svalBuilder.makeIntVal(0, false));
2485  }
2486
2487  return NewB;
2488}
2489
2490RegionBindingsRef
2491RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2492                                  const TypedRegion *R,
2493                                  SVal Val) {
2494  // Remove the old bindings, using 'R' as the root of all regions
2495  // we will invalidate. Then add the new binding.
2496  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2497}
2498
2499//===----------------------------------------------------------------------===//
2500// State pruning.
2501//===----------------------------------------------------------------------===//
2502
2503namespace {
2504class RemoveDeadBindingsWorker
2505    : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2506  SmallVector<const SymbolicRegion *, 12> Postponed;
2507  SymbolReaper &SymReaper;
2508  const StackFrameContext *CurrentLCtx;
2509
2510public:
2511  RemoveDeadBindingsWorker(RegionStoreManager &rm,
2512                           ProgramStateManager &stateMgr,
2513                           RegionBindingsRef b, SymbolReaper &symReaper,
2514                           const StackFrameContext *LCtx)
2515    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2516      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2517
2518  // Called by ClusterAnalysis.
2519  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2520  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2521  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2522
2523  using ClusterAnalysis::AddToWorkList;
2524
2525  bool AddToWorkList(const MemRegion *R);
2526
2527  bool UpdatePostponed();
2528  void VisitBinding(SVal V);
2529};
2530}
2531
2532bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2533  const MemRegion *BaseR = R->getBaseRegion();
2534  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2535}
2536
2537void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2538                                                   const ClusterBindings &C) {
2539
2540  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2541    if (SymReaper.isLive(VR))
2542      AddToWorkList(baseR, &C);
2543
2544    return;
2545  }
2546
2547  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2548    if (SymReaper.isLive(SR->getSymbol()))
2549      AddToWorkList(SR, &C);
2550    else
2551      Postponed.push_back(SR);
2552
2553    return;
2554  }
2555
2556  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2557    AddToWorkList(baseR, &C);
2558    return;
2559  }
2560
2561  // CXXThisRegion in the current or parent location context is live.
2562  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2563    const auto *StackReg =
2564        cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2565    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2566    if (CurrentLCtx &&
2567        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2568      AddToWorkList(TR, &C);
2569  }
2570}
2571
2572void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2573                                            const ClusterBindings *C) {
2574  if (!C)
2575    return;
2576
2577  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2578  // This means we should continue to track that symbol.
2579  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2580    SymReaper.markLive(SymR->getSymbol());
2581
2582  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2583    // Element index of a binding key is live.
2584    SymReaper.markElementIndicesLive(I.getKey().getRegion());
2585
2586    VisitBinding(I.getData());
2587  }
2588}
2589
2590void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2591  // Is it a LazyCompoundVal?  All referenced regions are live as well.
2592  if (Optional<nonloc::LazyCompoundVal> LCS =
2593          V.getAs<nonloc::LazyCompoundVal>()) {
2594
2595    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2596
2597    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2598                                                        E = Vals.end();
2599         I != E; ++I)
2600      VisitBinding(*I);
2601
2602    return;
2603  }
2604
2605  // If V is a region, then add it to the worklist.
2606  if (const MemRegion *R = V.getAsRegion()) {
2607    AddToWorkList(R);
2608    SymReaper.markLive(R);
2609
2610    // All regions captured by a block are also live.
2611    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2612      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2613                                                E = BR->referenced_vars_end();
2614      for ( ; I != E; ++I)
2615        AddToWorkList(I.getCapturedRegion());
2616    }
2617  }
2618
2619
2620  // Update the set of live symbols.
2621  for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2622    SymReaper.markLive(*SI);
2623}
2624
2625bool RemoveDeadBindingsWorker::UpdatePostponed() {
2626  // See if any postponed SymbolicRegions are actually live now, after
2627  // having done a scan.
2628  bool Changed = false;
2629
2630  for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2631    if (const SymbolicRegion *SR = *I) {
2632      if (SymReaper.isLive(SR->getSymbol())) {
2633        Changed |= AddToWorkList(SR);
2634        *I = nullptr;
2635      }
2636    }
2637  }
2638
2639  return Changed;
2640}
2641
2642StoreRef RegionStoreManager::removeDeadBindings(Store store,
2643                                                const StackFrameContext *LCtx,
2644                                                SymbolReaper& SymReaper) {
2645  RegionBindingsRef B = getRegionBindings(store);
2646  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2647  W.GenerateClusters();
2648
2649  // Enqueue the region roots onto the worklist.
2650  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2651       E = SymReaper.region_end(); I != E; ++I) {
2652    W.AddToWorkList(*I);
2653  }
2654
2655  do W.RunWorkList(); while (W.UpdatePostponed());
2656
2657  // We have now scanned the store, marking reachable regions and symbols
2658  // as live.  We now remove all the regions that are dead from the store
2659  // as well as update DSymbols with the set symbols that are now dead.
2660  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2661    const MemRegion *Base = I.getKey();
2662
2663    // If the cluster has been visited, we know the region has been marked.
2664    // Otherwise, remove the dead entry.
2665    if (!W.isVisited(Base))
2666      B = B.remove(Base);
2667  }
2668
2669  return StoreRef(B.asStore(), *this);
2670}
2671
2672//===----------------------------------------------------------------------===//
2673// Utility methods.
2674//===----------------------------------------------------------------------===//
2675
2676void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2677                                   unsigned int Space, bool IsDot) const {
2678  RegionBindingsRef Bindings = getRegionBindings(S);
2679
2680  Indent(Out, Space, IsDot) << "\"store\": ";
2681
2682  if (Bindings.isEmpty()) {
2683    Out << "null," << NL;
2684    return;
2685  }
2686
2687  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2688  Bindings.printJson(Out, NL, Space + 1, IsDot);
2689  Indent(Out, Space, IsDot) << "]}," << NL;
2690}
2691