ExprEngineC.cpp revision 360784
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defines ExprEngine's support for C expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ExprCXX.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22/// Optionally conjure and return a symbol for offset when processing
23/// an expression \p Expression.
24/// If \p Other is a location, conjure a symbol for \p Symbol
25/// (offset) if it is unknown so that memory arithmetic always
26/// results in an ElementRegion.
27/// \p Count The number of times the current basic block was visited.
28static SVal conjureOffsetSymbolOnLocation(
29    SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
30    unsigned Count, const LocationContext *LCtx) {
31  QualType Ty = Expression->getType();
32  if (Other.getAs<Loc>() &&
33      Ty->isIntegralOrEnumerationType() &&
34      Symbol.isUnknown()) {
35    return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36  }
37  return Symbol;
38}
39
40void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41                                     ExplodedNode *Pred,
42                                     ExplodedNodeSet &Dst) {
43
44  Expr *LHS = B->getLHS()->IgnoreParens();
45  Expr *RHS = B->getRHS()->IgnoreParens();
46
47  // FIXME: Prechecks eventually go in ::Visit().
48  ExplodedNodeSet CheckedSet;
49  ExplodedNodeSet Tmp2;
50  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51
52  // With both the LHS and RHS evaluated, process the operation itself.
53  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54         it != ei; ++it) {
55
56    ProgramStateRef state = (*it)->getState();
57    const LocationContext *LCtx = (*it)->getLocationContext();
58    SVal LeftV = state->getSVal(LHS, LCtx);
59    SVal RightV = state->getSVal(RHS, LCtx);
60
61    BinaryOperator::Opcode Op = B->getOpcode();
62
63    if (Op == BO_Assign) {
64      // EXPERIMENTAL: "Conjured" symbols.
65      // FIXME: Handle structs.
66      if (RightV.isUnknown()) {
67        unsigned Count = currBldrCtx->blockCount();
68        RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69                                              Count);
70      }
71      // Simulate the effects of a "store":  bind the value of the RHS
72      // to the L-Value represented by the LHS.
73      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75                LeftV, RightV);
76      continue;
77    }
78
79    if (!B->isAssignmentOp()) {
80      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81
82      if (B->isAdditiveOp()) {
83        // TODO: This can be removed after we enable history tracking with
84        // SymSymExpr.
85        unsigned Count = currBldrCtx->blockCount();
86        RightV = conjureOffsetSymbolOnLocation(
87            RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88        LeftV = conjureOffsetSymbolOnLocation(
89            LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90      }
91
92      // Although we don't yet model pointers-to-members, we do need to make
93      // sure that the members of temporaries have a valid 'this' pointer for
94      // other checks.
95      if (B->getOpcode() == BO_PtrMemD)
96        state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97
98      // Process non-assignments except commas or short-circuited
99      // logical expressions (LAnd and LOr).
100      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101      if (!Result.isUnknown()) {
102        state = state->BindExpr(B, LCtx, Result);
103      } else {
104        // If we cannot evaluate the operation escape the operands.
105        state = escapeValues(state, LeftV, PSK_EscapeOther);
106        state = escapeValues(state, RightV, PSK_EscapeOther);
107      }
108
109      Bldr.generateNode(B, *it, state);
110      continue;
111    }
112
113    assert (B->isCompoundAssignmentOp());
114
115    switch (Op) {
116      default:
117        llvm_unreachable("Invalid opcode for compound assignment.");
118      case BO_MulAssign: Op = BO_Mul; break;
119      case BO_DivAssign: Op = BO_Div; break;
120      case BO_RemAssign: Op = BO_Rem; break;
121      case BO_AddAssign: Op = BO_Add; break;
122      case BO_SubAssign: Op = BO_Sub; break;
123      case BO_ShlAssign: Op = BO_Shl; break;
124      case BO_ShrAssign: Op = BO_Shr; break;
125      case BO_AndAssign: Op = BO_And; break;
126      case BO_XorAssign: Op = BO_Xor; break;
127      case BO_OrAssign:  Op = BO_Or;  break;
128    }
129
130    // Perform a load (the LHS).  This performs the checks for
131    // null dereferences, and so on.
132    ExplodedNodeSet Tmp;
133    SVal location = LeftV;
134    evalLoad(Tmp, B, LHS, *it, state, location);
135
136    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
137         ++I) {
138
139      state = (*I)->getState();
140      const LocationContext *LCtx = (*I)->getLocationContext();
141      SVal V = state->getSVal(LHS, LCtx);
142
143      // Get the computation type.
144      QualType CTy =
145        cast<CompoundAssignOperator>(B)->getComputationResultType();
146      CTy = getContext().getCanonicalType(CTy);
147
148      QualType CLHSTy =
149        cast<CompoundAssignOperator>(B)->getComputationLHSType();
150      CLHSTy = getContext().getCanonicalType(CLHSTy);
151
152      QualType LTy = getContext().getCanonicalType(LHS->getType());
153
154      // Promote LHS.
155      V = svalBuilder.evalCast(V, CLHSTy, LTy);
156
157      // Compute the result of the operation.
158      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
159                                         B->getType(), CTy);
160
161      // EXPERIMENTAL: "Conjured" symbols.
162      // FIXME: Handle structs.
163
164      SVal LHSVal;
165
166      if (Result.isUnknown()) {
167        // The symbolic value is actually for the type of the left-hand side
168        // expression, not the computation type, as this is the value the
169        // LValue on the LHS will bind to.
170        LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
171                                              currBldrCtx->blockCount());
172        // However, we need to convert the symbol to the computation type.
173        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
174      }
175      else {
176        // The left-hand side may bind to a different value then the
177        // computation type.
178        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
179      }
180
181      // In C++, assignment and compound assignment operators return an
182      // lvalue.
183      if (B->isGLValue())
184        state = state->BindExpr(B, LCtx, location);
185      else
186        state = state->BindExpr(B, LCtx, Result);
187
188      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
189    }
190  }
191
192  // FIXME: postvisits eventually go in ::Visit()
193  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
194}
195
196void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
197                                ExplodedNodeSet &Dst) {
198
199  CanQualType T = getContext().getCanonicalType(BE->getType());
200
201  const BlockDecl *BD = BE->getBlockDecl();
202  // Get the value of the block itself.
203  SVal V = svalBuilder.getBlockPointer(BD, T,
204                                       Pred->getLocationContext(),
205                                       currBldrCtx->blockCount());
206
207  ProgramStateRef State = Pred->getState();
208
209  // If we created a new MemRegion for the block, we should explicitly bind
210  // the captured variables.
211  if (const BlockDataRegion *BDR =
212      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
213
214    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
215                                              E = BDR->referenced_vars_end();
216
217    auto CI = BD->capture_begin();
218    auto CE = BD->capture_end();
219    for (; I != E; ++I) {
220      const VarRegion *capturedR = I.getCapturedRegion();
221      const VarRegion *originalR = I.getOriginalRegion();
222
223      // If the capture had a copy expression, use the result of evaluating
224      // that expression, otherwise use the original value.
225      // We rely on the invariant that the block declaration's capture variables
226      // are a prefix of the BlockDataRegion's referenced vars (which may include
227      // referenced globals, etc.) to enable fast lookup of the capture for a
228      // given referenced var.
229      const Expr *copyExpr = nullptr;
230      if (CI != CE) {
231        assert(CI->getVariable() == capturedR->getDecl());
232        copyExpr = CI->getCopyExpr();
233        CI++;
234      }
235
236      if (capturedR != originalR) {
237        SVal originalV;
238        const LocationContext *LCtx = Pred->getLocationContext();
239        if (copyExpr) {
240          originalV = State->getSVal(copyExpr, LCtx);
241        } else {
242          originalV = State->getSVal(loc::MemRegionVal(originalR));
243        }
244        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
245      }
246    }
247  }
248
249  ExplodedNodeSet Tmp;
250  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
251  Bldr.generateNode(BE, Pred,
252                    State->BindExpr(BE, Pred->getLocationContext(), V),
253                    nullptr, ProgramPoint::PostLValueKind);
254
255  // FIXME: Move all post/pre visits to ::Visit().
256  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
257}
258
259ProgramStateRef ExprEngine::handleLValueBitCast(
260    ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
261    QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
262    ExplodedNode* Pred) {
263  if (T->isLValueReferenceType()) {
264    assert(!CastE->getType()->isLValueReferenceType());
265    ExTy = getContext().getLValueReferenceType(ExTy);
266  } else if (T->isRValueReferenceType()) {
267    assert(!CastE->getType()->isRValueReferenceType());
268    ExTy = getContext().getRValueReferenceType(ExTy);
269  }
270  // Delegate to SValBuilder to process.
271  SVal OrigV = state->getSVal(Ex, LCtx);
272  SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
273  // Negate the result if we're treating the boolean as a signed i1
274  if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
275    V = evalMinus(V);
276  state = state->BindExpr(CastE, LCtx, V);
277  if (V.isUnknown() && !OrigV.isUnknown()) {
278    state = escapeValues(state, OrigV, PSK_EscapeOther);
279  }
280  Bldr.generateNode(CastE, Pred, state);
281
282  return state;
283}
284
285ProgramStateRef ExprEngine::handleLVectorSplat(
286    ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
287    StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
288  // Recover some path sensitivity by conjuring a new value.
289  QualType resultType = CastE->getType();
290  if (CastE->isGLValue())
291    resultType = getContext().getPointerType(resultType);
292  SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
293                                             resultType,
294                                             currBldrCtx->blockCount());
295  state = state->BindExpr(CastE, LCtx, result);
296  Bldr.generateNode(CastE, Pred, state);
297
298  return state;
299}
300
301void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
302                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
303
304  ExplodedNodeSet dstPreStmt;
305  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
306
307  if (CastE->getCastKind() == CK_LValueToRValue) {
308    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
309         I!=E; ++I) {
310      ExplodedNode *subExprNode = *I;
311      ProgramStateRef state = subExprNode->getState();
312      const LocationContext *LCtx = subExprNode->getLocationContext();
313      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
314    }
315    return;
316  }
317
318  // All other casts.
319  QualType T = CastE->getType();
320  QualType ExTy = Ex->getType();
321
322  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
323    T = ExCast->getTypeAsWritten();
324
325  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
326  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
327       I != E; ++I) {
328
329    Pred = *I;
330    ProgramStateRef state = Pred->getState();
331    const LocationContext *LCtx = Pred->getLocationContext();
332
333    switch (CastE->getCastKind()) {
334      case CK_LValueToRValue:
335        llvm_unreachable("LValueToRValue casts handled earlier.");
336      case CK_ToVoid:
337        continue;
338        // The analyzer doesn't do anything special with these casts,
339        // since it understands retain/release semantics already.
340      case CK_ARCProduceObject:
341      case CK_ARCConsumeObject:
342      case CK_ARCReclaimReturnedObject:
343      case CK_ARCExtendBlockObject: // Fall-through.
344      case CK_CopyAndAutoreleaseBlockObject:
345        // The analyser can ignore atomic casts for now, although some future
346        // checkers may want to make certain that you're not modifying the same
347        // value through atomic and nonatomic pointers.
348      case CK_AtomicToNonAtomic:
349      case CK_NonAtomicToAtomic:
350        // True no-ops.
351      case CK_NoOp:
352      case CK_ConstructorConversion:
353      case CK_UserDefinedConversion:
354      case CK_FunctionToPointerDecay:
355      case CK_BuiltinFnToFnPtr: {
356        // Copy the SVal of Ex to CastE.
357        ProgramStateRef state = Pred->getState();
358        const LocationContext *LCtx = Pred->getLocationContext();
359        SVal V = state->getSVal(Ex, LCtx);
360        state = state->BindExpr(CastE, LCtx, V);
361        Bldr.generateNode(CastE, Pred, state);
362        continue;
363      }
364      case CK_MemberPointerToBoolean:
365      case CK_PointerToBoolean: {
366        SVal V = state->getSVal(Ex, LCtx);
367        auto PTMSV = V.getAs<nonloc::PointerToMember>();
368        if (PTMSV)
369          V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
370        if (V.isUndef() || PTMSV) {
371          state = state->BindExpr(CastE, LCtx, V);
372          Bldr.generateNode(CastE, Pred, state);
373          continue;
374        }
375        // Explicitly proceed with default handler for this case cascade.
376        state =
377            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
378        continue;
379      }
380      case CK_Dependent:
381      case CK_ArrayToPointerDecay:
382      case CK_BitCast:
383      case CK_LValueToRValueBitCast:
384      case CK_AddressSpaceConversion:
385      case CK_BooleanToSignedIntegral:
386      case CK_IntegralToPointer:
387      case CK_PointerToIntegral: {
388        SVal V = state->getSVal(Ex, LCtx);
389        if (V.getAs<nonloc::PointerToMember>()) {
390          state = state->BindExpr(CastE, LCtx, UnknownVal());
391          Bldr.generateNode(CastE, Pred, state);
392          continue;
393        }
394        // Explicitly proceed with default handler for this case cascade.
395        state =
396            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
397        continue;
398      }
399      case CK_IntegralToBoolean:
400      case CK_IntegralToFloating:
401      case CK_FloatingToIntegral:
402      case CK_FloatingToBoolean:
403      case CK_FloatingCast:
404      case CK_FloatingRealToComplex:
405      case CK_FloatingComplexToReal:
406      case CK_FloatingComplexToBoolean:
407      case CK_FloatingComplexCast:
408      case CK_FloatingComplexToIntegralComplex:
409      case CK_IntegralRealToComplex:
410      case CK_IntegralComplexToReal:
411      case CK_IntegralComplexToBoolean:
412      case CK_IntegralComplexCast:
413      case CK_IntegralComplexToFloatingComplex:
414      case CK_CPointerToObjCPointerCast:
415      case CK_BlockPointerToObjCPointerCast:
416      case CK_AnyPointerToBlockPointerCast:
417      case CK_ObjCObjectLValueCast:
418      case CK_ZeroToOCLOpaqueType:
419      case CK_IntToOCLSampler:
420      case CK_LValueBitCast:
421      case CK_FixedPointCast:
422      case CK_FixedPointToBoolean:
423      case CK_FixedPointToIntegral:
424      case CK_IntegralToFixedPoint: {
425        state =
426            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
427        continue;
428      }
429      case CK_IntegralCast: {
430        // Delegate to SValBuilder to process.
431        SVal V = state->getSVal(Ex, LCtx);
432        V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
433        state = state->BindExpr(CastE, LCtx, V);
434        Bldr.generateNode(CastE, Pred, state);
435        continue;
436      }
437      case CK_DerivedToBase:
438      case CK_UncheckedDerivedToBase: {
439        // For DerivedToBase cast, delegate to the store manager.
440        SVal val = state->getSVal(Ex, LCtx);
441        val = getStoreManager().evalDerivedToBase(val, CastE);
442        state = state->BindExpr(CastE, LCtx, val);
443        Bldr.generateNode(CastE, Pred, state);
444        continue;
445      }
446      // Handle C++ dyn_cast.
447      case CK_Dynamic: {
448        SVal val = state->getSVal(Ex, LCtx);
449
450        // Compute the type of the result.
451        QualType resultType = CastE->getType();
452        if (CastE->isGLValue())
453          resultType = getContext().getPointerType(resultType);
454
455        bool Failed = false;
456
457        // Check if the value being cast evaluates to 0.
458        if (val.isZeroConstant())
459          Failed = true;
460        // Else, evaluate the cast.
461        else
462          val = getStoreManager().attemptDownCast(val, T, Failed);
463
464        if (Failed) {
465          if (T->isReferenceType()) {
466            // A bad_cast exception is thrown if input value is a reference.
467            // Currently, we model this, by generating a sink.
468            Bldr.generateSink(CastE, Pred, state);
469            continue;
470          } else {
471            // If the cast fails on a pointer, bind to 0.
472            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
473          }
474        } else {
475          // If we don't know if the cast succeeded, conjure a new symbol.
476          if (val.isUnknown()) {
477            DefinedOrUnknownSVal NewSym =
478              svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
479                                           currBldrCtx->blockCount());
480            state = state->BindExpr(CastE, LCtx, NewSym);
481          } else
482            // Else, bind to the derived region value.
483            state = state->BindExpr(CastE, LCtx, val);
484        }
485        Bldr.generateNode(CastE, Pred, state);
486        continue;
487      }
488      case CK_BaseToDerived: {
489        SVal val = state->getSVal(Ex, LCtx);
490        QualType resultType = CastE->getType();
491        if (CastE->isGLValue())
492          resultType = getContext().getPointerType(resultType);
493
494        bool Failed = false;
495
496        if (!val.isConstant()) {
497          val = getStoreManager().attemptDownCast(val, T, Failed);
498        }
499
500        // Failed to cast or the result is unknown, fall back to conservative.
501        if (Failed || val.isUnknown()) {
502          val =
503            svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
504                                         currBldrCtx->blockCount());
505        }
506        state = state->BindExpr(CastE, LCtx, val);
507        Bldr.generateNode(CastE, Pred, state);
508        continue;
509      }
510      case CK_NullToPointer: {
511        SVal V = svalBuilder.makeNull();
512        state = state->BindExpr(CastE, LCtx, V);
513        Bldr.generateNode(CastE, Pred, state);
514        continue;
515      }
516      case CK_NullToMemberPointer: {
517        SVal V = svalBuilder.getMemberPointer(nullptr);
518        state = state->BindExpr(CastE, LCtx, V);
519        Bldr.generateNode(CastE, Pred, state);
520        continue;
521      }
522      case CK_DerivedToBaseMemberPointer:
523      case CK_BaseToDerivedMemberPointer:
524      case CK_ReinterpretMemberPointer: {
525        SVal V = state->getSVal(Ex, LCtx);
526        if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
527          SVal CastedPTMSV = svalBuilder.makePointerToMember(
528              getBasicVals().accumCXXBase(
529                  llvm::make_range<CastExpr::path_const_iterator>(
530                      CastE->path_begin(), CastE->path_end()), *PTMSV));
531          state = state->BindExpr(CastE, LCtx, CastedPTMSV);
532          Bldr.generateNode(CastE, Pred, state);
533          continue;
534        }
535        // Explicitly proceed with default handler for this case cascade.
536        state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
537        continue;
538      }
539      // Various C++ casts that are not handled yet.
540      case CK_ToUnion:
541      case CK_VectorSplat: {
542        state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
543        continue;
544      }
545    }
546  }
547}
548
549void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
550                                          ExplodedNode *Pred,
551                                          ExplodedNodeSet &Dst) {
552  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
553
554  ProgramStateRef State = Pred->getState();
555  const LocationContext *LCtx = Pred->getLocationContext();
556
557  const Expr *Init = CL->getInitializer();
558  SVal V = State->getSVal(CL->getInitializer(), LCtx);
559
560  if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
561    // No work needed. Just pass the value up to this expression.
562  } else {
563    assert(isa<InitListExpr>(Init));
564    Loc CLLoc = State->getLValue(CL, LCtx);
565    State = State->bindLoc(CLLoc, V, LCtx);
566
567    if (CL->isGLValue())
568      V = CLLoc;
569  }
570
571  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
572}
573
574void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
575                               ExplodedNodeSet &Dst) {
576  // Assumption: The CFG has one DeclStmt per Decl.
577  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
578
579  if (!VD) {
580    //TODO:AZ: remove explicit insertion after refactoring is done.
581    Dst.insert(Pred);
582    return;
583  }
584
585  // FIXME: all pre/post visits should eventually be handled by ::Visit().
586  ExplodedNodeSet dstPreVisit;
587  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
588
589  ExplodedNodeSet dstEvaluated;
590  StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
591  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
592       I!=E; ++I) {
593    ExplodedNode *N = *I;
594    ProgramStateRef state = N->getState();
595    const LocationContext *LC = N->getLocationContext();
596
597    // Decls without InitExpr are not initialized explicitly.
598    if (const Expr *InitEx = VD->getInit()) {
599
600      // Note in the state that the initialization has occurred.
601      ExplodedNode *UpdatedN = N;
602      SVal InitVal = state->getSVal(InitEx, LC);
603
604      assert(DS->isSingleDecl());
605      if (getObjectUnderConstruction(state, DS, LC)) {
606        state = finishObjectConstruction(state, DS, LC);
607        // We constructed the object directly in the variable.
608        // No need to bind anything.
609        B.generateNode(DS, UpdatedN, state);
610      } else {
611        // Recover some path-sensitivity if a scalar value evaluated to
612        // UnknownVal.
613        if (InitVal.isUnknown()) {
614          QualType Ty = InitEx->getType();
615          if (InitEx->isGLValue()) {
616            Ty = getContext().getPointerType(Ty);
617          }
618
619          InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
620                                                 currBldrCtx->blockCount());
621        }
622
623
624        B.takeNodes(UpdatedN);
625        ExplodedNodeSet Dst2;
626        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
627        B.addNodes(Dst2);
628      }
629    }
630    else {
631      B.generateNode(DS, N, state);
632    }
633  }
634
635  getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
636}
637
638void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
639                                  ExplodedNodeSet &Dst) {
640  // This method acts upon CFG elements for logical operators && and ||
641  // and attaches the value (true or false) to them as expressions.
642  // It doesn't produce any state splits.
643  // If we made it that far, we're past the point when we modeled the short
644  // circuit. It means that we should have precise knowledge about whether
645  // we've short-circuited. If we did, we already know the value we need to
646  // bind. If we didn't, the value of the RHS (casted to the boolean type)
647  // is the answer.
648  // Currently this method tries to figure out whether we've short-circuited
649  // by looking at the ExplodedGraph. This method is imperfect because there
650  // could inevitably have been merges that would have resulted in multiple
651  // potential path traversal histories. We bail out when we fail.
652  // Due to this ambiguity, a more reliable solution would have been to
653  // track the short circuit operation history path-sensitively until
654  // we evaluate the respective logical operator.
655  assert(B->getOpcode() == BO_LAnd ||
656         B->getOpcode() == BO_LOr);
657
658  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
659  ProgramStateRef state = Pred->getState();
660
661  if (B->getType()->isVectorType()) {
662    // FIXME: We do not model vector arithmetic yet. When adding support for
663    // that, note that the CFG-based reasoning below does not apply, because
664    // logical operators on vectors are not short-circuit. Currently they are
665    // modeled as short-circuit in Clang CFG but this is incorrect.
666    // Do not set the value for the expression. It'd be UnknownVal by default.
667    Bldr.generateNode(B, Pred, state);
668    return;
669  }
670
671  ExplodedNode *N = Pred;
672  while (!N->getLocation().getAs<BlockEntrance>()) {
673    ProgramPoint P = N->getLocation();
674    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
675    (void) P;
676    if (N->pred_size() != 1) {
677      // We failed to track back where we came from.
678      Bldr.generateNode(B, Pred, state);
679      return;
680    }
681    N = *N->pred_begin();
682  }
683
684  if (N->pred_size() != 1) {
685    // We failed to track back where we came from.
686    Bldr.generateNode(B, Pred, state);
687    return;
688  }
689
690  N = *N->pred_begin();
691  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
692  SVal X;
693
694  // Determine the value of the expression by introspecting how we
695  // got this location in the CFG.  This requires looking at the previous
696  // block we were in and what kind of control-flow transfer was involved.
697  const CFGBlock *SrcBlock = BE.getSrc();
698  // The only terminator (if there is one) that makes sense is a logical op.
699  CFGTerminator T = SrcBlock->getTerminator();
700  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
701    (void) Term;
702    assert(Term->isLogicalOp());
703    assert(SrcBlock->succ_size() == 2);
704    // Did we take the true or false branch?
705    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
706    X = svalBuilder.makeIntVal(constant, B->getType());
707  }
708  else {
709    // If there is no terminator, by construction the last statement
710    // in SrcBlock is the value of the enclosing expression.
711    // However, we still need to constrain that value to be 0 or 1.
712    assert(!SrcBlock->empty());
713    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
714    const Expr *RHS = cast<Expr>(Elem.getStmt());
715    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
716
717    if (RHSVal.isUndef()) {
718      X = RHSVal;
719    } else {
720      // We evaluate "RHSVal != 0" expression which result in 0 if the value is
721      // known to be false, 1 if the value is known to be true and a new symbol
722      // when the assumption is unknown.
723      nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
724      X = evalBinOp(N->getState(), BO_NE,
725                    svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
726                    Zero, B->getType());
727    }
728  }
729  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
730}
731
732void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
733                                   ExplodedNode *Pred,
734                                   ExplodedNodeSet &Dst) {
735  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
736
737  ProgramStateRef state = Pred->getState();
738  const LocationContext *LCtx = Pred->getLocationContext();
739  QualType T = getContext().getCanonicalType(IE->getType());
740  unsigned NumInitElements = IE->getNumInits();
741
742  if (!IE->isGLValue() && !IE->isTransparent() &&
743      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
744       T->isAnyComplexType())) {
745    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
746
747    // Handle base case where the initializer has no elements.
748    // e.g: static int* myArray[] = {};
749    if (NumInitElements == 0) {
750      SVal V = svalBuilder.makeCompoundVal(T, vals);
751      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
752      return;
753    }
754
755    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
756         ei = IE->rend(); it != ei; ++it) {
757      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
758      vals = getBasicVals().prependSVal(V, vals);
759    }
760
761    B.generateNode(IE, Pred,
762                   state->BindExpr(IE, LCtx,
763                                   svalBuilder.makeCompoundVal(T, vals)));
764    return;
765  }
766
767  // Handle scalars: int{5} and int{} and GLvalues.
768  // Note, if the InitListExpr is a GLvalue, it means that there is an address
769  // representing it, so it must have a single init element.
770  assert(NumInitElements <= 1);
771
772  SVal V;
773  if (NumInitElements == 0)
774    V = getSValBuilder().makeZeroVal(T);
775  else
776    V = state->getSVal(IE->getInit(0), LCtx);
777
778  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
779}
780
781void ExprEngine::VisitGuardedExpr(const Expr *Ex,
782                                  const Expr *L,
783                                  const Expr *R,
784                                  ExplodedNode *Pred,
785                                  ExplodedNodeSet &Dst) {
786  assert(L && R);
787
788  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
789  ProgramStateRef state = Pred->getState();
790  const LocationContext *LCtx = Pred->getLocationContext();
791  const CFGBlock *SrcBlock = nullptr;
792
793  // Find the predecessor block.
794  ProgramStateRef SrcState = state;
795  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
796    ProgramPoint PP = N->getLocation();
797    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
798      // If the state N has multiple predecessors P, it means that successors
799      // of P are all equivalent.
800      // In turn, that means that all nodes at P are equivalent in terms
801      // of observable behavior at N, and we can follow any of them.
802      // FIXME: a more robust solution which does not walk up the tree.
803      continue;
804    }
805    SrcBlock = PP.castAs<BlockEdge>().getSrc();
806    SrcState = N->getState();
807    break;
808  }
809
810  assert(SrcBlock && "missing function entry");
811
812  // Find the last expression in the predecessor block.  That is the
813  // expression that is used for the value of the ternary expression.
814  bool hasValue = false;
815  SVal V;
816
817  for (CFGElement CE : llvm::reverse(*SrcBlock)) {
818    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
819      const Expr *ValEx = cast<Expr>(CS->getStmt());
820      ValEx = ValEx->IgnoreParens();
821
822      // For GNU extension '?:' operator, the left hand side will be an
823      // OpaqueValueExpr, so get the underlying expression.
824      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
825        L = OpaqueEx->getSourceExpr();
826
827      // If the last expression in the predecessor block matches true or false
828      // subexpression, get its the value.
829      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
830        hasValue = true;
831        V = SrcState->getSVal(ValEx, LCtx);
832      }
833      break;
834    }
835  }
836
837  if (!hasValue)
838    V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
839                                     currBldrCtx->blockCount());
840
841  // Generate a new node with the binding from the appropriate path.
842  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
843}
844
845void ExprEngine::
846VisitOffsetOfExpr(const OffsetOfExpr *OOE,
847                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
848  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
849  Expr::EvalResult Result;
850  if (OOE->EvaluateAsInt(Result, getContext())) {
851    APSInt IV = Result.Val.getInt();
852    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
853    assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
854    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
855    SVal X = svalBuilder.makeIntVal(IV);
856    B.generateNode(OOE, Pred,
857                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
858                                              X));
859  }
860  // FIXME: Handle the case where __builtin_offsetof is not a constant.
861}
862
863
864void ExprEngine::
865VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
866                              ExplodedNode *Pred,
867                              ExplodedNodeSet &Dst) {
868  // FIXME: Prechecks eventually go in ::Visit().
869  ExplodedNodeSet CheckedSet;
870  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
871
872  ExplodedNodeSet EvalSet;
873  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
874
875  QualType T = Ex->getTypeOfArgument();
876
877  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
878       I != E; ++I) {
879    if (Ex->getKind() == UETT_SizeOf) {
880      if (!T->isIncompleteType() && !T->isConstantSizeType()) {
881        assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
882
883        // FIXME: Add support for VLA type arguments and VLA expressions.
884        // When that happens, we should probably refactor VLASizeChecker's code.
885        continue;
886      } else if (T->getAs<ObjCObjectType>()) {
887        // Some code tries to take the sizeof an ObjCObjectType, relying that
888        // the compiler has laid out its representation.  Just report Unknown
889        // for these.
890        continue;
891      }
892    }
893
894    APSInt Value = Ex->EvaluateKnownConstInt(getContext());
895    CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
896
897    ProgramStateRef state = (*I)->getState();
898    state = state->BindExpr(Ex, (*I)->getLocationContext(),
899                            svalBuilder.makeIntVal(amt.getQuantity(),
900                                                   Ex->getType()));
901    Bldr.generateNode(Ex, *I, state);
902  }
903
904  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
905}
906
907void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
908                                   const UnaryOperator *U,
909                                   StmtNodeBuilder &Bldr) {
910  // FIXME: We can probably just have some magic in Environment::getSVal()
911  // that propagates values, instead of creating a new node here.
912  //
913  // Unary "+" is a no-op, similar to a parentheses.  We still have places
914  // where it may be a block-level expression, so we need to
915  // generate an extra node that just propagates the value of the
916  // subexpression.
917  const Expr *Ex = U->getSubExpr()->IgnoreParens();
918  ProgramStateRef state = (*I)->getState();
919  const LocationContext *LCtx = (*I)->getLocationContext();
920  Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
921                                           state->getSVal(Ex, LCtx)));
922}
923
924void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
925                                    ExplodedNodeSet &Dst) {
926  // FIXME: Prechecks eventually go in ::Visit().
927  ExplodedNodeSet CheckedSet;
928  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
929
930  ExplodedNodeSet EvalSet;
931  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
932
933  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
934       I != E; ++I) {
935    switch (U->getOpcode()) {
936    default: {
937      Bldr.takeNodes(*I);
938      ExplodedNodeSet Tmp;
939      VisitIncrementDecrementOperator(U, *I, Tmp);
940      Bldr.addNodes(Tmp);
941      break;
942    }
943    case UO_Real: {
944      const Expr *Ex = U->getSubExpr()->IgnoreParens();
945
946      // FIXME: We don't have complex SValues yet.
947      if (Ex->getType()->isAnyComplexType()) {
948        // Just report "Unknown."
949        break;
950      }
951
952      // For all other types, UO_Real is an identity operation.
953      assert (U->getType() == Ex->getType());
954      ProgramStateRef state = (*I)->getState();
955      const LocationContext *LCtx = (*I)->getLocationContext();
956      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
957                                               state->getSVal(Ex, LCtx)));
958      break;
959    }
960
961    case UO_Imag: {
962      const Expr *Ex = U->getSubExpr()->IgnoreParens();
963      // FIXME: We don't have complex SValues yet.
964      if (Ex->getType()->isAnyComplexType()) {
965        // Just report "Unknown."
966        break;
967      }
968      // For all other types, UO_Imag returns 0.
969      ProgramStateRef state = (*I)->getState();
970      const LocationContext *LCtx = (*I)->getLocationContext();
971      SVal X = svalBuilder.makeZeroVal(Ex->getType());
972      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
973      break;
974    }
975
976    case UO_AddrOf: {
977      // Process pointer-to-member address operation.
978      const Expr *Ex = U->getSubExpr()->IgnoreParens();
979      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
980        const ValueDecl *VD = DRE->getDecl();
981
982        if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) {
983          ProgramStateRef State = (*I)->getState();
984          const LocationContext *LCtx = (*I)->getLocationContext();
985          SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD));
986          Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
987          break;
988        }
989      }
990      // Explicitly proceed with default handler for this case cascade.
991      handleUOExtension(I, U, Bldr);
992      break;
993    }
994    case UO_Plus:
995      assert(!U->isGLValue());
996      LLVM_FALLTHROUGH;
997    case UO_Deref:
998    case UO_Extension: {
999      handleUOExtension(I, U, Bldr);
1000      break;
1001    }
1002
1003    case UO_LNot:
1004    case UO_Minus:
1005    case UO_Not: {
1006      assert (!U->isGLValue());
1007      const Expr *Ex = U->getSubExpr()->IgnoreParens();
1008      ProgramStateRef state = (*I)->getState();
1009      const LocationContext *LCtx = (*I)->getLocationContext();
1010
1011      // Get the value of the subexpression.
1012      SVal V = state->getSVal(Ex, LCtx);
1013
1014      if (V.isUnknownOrUndef()) {
1015        Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
1016        break;
1017      }
1018
1019      switch (U->getOpcode()) {
1020        default:
1021          llvm_unreachable("Invalid Opcode.");
1022        case UO_Not:
1023          // FIXME: Do we need to handle promotions?
1024          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
1025          break;
1026        case UO_Minus:
1027          // FIXME: Do we need to handle promotions?
1028          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
1029          break;
1030        case UO_LNot:
1031          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
1032          //
1033          //  Note: technically we do "E == 0", but this is the same in the
1034          //    transfer functions as "0 == E".
1035          SVal Result;
1036          if (Optional<Loc> LV = V.getAs<Loc>()) {
1037            Loc X = svalBuilder.makeNullWithType(Ex->getType());
1038            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1039          } else if (Ex->getType()->isFloatingType()) {
1040            // FIXME: handle floating point types.
1041            Result = UnknownVal();
1042          } else {
1043            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1044            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
1045                               U->getType());
1046          }
1047
1048          state = state->BindExpr(U, LCtx, Result);
1049          break;
1050      }
1051      Bldr.generateNode(U, *I, state);
1052      break;
1053    }
1054    }
1055  }
1056
1057  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1058}
1059
1060void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1061                                                 ExplodedNode *Pred,
1062                                                 ExplodedNodeSet &Dst) {
1063  // Handle ++ and -- (both pre- and post-increment).
1064  assert (U->isIncrementDecrementOp());
1065  const Expr *Ex = U->getSubExpr()->IgnoreParens();
1066
1067  const LocationContext *LCtx = Pred->getLocationContext();
1068  ProgramStateRef state = Pred->getState();
1069  SVal loc = state->getSVal(Ex, LCtx);
1070
1071  // Perform a load.
1072  ExplodedNodeSet Tmp;
1073  evalLoad(Tmp, U, Ex, Pred, state, loc);
1074
1075  ExplodedNodeSet Dst2;
1076  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1077  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1078
1079    state = (*I)->getState();
1080    assert(LCtx == (*I)->getLocationContext());
1081    SVal V2_untested = state->getSVal(Ex, LCtx);
1082
1083    // Propagate unknown and undefined values.
1084    if (V2_untested.isUnknownOrUndef()) {
1085      state = state->BindExpr(U, LCtx, V2_untested);
1086
1087      // Perform the store, so that the uninitialized value detection happens.
1088      Bldr.takeNodes(*I);
1089      ExplodedNodeSet Dst3;
1090      evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
1091      Bldr.addNodes(Dst3);
1092
1093      continue;
1094    }
1095    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1096
1097    // Handle all other values.
1098    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1099
1100    // If the UnaryOperator has non-location type, use its type to create the
1101    // constant value. If the UnaryOperator has location type, create the
1102    // constant with int type and pointer width.
1103    SVal RHS;
1104    SVal Result;
1105
1106    if (U->getType()->isAnyPointerType())
1107      RHS = svalBuilder.makeArrayIndex(1);
1108    else if (U->getType()->isIntegralOrEnumerationType())
1109      RHS = svalBuilder.makeIntVal(1, U->getType());
1110    else
1111      RHS = UnknownVal();
1112
1113    // The use of an operand of type bool with the ++ operators is deprecated
1114    // but valid until C++17. And if the operand of the ++ operator is of type
1115    // bool, it is set to true until C++17. Note that for '_Bool', it is also
1116    // set to true when it encounters ++ operator.
1117    if (U->getType()->isBooleanType() && U->isIncrementOp())
1118      Result = svalBuilder.makeTruthVal(true, U->getType());
1119    else
1120      Result = evalBinOp(state, Op, V2, RHS, U->getType());
1121
1122    // Conjure a new symbol if necessary to recover precision.
1123    if (Result.isUnknown()){
1124      DefinedOrUnknownSVal SymVal =
1125        svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1126                                     currBldrCtx->blockCount());
1127      Result = SymVal;
1128
1129      // If the value is a location, ++/-- should always preserve
1130      // non-nullness.  Check if the original value was non-null, and if so
1131      // propagate that constraint.
1132      if (Loc::isLocType(U->getType())) {
1133        DefinedOrUnknownSVal Constraint =
1134        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1135
1136        if (!state->assume(Constraint, true)) {
1137          // It isn't feasible for the original value to be null.
1138          // Propagate this constraint.
1139          Constraint = svalBuilder.evalEQ(state, SymVal,
1140                                       svalBuilder.makeZeroVal(U->getType()));
1141
1142          state = state->assume(Constraint, false);
1143          assert(state);
1144        }
1145      }
1146    }
1147
1148    // Since the lvalue-to-rvalue conversion is explicit in the AST,
1149    // we bind an l-value if the operator is prefix and an lvalue (in C++).
1150    if (U->isGLValue())
1151      state = state->BindExpr(U, LCtx, loc);
1152    else
1153      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1154
1155    // Perform the store.
1156    Bldr.takeNodes(*I);
1157    ExplodedNodeSet Dst3;
1158    evalStore(Dst3, U, Ex, *I, state, loc, Result);
1159    Bldr.addNodes(Dst3);
1160  }
1161  Dst.insert(Dst2);
1162}
1163